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Elektronische Rechenmaschinen — ihre Bedeutung für die Konstruktionspraxis
Von PD Dr. Peter Läuchli, Institut für angewandte Mathematik an der ETH, Zürich1) DK 681.14

Der Einsatz von Rechenautomaten bei technischen
Berechnungen ist eine verhältnismässig neue Errungenschaft:
Bedenken Sie, dass ein Vortrag über das selbe Thema vor
20 Jahren überhaupt noch nicht möglich gewesen wäre. Vor
10 Jahren wäre er zum mindesten noch ziemlich kühn
gewesen und hätte jedenfalls ganz anders aufgebaut sein müssen

als heute. Man hätte damals seinen staunenden
Zuhörern begreiflich gemacht, dass es solche Maschinen gibt,
welche vollautomatisch die längsten und kompliziertesten
Rechnungen durchführen. Vielleicht hätte man auch zu
erklären versucht, wie ein solches Ding im Detail aufgebaut
ist und funktioniert2), und nur in einem Ausblick hätte man
anzudeuten gewagt, dass diese Rechenmaschinen auch für
die Konstruktionspraxis einmal ihre Bedeutung erlangen
würden.

Inzwischen hat sich die Situation gewandelt. Der
Ingenieur hat sich daran gewöhnt, dass ihm nicht nur
Rechenautomaten, sondern an verschiedenen Orten auch ein gut
ausgebauter Rechendienst zur Verfügung stehen (in der
Schweiz z. B. an den Universitäten von Lausanne und Bern,
an der ETH, sowie in verschiedenen kommerziell aufgezogenen

Rechenzentren). Weitgehend hat sich bereits die
Erkenntnis durchgesetzt, dass es sich bei vielen umfangreiche-

äpn Rechnungen vom wirtschaftlichen Standpunkt aus
einfach nicht mehr verantworten lässt, diese von Hand, das
heisst mit Tischrechenmaschinen durchzuführen.

Ich darf daher heute voraussetzen, dass meine Zuhörer
alle schon bei irgendeiner Gelegenheit mit Rechenautomaten
in Berührung gekommen sind, und mich darauf beschränken,
auf einige wesentliche Punkte hinzuweisen und vor allem
ein paar häufig vorkommende Begriffe zu erklären.

Bekanntlich teilt man die Gesamtheit der Rechenmaschinen

in zwei grosse Klassen ein, die Analogiegerate und
die Digitalmaschinen.

Bei den Maschinen der ersten Gruppe werden die
auftretenden Rechengrössen durch physikalische Analogien
dargestellt, und zwar durch mechanische Grössen wie Längen
oder Drehwinkel oder durch elektrische wie Stromstärken
oder Spannungen. Auf dem Analogieprinzip beruhen die uns
allen geläufigen kleinen Geräte wie Rechenschieber oder
Planimeter; an grösseren Beispielen seien Integrieranlagen,
Feuerleitgeräte und Flugsimulatoren erwähnt. Allen diesen
Geräten ist gemeinsam, dass sie nur mit einer ziemlich
beschränkten Genauigkeit arbeiten, welche noch von der Ge-
schickliehkeit des Bedienenden abhängen kann, und dass sie
meistens für spezielle Zwecke eingerichtet sind. Dafür ist es
oft möglich, mit einfachen Mittein rasch und übersichtlich
Resultate zu erhalten.

Die digitalen Maschinen, welche im folgenden ausschliesslich
betrachtet werden, arbeiten dagegen immer ziffern-

mässig («Ziffernrechner») mit einer ganz bestimmten
Anzahl Stellen. Im Zentrum jedes solchen Gerätes steht ein
Rechenwerk, welches die arithmetischen Grundoperationen
ausführen kann. Wie dies technisch realisiert wird, braucht
in diesem Zusammenhang nicht diskutiert zu werden.

Wichtiger ist für den Benutzer die Tatsache, dass die
Ziffern stets zu Paketen von ganz bestimmter Länge, zu
sogenannten Wörtern zusammengefasst und in dieser Form
verarbeitet werden. Es kommt natürlich sehr darauf an, ob
eine Maschine mit 6 oder mit 15 Dezimalstellen rechnet. Man
kann zwar, wenn die Genauigkeit nicht ausreicht, eine Zahl
Ober mehrere Wörter erstrecken und die Rechenoperationen
diesen zusammengesetzten Wörtern entsprechend programmleren,

aber die Rechenzeit wird dabei sofort mindestens
verzehnfacht, so dass man sich schon, wenn irgendwie möglich,

mit der ursprünglichen Stellenzahl der Maschine
begnügt.

i) Vortrag, gehalten an der Fachtagung der S. I. A.-Fachgruppe
für Brückenbau und Hochbau am 12. Nov. 1960 in der ETH.

2) Vgl. A. P. Speiser, Elektronische Rechenautomaten, SBZ 1960,
S. 441 und 464.

Ein sehr wesentlicher Bestandteil jedes Rechenautomaten,

der bei den Tischrechenmaschinen noch fehlt, ist der
Speicher, ein Organ, welches Zahlen aufbewahren kann. Ein
Speicher ist normalerweise in durchnumerierte Zellen
eingeteilt, von denen jede ein Wort fasst. Entscheidend für die
Brauchbarkeit eines Speifterwerks sind seine Grösse und die
Zugriffszeit, welche in einem vernünftigen Verhältnis zur
Rechengeschwindigkeit stehen sollte. Da die beiden
Forderungen einander naturgemäss zuwiderlaufen, ist man vielfach
dazu übergegangen, an die selbe Maschine einen
Schnellspeicher mit verschwindender Zugriffszeit und einigen
tausend Zellen sowie einen Grosspeicher mit mehreren Zehnoder

gar Hunderttausenden von Zellen anzuschliessen, wobei
dann im zweiten Fall entsprechend grosse Suchzeiten In Kauf
genommen werden müssen.

Hier ist wohl der Platz, um kurz auf den Begriff der
Programmsteuerung einzutreten. Mit ihr wird die
Rechenmaschine erst zum Automaten. Wie der Name sagt, muss
für die Durchführung eines Rechenprozesses zuerst ein sehr
detailliertes Programm aufgestellt werden, welches jeden
einzelnen Rechenschritt enthält. Diese Einzelschritte,
Befehle genannt, lösen entweder eine Rechenoperation oder
einen Transfer eines Wortes zwischen Rechenwerk und Speicher

aus. Dann muss durch Befehle auch veranlasst werden
können, dass Zahlen im geeigneten Moment in die Maschine
hinein oder aus ihr heraus, zum Beispiel Resultate in ein
Druckwerk, transportiert werden. Eine weitere Klasse von
Befehlen steuert den Ablauf des Programms, das heisst
bewirkt, dass der natürliche Ablauf einer Befehlsfolge
unterbrochen und an einer beliebigen anderen Stelle des
Programms fortgesetzt wird (Sprungbefehle). Auf diese Weise
lassen sich einzelne Programmstücke in vielfältiger Weise
kombinleren.

Das Steuerorgan, welches dafür sorgt, dass alle diese
komplizierten Vorgänge richtig ineinandergreifen, heisst
Leitwerk. Es holt aus dem Programm Befehl um Befehl und untersucht,

welcher Teil der Maschine für dessen Ausführung
zuständig ist. Das Programm wird bei den heutigen Maschinen
in einer Zahlenverschlüsselung im Speicher aufbewahrt.

Dass zwischen der Idee, was auf einer Maschine
gerechnet werden soll, und dem fertigen Programm meistens
ein weiter und mühsamer Weg liegt, glaubt wohl jeder,
auch wenn er noch nicht selbst programmiert hat. Bereits das
numerische Verfahren, das zur Anwendung kommen soll,
muss sorgfältig gewählt werden, da sich nicht jede Methode
für Rechenautomaten eignet. Sodann wird der Rechengang
mit Vorteil in einem graphischen Schema, dem Flussdiagramm,

dargestellt und erst anhand von diesem das
Detailprogramm ausgeschrieben.

Man hat sich nun schon lange bemüht, wenigstens für
diesen letzten, weitgehend routinemässigen Teil der Arbeit
Erleichterungen zu schaffen. Zum Beispiel ist immer zu
bedenken, dass ja die digitalen Maschinen fast ausnahmslos
nur die vier G_xindoperationenpBirekt ausführen können und
somit schon das Ziehen der Quadratwurzel und natürlich
auch die Berechnung von Logarithmus- oder trigonometrischen

Funktionen programmiert werden müssen. Die
betreffenden Programme wird man für eine bestimmte
Maschine ein für allemal bereitstellen, eventuell sogar ständig
gespeichert haben und sie damit jederzeit aufrufen können.
Man geht In dieser Richtung noch einen Schritt welter und
bereitet für die häufigsten Standardprozesse der numerischen
Mathematik wie Auswertung bestimmter Integrale,
Integration von gewöhnlichen Differentialgleichungen, Auflösung

von linearen Gleichungssystemen usw. möglichst
universell verwendbare Bibllotheksprogramme vor, zu denen
dann jeweils nur noch ein auf den speziellen Fall
zugeschnittenes Hauptprogramm zu machen ist.

Eine andere Art der Erleichterung besteht darin, dass
man das Programm in einer konzentrierteren Form
niederschreibt und in die Maschine gibt und diese dann selbst das
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explizite Programm aufstellen lässt. Diese Konzentration
kann so weit gehen, dass man direkt mathematische
Formeln, sozusagen in Klartext, eingibt. Der hiezu nötige
automatische Formelübersetzer ist natürlich selbst ein sehr
kompliziertes Programm.

Nach diesem Exkurs über Programmierung sei noch
ein letzter Bestandteil jeder Rechenmaschine kurz erwähnt:
der Ein- und Ausgang. Der vollkommenste Automat nützt
nichts, wenn nicht eine vernünftige Verbindung mit der
Aussenwelt besteht. Vor Beginn der Rechnung müssen das
Programm und die Anfangsdaten in den Speicher gegeben
werden. Dies geschieht heute meistens mittels Lochkarten
oder auch mit gelochten Papierstreifen. Auf der anderen
Seite gehen die Resultate wieder zuerst auf Lochkarten, bzw.
Streifen hinaus, um dann später in eine lesbare Form
umgewandelt zu werden, oder sie werden direkt mit einer
Schreibmaschine oder einem Zeilendrucker gedruckt.

Als Beispiel für einen im Betrieb stehenden Automaten
sei die ERMETH (Elektronische Rechenmaschine der ETH)
angeführt, welche im Institut für angewandte Mathematik
der ETH entwickelt und in Zusammenarbeit mit Schweizer
Firmen gebaut wurde. Diese Maschine arbeitet 11-stellig,
mit gleitendem Komma (d. h. unter automatischer
Berücksichtigung einer beliebigen Kommastellung) und ist mit
einer Multiplikationszeit von rd. 15.10-3 s heute schon zu
den langsamen Maschinen zu zählen. Sie besitzt einen
magnetischen Trommelspeicher mit 10 000 Zellen; für Ein- und
Ausgabe werden Lochkarten und Schreibmaschine
verwendet.

Zur Illustration soll nun kurz über ein Beispiel berichtet
werden, welches am erwÄn^^glnstitutjB-Mdem Zwe»j_§!

verschiedene Rechenmethoden zu erproben, studiert wurde3).
Um die Untersuchungen möglichst übersichtlich zu gestalten,

wurde der folgende Testfall behandelt, 'bei welchem
evident war, wie die Lösung qualitativ aussehen muss:

Eine quadratische Platte, die am linken Rand (siehe
Bild 1) eingespannt ist, rechts aufliegt und oben und unten
freie Ränder hat, wird einer Last unterworfen, welche
gleichmässig auf ein ausserhalb der Mitte gelegenes kleines
Quadrätchen verteilt istsSäesucht ist die Durchbiegung. Die
Behandlung des Problems zerfiel in die folgenden zwei
Hauptteile:
1. Formulierung der mathematischen Aufgabe. Entscheidung,

an welcher Stelle Approximationen für die exakte
Lösung einzusetzen haben. In diesem Fall: Aufstellung
eines linearen Gleichungssystems.
2. Diskussion verschiedener Verfahren für die numerische
Auflösung des Gleichungssystems.

Es mag auf den ersten Blick befremden, dass diesem
zweiten Punkt das selbe Gewicht eingeräumt wurde wie
dem ersten. Jedoch braucht dem Praktiker kaum gesagt
zu werden, dass die Auflösung eines linearen Gleichungssystems

zwar vom rein mathematischen Standpunkt aus
betrachtet trivial ist, dass jedoch diSnumerische
Durchführung von einer gewissen Anzahl Unbekannten an nicht
nur sehr aufwendig, sondern in vielen Fällen recht gefährlich
ist, was die Verfälschung durch Rundungsfehler betrifft.

Was den ersten Teil der Aufgabe betrifft, so hat es
sich als vorteilhaft erwiesen, folgenden Weg einzuschlagen:

Das Problem lässt sich so formulieren, dass man unter
allen denkbaren Durchbiegungsfunktionen u (x, y), welche
die Randbedingungen erfüllen, diejenige suchen muss,
welche die potentielle Energie zu einem Minimum macht.
Die Energie stellt sich mathematisch als ein Doppelintegral
dar, welches die unbekannte Funktion u (x, y) und deren
partielle Ableitungen enthält und über das Gebiet der Platte
zu erstrecken ist. Um die Aufgabe numerisch anpacken zu
können, begnügen wir uns damit, die Funktion u nur an
einzelnen Stellen zu betrachten. Dazu legen wir ein
quadratisches Netz über die Platte und führen die Werte von
u in den Gitterpunkten als Unbekannte u, ein.

3) siehe M. Engeli, Th. Ginsburg, B. Rutishauser und E. Stiefel,Reflned Iterative Methode for Computation of the Solution and the
Bigenvalues of Self-AdjQlnt^Boundary Value Problems, «Mitteilung
Nr. 8 aus dem Institut für angewandte Mathematik», Birkhäuser
Verlag, Basel 1959.

Für die Approximation des Energieintegrals hat man
lediglich die Beiträge zusammenzustellen, welche von jedem
Gitterquadiätchen beigesteuert werden. Wenn man einmal
ausgemacht hat, durch welche Differenzenausdrücke die im
Integranden stehenden partiellen Ableitungen zu ersetzen
sind, dann ist dies eine ganz mechanische Arbeit. Man hat
nur darauf zu achten, dass bei den Punkten in der Nähe
des Randes die Einspannung, bzw. Auflage richtig berücksichtigt

wird, was aber weiter auch nicht schwierig ist.
So tritt nun an die Stelle des Integrals eine quadratische

Funktionl|ier Unbekannten, welche folgendermassen
geschrieben werden kann:

E °iSÄ»lc + 2 fl ciui '•

i,k i
und die Minimumsbedingungen erhält man durch Nullsetzen
der Ableitungen:

£aflcMjt+Ci=0 (für. 1,2,
K

n)

Dies |R aber ein lineares Gleichungssystem für die u„
mit einer bezüglich der Diagonalen symmetrischen
Koeffizientenmatrix, was für die Auflösung eine wesentliche
Erleichterung bedeutet.

Weiter hat die obige quadratische Summe die wichtige
Eigenschaft, dass nur Produkte u(Uk auftreten, bei denen
die entsprechenden Punkte nicht beliebig weit auseinanderliegen.

Das bedeutet aber, dass die Koeffizientenmatrix des
aufzulösenden linearen Gleichungssystems nicht ausgefüllt
ist, sondern nur in einem Band von ganz bestimmter Breite,
welches symmetrisch zur Diagonalen liegt, von Null
verschiedene Elemente hat. Dieser Umstand kann bei der
Auflösung des Systems benützt werden, da erstens einmal viel
weniger Werte zu speichern sind und zweitens eine grosse
Anzahl sinnloser Rechenoperationen (Multiplikation mit

jäXHtfc)) gespart werden kann.
Nun muss man aber in dieser Richtung noch einen

Schritt weitergehen. Falls man das Netz genügend fein
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macht, wird die Matrix bald einmal so gross, dass auch das

ausgefüllte Band in der Mitte allein schon die Kapazität der
meisten Speicherwerke überschreitet. Man braucht sich nur
zu vergegenwärtigen, dass bei m Punkten längs einer

Quadratseite m2 Unbekannte und damit m* Matrixelemente
auftreten.

Es ist jedoch möglich, das Glelchungssystem zu behandeln,

ohne die Koeffizientenmatrix explizit aufzustellen.
Man beachte dazu, dass durch jede Gleichung die
Unbekannte eines Punktes A mit den Unbekannten einiger
umliegenden Punkte in Beziehung gebracht wird. Diese
Beziehung kann man etwa dadurch zum Ausdruck bringen,
dass man aus dem Gitter diejenigen Punkte herausgreift,
welche an der Gleichung des Punktes A beteiligt sind und

in dem so entstehenden Stern die Zahlen anschreibt, mit
welchen die betreffenden Unbekannten zu multiplizieren sind.
Bei unserem Plattenproblem hat der Stern z. B. die Gestalt
von Bild 2. Die Gleichung des Systems, welche zum Punkt A
gehört, erhält man somit, indem man alle Unbekannten, die

vom Stern bedeckt werden, mit den betreffenden Konstanten

multipliziert und zusammengezählt.

Es kommt dann noch ein
einfacher gebildeter Term hinzu, der
von der Belastung abhängt. Dies
drückt man etwa auch so aus, dass
man sagt, es werde der durch obigen

Stern charakterisierte Operator
in einem Punkt der Platte angewendet.

Am Rande des Gebietes sind
die Operatoren selbstverständlich
gemäss den Randbedingungen zu
modifTziferen.

Das Gleichungssystem lösen
heisst nun doch: die Unbekannten
so bestimmen, dass sie, in den linken Seiten der
Gleichungen eingesetzt, die rechten Seiten zu Null machen.

Wenn man also links Werte einsetzt, die nicht genau mit
den Lösungen übereinstimmen, dann werden rechts gewisse
Werte bleiisln, welche man Residuen nennt. Ein Näherungsverfahren

muss also darin bestehen, dass für die Unbekannten

irgendwelche Versuchswerte eingesetzt werden, welche

man so zu korrigieren versucht, dass die Residuen immer
kleiner werden. Man hat für diesen Zweck sehr wirksame
Methoden entwickelt, auf welche hier natürlich nicht
eingetreten werden kann. Wir notieren jedoch für das Plattenbeispiel,

dass es möglich ist, die Residuen für irgend eine

Näherungslösung auszurechnen ohne die Koeffizientenmatrix

zu 'bilden, eben indem man die Operatoren des
betreffenden Problems auf sämtliche Gitterpunkte anwendet.
Aus den Residuen können dann wieder die Korrekturen
berechnet werden, die an den Unbekannten anzubringen sind,

um die nächste Näherung zu erhalten
Ein sehr wesentliches Merkmal dieser iterativen

Lösungsmethoden — dies gilt nun wieder allgemein für
lineare Gleichungssysteme — ist die Tatsache, dass die
Unbekannten mit jedem Schritt verbessert werden und man
somit den Prozess jederzeit abbrechen kann, wenn zum
Beispiel die Residuen genügend klein sind. Im Gegensatz
hiezu gibt uns ein Eliminationsverfahren erst irgendwelche
Information über die Unbekannten, wenn der Rechengang
völlig zu Ende geführt worden ist.

Auf der ERMETH wurden verschiedene Versuche mit
dem Netz von Bild 1, d. h. mit 70 Unbekannten ausgeführt,
die Rechenzeit betrug dabei für einen Fall, je nach der
verwendeten Methode, 2 bis 3 Stunden. Daneben wurden auf
der beträchtlich schnelleren Maschine IBM 704 einige Fälle
mit einem feineren Netz, welches auf ein System von 270
Unbekannten führte, durchgerechnet.

Zum Schluss müssen wir nochmals auf die
Rechenmaschinen im allgemeinen zurückkommen. Bei dem
skizzierten Beispiel erhebt sich vielleicht die Frage, ob ein
Rechenautomat überhaupt imstande sei, eine so komplizierte

Aufgabe selbsttätig zu lösen. Das ist ein sehr wichtiger

Punkt, der noch kurz aufgegriffen werden soll, denn

ein Hauptgrund dafür, dass die Inanspruchnahme der
Rechenzentren gerade von der Seite des Bauingenieurs aus

eigentlich nur zögernd vor sich geht, liegt darin, dass zum
Teil den Rechenmaschinen einfach zu wenig zugetraut wird,
was die Automatisierbarkeit von Rechengängen betrifft.

Es ist äusserst wichtig, dass man sich immer genau
Rechenschaft ablegt über die Struktur eines Rechenprozesses.

Denn natürlich gibt es Abläufe, bei denen der Rechner
zwischenhinein immer wieder Entscheidungen treffen muss,
die ihm keine Maschine abnehmen kann; oder Abläufe, in
welchen jede einzelne Rechenvorschrift nur einmal benützt
wird. Es liegt auf der Hand, dass sich in solchen Fällen der
Einsatz der Rechenmaschine kaum lohnt, da die
Vorbereitungsarbeit bald einmal vergleichbar wird mit dem bei der

Handrechnung benötigten Aufwand.
Auf der anderen Seite treten in vielen Rechenprozessen

zyklische Strukturen auf, Strukturen also, bei denen
gewisse Zweige oftmals durchlaufen werden. Das heisst nun
nicht, dass bei jedem Durchlauf an der betreffenden Stelle
jedesmal genau das selbe zu geschehen hat, sondern die

grosse Flexibilität der modernen Rechenautomaten beruht
eben gerade darauf, dass ein beliebiges Programmstück bei

jedem Durchlauf in systematischer Weise variiert werden
kann. Um auf das Beispiel der Auflösung von linearen
Gleichungssystemen nach einer Eliminationsmethode
zurückzukommen: Beim Gausschen Algorithmus werden die zu
behandelnden Zeilen und Spalten im Koefflzientenschema
immer kürzer. Dennoch muss dabei immer wieder das selbe

Programmsbück verwendet werden können, so dass es
gerade bei diesem Beispiel möglich ist, mit einem verhältnismässig

kurzen Programm eine sehr umfangreiche Rechnung

zu bewältigen.
Eine zweite wichtige Voraussetzung für die Flexibilität

der Programmsteuerung ist die Möglichkeit, Fallunterschei-
dungenfjzu treffen. Denn es muss doch zum Beispiel
automatisch festgestellt werden können, wann ein Zyklus zu
verlassen ist, sei es durch Abzählen oder durch Kontrolle,
ob eine vorgeschriebene Genauigkeit erreicht worden ist.
Oder im Falle der Operatoren des Plattenproblems muss in
jedem Punkt entschieden werden, ob es sich um einen inneren

oder einen randnahen Punkt handelt, und entsprechend
ist dann der richtige Operator auszuwählen.

Die Automatisierung des Plattenproblems kann Übrigens

noch weitergetrieben werden: Anzustreben (und
tatsächlich auch in Vorbereitung) ist ein Programm, welches
bei einem gegebenen Randwertproblem in einem Gebiet von
beliebiger Form für jeden Gitterpunkt den Operator
aufstellt, wobei eine vorzuschreibende Anzahl von umliegenden
Punkten benützt werden darf.

Mit diesen wenigen Andeutungen sollte auf die Fragen
hingewiesen werden, welche immer wieder auftauchen, wenn
der Einsatz eines Rechenautomaten erwogen wird. Man hat
sich gewiss auch heute noch zu überlegen, ob der Modellver-
such oder die Berechnung in einem vorliegenden Fall
günstiger sei. Man wird ferner untersuchen müssen, ob die zur
Verfuggmg stehende Rechenanlage für den betreffenden
Zweck geeignet sei, d. h. nicht zu langsam, aber auch nicht

ÖraniStig komfortabel ausgerüstet, ob sie auch mit den
erforderlichen Ein- und Ausgabevorrichtungen versehen sei.
SchlietHflich lassen sich gewisse Probleme viel rationeller auf
einem Analogiegerät als mit einer digitalen Maschine lösen,
sei es nun eine Integrieranlage oder ein Gerät für Spezlal-
zwecke.

Als Resultat dürfen wir festhalten, dass der Kontakt
zwischen dem Ingenieur und dem Rechenzentrum so früh wie
möglich hergestellt werden muss, damit alle kleineren und
grösseren Missverständnisse, die sich bei einem nicht ganz
routinemässigen Problem bestimmt einstellen werden, rechtzeitig

behoben werden können. Die beiden Beteiligten sehen
eben die Schwierigkeiten des selben Falles oft an einem ganz
anderen Ort, und da sie nicht genau die selbe Sprache sprechen,

ist es gelegentlich gar nicht so einfach, einander
überhaupt nur klar zu machen, wo einerseits das eigentliche
Problem liegt glnd welches anderseits die Möglichkeiten
der Maschine sind.
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In diesen Zusammenhang gehören auch die Fragen der

Ausbildung. Es sei nur darauf hingewiesen, dass seit Jahren
an der ETH eine zweistündige Vorlesung über angewandte
Mathematik gehalten wird, welche im 1. Semester aller
Ingenieurabteilungen zu den Pflichtfächern gehört. Dieser Platz
im Studienplan und die kleine Stundenzahl verbieten ein
Eingehen auf allzuviele Details; doch wird immerhin eine erste
Bekanntschaft mit den wichtigsten Methoden der
numerischen Mathematik vermittelt. Daneben wird alljährlich eine

Vorlesung über programmgesteuertes Rechnen mit Praktikum

an der ERMETH durchgeführt. Es kommt bereits vor,
dass Absolventen dieses Kurses auf der Maschine für ihre
Diplomarbeit rechnen. Auf diesem Wege können von den

jungen Leuten wertvolle Erfahrungen in die Praxis
hinausgetragen werden.

Es darf sicher behauptet werden, dass für den Einsatz
der Rechenautomaten in der Konstruktionspraxis schon

einiges getan wurde, dass aber noch viele Möglichkeiten
offenstehen, die bei weitem noch nicht ausgeschöpft sind und

für eine fruchtbare Zusammenarbeit von Bauingenieur und
Mathematiker ein dankbares Betätigungsfeld darbieten.

Anhang

Einer Anregung folgend, welche während der Diskussion

vorgebracht wurde, sei noch kurz auf einige Bibliotheksprogramme

hingewiesen, die an den drei bis jetzt an schweize¬

rischen Hochschulen bestehenden Recheninstituten zur
Verfügung stehen (Institut für angewandte Mathematik der
Universität Bern, Institut de mathematiques appliquees de

l'Ecole Polytechnique de l'Universitö de Lausanne, Institut
für angewandte Mathematik der ETH Zürich). Eine
Umfrage des Verfassers an den beiden Universitätsinstituten
hat ergeben, dass alle drei Stellen unter anderem über
folgende, den Bauingenieur eventuell interessierende
Programme verfügen:

Auflösung von linearen Gleichungssystemen (Elimination
und iterative Methoden; Lausanne: auch komplex),
Inversion von Matrizen; Berechnung von Determinanten,

Multiplikation von Matrizen,
Ausgleichsrechnung (Bern und Zürich: auch Tschebyscheff-
Ausgleichung),
Lineare Programmierung (Simplex-Algorithmus),
Eigenwerte und -vektoren von Matrizen,

Auflösung algebraischer Gleichungen,

Berechnung bestimmter Integrale,
Systeme von Differentialgleichungen.

Daneben gibt es zahlreiche Programme für speziellere
Probleme, welche zum Teil im Besitze der Auftraggeber sind.

Adresse des Verfassers: Dr. P. Läuchli, Guggenbühlstr. 51,

Winterthur.

Vom Bau des Hafens Samsun

Ueber den Bau des Schwarz-Meer-Hafens Samsun an der
Küste nordöstHeHlyon Ankara hat die Firma Philipp
Holzmann, Frankfurt, gemeinsam mit Hochtief, Essen, und einer
Firma in Istanbul einen interessanten und wirreichen
Buchbericht veröffentlicht. Die in den Jahren 1954 bis 1960

durchgeführten Bauarbeiten zur Erstellung eines betriebsfertigen
Seehafens an einer bisher ungeschützten Küste umfassen
einen 1580 m langen Nord-Wellenbrech» bis in 15 m Wassertiefe

von 1,8 Mio t Steinschüttung mit Beton-Krone, einen
3200 m langen Ost-Wellenbrecher von 3,2 Mio t Steinschüttung

mit Beton-Krone, 950 m lange Kaimauern für bis 10,5 m
Wassertiefe aus Betonblöcken von gegen 50 t (zusammen
60 000 m.8) auf Hinterlage aus Steinschüttung, deren Gesamt-
ausmass damit 5 Mio t erreichte, während das gesamte
Betonvolumen gegen 140 000 ms betrug. Dazu kam die Baggerung
des Hafen-Beckens von 5,4 Mio m3 und die Auflandung des

Hafen-Areals von 3,2 Miofin3, der Bau von vier Kaischuppen
von 12 000 m? in Eisenbeton sowie die umfangreichen Strassen-

und Bahnanlagen. Der türkischen Regierung wurde die

Verwirklichung dieses bedeutenden Vorhabens modernster
Hafenbaukunst durch eine Anleihe der Weltbank ermöglicht.

Zur Ausrüstung der Baustelle gehörten eine Hilfsmole
mit ÖugjrDerrick, eine Betonfabrik für 50 m3/h und ein Her-
stellungs- und Lagerplatz für 50-t-Betonblöcke mit
fahrbarem Hammer-Kran von 35 m Ausladung bei 50 t
Tragkraft. Die Blöcke kamen nach 28 Tagen zum Einbau. Der
Schwerpunkt der Bauleistung lag in der Gewinnung, dem

Transport und Einbau der Steine für die Wellenbrecher. Der
am stärksten exponierte Nord-Wellenbrecher besass eine
Krone von 12,5 m Breite, davon 7,5 m als Beton-Körper und
eine seeseitige Böschung von 1:3, auf welcher der Kern aus
Steinen von 0-4-0,4 t durch drei Schichten 0,4 -5- 2 t,
2 ¦*• 8 t und 8 -s- 40 t verkleidet war. Die Anfuhr dieser
Steine erforderte Gleisanlagen von 22 km Normalspur. Zur
Reparatur der Schuten und Schlepper wurde an der Hilfsmole

eine Querhelling errichtet. Der Nord-Wellenbrecher
wurde von Land aus mittels eines Derrick-Kranes von 15 t
Tragkraft bei 25 m Aktionsradius vorgebaut. In Wassertiefen

von 2 m und mehr wurden die Steine in Klappschuten
von 500 t geschüttet. Die grösseren Steine für die Ab-

DK 627.2.002.2

deckung der Böschungen wurden mit Hilfe von 300-t-Kipp-
schuten eingebaut. Steine von 15 -j- 40 t wurden mit 60-t-
Schwimmkränen eingebaut. Die Kronenmauer wurde in
versetzten Abschnitten von 7,5 m Länge betoniert in Stahl-
Schalungen, die als 10 t schwere Einheiten versetzt und von
6-ms-Kübeln mittels Schwimm-Kran gefüllt wurden.

In den beiden Andesit-Steihbrüchen wurde das
Grossbohrloch-Sprengverfahren angewandt, mit Keystone- und
Ruston-Schlagbohrgeräten für 150 mm 0 und Wandhöhen von
15 -j- 40 m. Bei Bohrlochabstand von 3 -s- 4 m und einer
Vorgabe von 10 -T- 12 m bei 33 % Nitroglycerin in Bohrloch-Mitte
und 82 % Nitroglycerin in Bohrlochfuss konnte die benötigte
Gliederung des Sprenggutes erreicht werden. In einem Steinbruch

sortierten vier 2,5-m3-Löffelbagger die Steine beim
Laden in die Stahlkästen; dahinter hoben zwei elektrische
15-t-Derricks von 25 m Ausladung die Kästen auf die
Eisenbahnwaggons; ein 40-t-Raupenkran verlud die über 15 t
schweren Steine. In den zwei Brüchen wurden 4500 t/24 h
gefördert.

Der Kai —10,5 wurde als massive Betonblockmauer mit
geneigten Lagerfugen der 50-t-Blöcke gebaut. Zur Gründung
musste die Wassertiefe von —3 m auf 14,5 m ausgebaggert
werden; auf eine 3 m starke Steinschüttung wurde ein 20 cm
starkes Schotterbeet mittels eiserner Rahmen durch Taucher
sauber planiert zur Auflagerung der mittels 60-t-Schwimm-
Kran versetzten Blöcke. Vor dem Versenken der
Blockschichten mit geneigten Lagerfugen wurde aus Blöcken mit
waagerechten Lagerfugen ein Prisma aufgebaut, welches als
Widerlager für die geneigt gelagerten Blöcke dient. Zwei
Taucher leiteten den Block unter Wasser an seinen endgültigen

Platz, wobei sie sich mit Bodenpersonal und Kranführer
durch eine Telefonanlage verständigten.

Für die Baggerarbeiten wurden eingesetzt: 1500- und
1750-1-Elmerkettenbagger, ein Spüler mit 1000 PS Pumpen-
Leistung und 60 cm Spülrohrleitung, zwei 250-PS-Seeschlep-
per, zwei selbstfahrende Klappschuten 500 nv>, 350 PS, vier
Klappschuten zu 300 m8 und zwei zu 150 m8. Zur Durchführung

dieser Arbeiten waren während sechs Jahren im Mittel
700 Mann tätig; der Wert der eingesetzten Maschinen betrug
6 Mio USA-Dollars. Erwin Schnitter
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