Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 79 (1961)

Heft: 19

Artikel: Die Fundation von Kunsteisbahnen

Autor: Bendel, L.

DOI: https://doi.org/10.5169/seals-65520

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P

Die Fundation von Kunsteisbahnen

Von Dr. L. Bendel, PD, Ing. S. I. A., Luzern

Schluss von Seite 299

DK 725.861:621.58:624.131.435

IV. Berechnung der Stärke der Isolationsschicht

A. Einleitung

Durch Absenken der Temperatur in der Gefrierplatte entsteht ein Temperaturgefälle gegenüber der Ursprungstemperatur der Isolierschicht, wodurch sich eine Wärmeströmung von unten nach oben einstellt und sich die Isolierschicht allmählich abkühlt. In den Bildern 9 und 10 sind einige Kurven angegeben, die den Temperaturverlauf innerhalb der Isolierschicht in Funktion der Betriebszeit darstellen. Das Auskühlen der Isolierschicht stellt eine nichtstationäre Wärmeströmung dar; erst nach langer Zeit tritt ein angenähert stationärer Zustand ein. Was besonders interessiert, ist die Wanderung der 0°-Isotherme in Funktion der Zeit. Diese Isotherme soll nach Abschluss der Betriebsperiode den untern Rand der Isolierschicht nicht überschreiten. Aus dieser Bedingung ergibt sich die Dicke dieser Schicht.

Für den zeitlichen Verlauf der Temperatur T an der Unterkante der Isolationsschicht kann die Gleichung verwendet werden

$$T = T_A - T_0 \log t$$

Hierin bedeuten T_A und T_0 Festwerte, die von den thermischen Eigenschaften der Isolationsschichten und des Bodens abhängig sind, während t die Zeit in Tagen, gemessen vom Zeitpunkt t_A , an dem die Abkühlung an der Unterkante einwandfrei eingesetzt hat. Als Mittelwerte wurden gefunden: Dolder, Zürich $T_A=15,2,\ T_0=7,2;$ Oberstdorf $T_A=11,5,\ T_0=5,5;$ Genf $T_A=12,0,\ T_0=5,0.$

Da die Ursprungstemperatur des Bodens mit etwa 6 bis 10° C wesentlich über 0° C liegt, findet ein Nachströmen von Wärme aus dem Boden statt, das den Abkühlungsvorgang in der Isolierschicht stark beeinflusst und daher berücksichtigt werden muss. Massgebend hierfür ist die Wärmeleitzahl des Bodens, die von derjenigen der Isolierschicht verschieden ist, sowie die Lage des Grundwasserspiegels.

B. Bezeichnungen

1. Temperaturverhältnisse

Es bezeichnen

 die Temperatur, die vom Kühlröhrensystem an der Unterfläche der Betonplatte erzeugt wird, in °C.

 $\vartheta_{\mathrm{II}} = \vartheta_e$ die mittlere Jahrestemperatur im Boden in °C. Für ϑ_{II} kann gesetzt werden:

 $\vartheta_{\rm II} \cong \vartheta_L + (1^{\circ} \text{ bis } 2^{\circ})$

 ϑ_0 die Temperatur bei der Nullisotherme; $\vartheta_0=0$ ° C

 $\Delta \vartheta$ den Temperaturunterschied in der Isolationszone in °C Gegen Ende der Betriebszeit ist $\Delta \vartheta = \vartheta_0 - \vartheta_1 = \vartheta_1$

F den Frostindex in Grad-Tagen

T die Anzahl Tage der Frostperiode; bei Kunsteisbahnen fällt T meist mit der Anzahl Betriebstage zusammen. Es ist

 $\vartheta_s = -F/T$

2. Klimatische Verhältnisse

 ϑ_L die mittlere Jahreslufttemperatur in 1 m Höhe über Erdoberfläche in °C. ϑ_L kann, wenn keine direkten meteorologischen Messungen vorliegen, nach den Formeln von Königsberger, Mühleberg oder anderen Autoren geschätzt werden [1] Bd. II; S. 519, zu

$$artheta_L \! = artheta_{L0} \! - \! rac{H_1}{X}$$

Dabei bezeichnen

 H_1 den Höhenunterschied zwischen dem Ort mit der Temperatur ϑ_{Lo} und dem betrachteten Höhenort in m.

X den Höhenunterschied, bei welchem die mittlere Lufttemperatur um 1°C abnimmt. X=150 bis 220; in Mitteleuropa ist X=175 m, am Lötschberg X=163 m. Im Bild 18 ist X=200 m angenommen worden.

Beim Betrieb der Kunsteisbahn spielen noch folgende Klimafaktoren eine Rolle: die Intensität und Dauer der Sonnenbestrahlung, der Auftreffwinkel der Sonnenstrahlen, die Windexposition (Föhnlage) und die Luftfeuchtigkeit. Wegen der ausgesprochenen Föhnlage wurde z.B. in Starnberg der Platz für die Kunsteisbahn verlegt.

3. Bodenphysikalische Kennziffern

Es bezeichnen

γ_e das Raumgewicht des trockenen Erdbodens in kg/m³

 γ_k das Raumgewicht des trockenen Isolationsmaterials (Kies) in kg/m³

 γ_s das spezifische Gewicht der Körnung \cong 2650 kg/m³

 γ_w das Raumgewicht des Wassers in kg/m³

 $w - \mathrm{den}$ Wassergehalt in Gewichtsprozenten

n_e das Porenvolumen des gewachsenen Bodens in %

$$n_e = rac{\gamma_s - \gamma_e}{\gamma_s}$$

 n_k das Porenvolumen des Isolationsmateriales in %

$$n_k = \frac{\gamma_s - \gamma_k}{\gamma_s}$$

 $n_{e^{'}}$ das Volumen des gewachsenen Bodens, der mit Wasser gefüllt ist

 $n_{\boldsymbol{k}'}$ das Volumen des Isoliermateriales, das mit Wasser gefüllt ist

 $\gamma_{e^{'}}$ das Raumgewicht des wassergesättigten Bodens $\gamma_{e^{'}}=\gamma_{e}+n_{e}\cdot\gamma_{w}$ in kg/m³

 $\gamma_{k'}$ das Raumgewicht des wassergesättigten Isoliermateriales

$$\gamma_{k'} = \gamma_k + n_k \cdot \gamma_w$$
 in kg/m³

4. Thermodynamische Eigenschaften des Bodens und der Isolierschicht

Es bezeichnen:

 q_a die von der Isolationszone abströmende Wärmemenge in kcal/h m 2

 q_b die zur Nullisotherme aus dem Boden zuströmende Wärmemenge in kcal/h \mathbf{m}^2

σ die spezifische Gefrierwärme; σ = 80 kcal/kg

L die latente Umwandlungswärme in kcal/m³

$$L=80\,rac{\it w}{100}\,\gamma_{\it e}$$

 λ_k die spez. Wärmeleitzahl der gefrorenen Isolationszone in keal/m h°C (Bild 12)

 $\gamma_{\it e}$ — die Wärmeleitzahl des gewachsenen Bodens in kcal/m h $^{\circ}{\rm C}$

 γ_g die Wärmeleitzahl des gefrorenen Materials in keal/m h $^{\circ}\mathrm{C}$

 a_k die Temperaturleitzahl des gefrorenen Isolationsmaterials in m $^2/h$

 a_r die Temperaturleitzahl des ungefrorenen, gewachsenen Erdbodens in m 2 /h

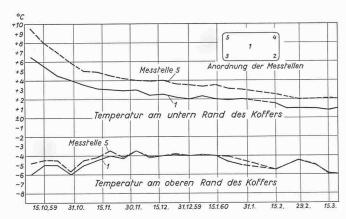


Bild 9. Verlauf der bei der Kunsteisbahn Genf im Winter 1959/60 gemessenen Temperaturen an je fünf Stellen am oberen und am unteren Rand des Kieskoffers. Nach 147 Tagen erreichte die Temperatur am unteren Rand in Pistenmitte (Punkt 1) + 0,8 ° C.

 C_k die Wärmekapazität der gefrorenen Isolationszone in kcal/m³ $^{\circ}\mathrm{C}$

 $C_k = \gamma_k \cdot c_e + n'_k C_{EIS}$

 C_ϵ die Wärmekapazität des gewachsenen Bodens in kcal/m³ °C

 $C_e = \gamma_e \cdot c_e + n'_e C_w$

 c_e die spezifische Wärme des trockenen Bodens $c_e=0.17$ bis 0,2 kcal/kg °C

 C_w die Wärmekapazität des Wassers $C_w = 1000~{
m kcal/m^3\,^\circ C}$

Allgemein gilt die Beziehung $a=rac{\lambda}{C}$

5. Abmessungen

f die Fläche der Kunsteisbahn. Normalerweise ist $f=60 imes30=1800~\mathrm{m}^2$

 x'_s die Tiefe des Parabelscheitelpunktes unter der Unterseite der Betonplatte in m, bei der die Temperaturkurve in die unbeeinflusste Erdtemperatur übergeht, Bild 11

T die Zeit in Tagen, während welcher Wärme entzogen wird

die Zeit der Frosteinwirkung in Stunden, bzw. die Betriebsdauer einer Kunsteisbahn in Stunden

s die Stärke der Isolationsschicht in m

 ξ die Eindringungstiefe des Frostes in m. Für ξ gelten die Ansätze

(A) $\xi = \alpha \sqrt{t}$ bzw. (B) $\xi = \rho \sqrt{F}$

Dabei bedeuten α und ρ Koeffizienten, die von den Temperaturverhältnissen sowie von den thermodynamischen Eigenschaften des Bodens und der Isolationsschicht abhängig sind (vgl. Kap. V).

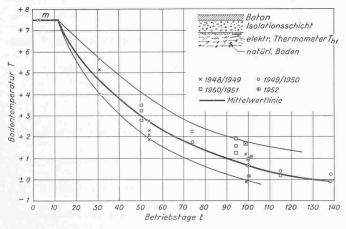


Bild 10. Verlauf der bei der Kunsteisbahn Dolder während vier Betriebsperioden gemessenen Temperaturen im Boden unmittelbar unter der Isolierschicht

C. Betriebsdauer

Bis jetzt wurden Kunsteisbahnen für 100 bis 300 Betriebstage pro Jahr gebaut. Bei langen Betriebszeiten muss die Eindringungstiefe für den Frost im allgemeinen nicht für die volle Dauer gerechnet werden, weil erfahrungsgemäss sowohl im Frühjahr als auch im Herbst Betriebspausen von einigen Wochen eingeschaltet werden, in denen sich die Isolationsschicht erwärmt.

Messungen während der periodischen Stillegung der Kunsteisbahnen in Oerlikon und Genf ergaben, dass die Temperaturen im Kieskoffer meistens innert weniger Tage infolge der Erdwärme von unten und der Wärme von der Betonplatte her über 0° steigen. [2] S. 140/141, [20] Beispiel S. 130/136, [15], Bull. 168, S. 130/135. In Bild 13 ist ein Beispiel wiedergegeben, wie die Temperaturen unter einer Betonplatte im Strassenbau ändern, sobald die Lufttemperatur über dem Betonbelag über 0° steigt.

D. Der Frostindex

Die Berechnung der vom Erdreich und der Isolierung aufsteigenden und von der Pistenplatte abzuführenden Wärme ist bei Kunsteisbahnen insofern einfacher als z.B. bei Strassen oder Plätzen, als die Platte während der Betriebszeit eine konstante niedrige Temperatur aufweist. Um aber das vorliegende Problem mit jenem bei Strassen vergleichen und Messergebnisse sowie Erfahrungen von einem auf das andere übertragen zu können, ist es angezeigt, den allgemeineren Fall mit veränderlicher Oberflächentemperatur zu verfolgen, wie er bei Strassen vorliegt. Betrachtet man die obere Schicht, die zwischen der Oberfläche und der Nullisotherme liegt, so beträgt die durch sie in der Zeit dt hindurchströmende Wärmemenge pro m²

$$dQ = \frac{\lambda}{\xi} \, \vartheta_{\rm I} \, dt$$

Die Oberflächentemperatur $\vartheta_{\rm I}$ ändert sich während der Frostperiode mit der Lufttemperatur. Die Tiefe ξ der Nullisotherme nimmt ständig zu. Man kann aber annäherungsweise mit einem konstanten Mittelwert ξ_m rechnen und erhält dann die während der Frostperiode durch eine Oberfläche von 1 m² durchtretende Wärmemenge zu

$$Q=rac{\lambda}{\xi_m}\int\limits_0^{t_1}artheta_1\,dt\quad ext{kcal/m}^2$$

Das Integral bezeichnet man als Frostindex F. Dieser stellt das Produkt einer Temperatur und einer Zeit dar und wird in Grad-Tagen gemessen. Aus ihm ergibt sich die mittlere Oberflächentemperatur während der Frostperiode von der Dauer t Tage $\vartheta_s = F/t$. Eigentlich müsste F als Oberflächen-Frostindex bezeichnet werden. Er ist das 0,8- bis 0,9-fache des Luftfrostindexes, der aus den meteorologischen Statistiken bestimmt werden kann. Für Zürich ist der mittlere Frostindex 82,6 Grad-Tage. Bild 16 zeigt den Verlauf des Frostindex am Standort der Meteorologischen Zentralanstalt in Zürich, 560 m ü. M., für die Zeit vom 1. Dez. bis 31. März, und zwar die Mittelwerte der Jahre 1952 bis 1955 und von 1868 bis 1938. Für St. Moritz (1850 m ü. M.) betrug F im kalten Winter 1955/56 882,5 Grad-Tage.

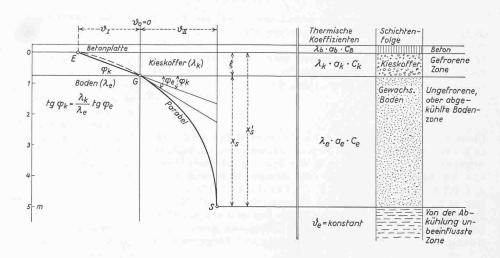
E. Berechnung der Frosttiefe

1. Voraussetzungen

Grundsätzlich soll der Frost nicht in die frostempfindliche Erde eindringen, weil sonst Hebungen eintreten. Bei einer Kunsteisbahn darf also die Nullisotherme nicht unter die Unterkante der frostunempfindlichen Isolationszone hinabsinken. Die Tiefe der Frosteindringung wird namentlich durch die thermodynamischen Eigenschaften des Bodens und der Isolierschicht, durch die Temperaturverhältnisse und die Zeitdauer des Betriebs der Kunsteisbahn bedingt (vgl. Absch. B, oben). Es sind verschiedene Formeln für die Bestimmung der Frosteindringungstiefe aufgestellt worden, von denen nachfolgend acht besprochen werden.

2. Die Formel von Stephan

Sinkt die Oberflächentemperatur bei einem stehenden Gewässer unter den Gefrierpunkt, so entsteht an der OberBild 11. Der Berechnung der Wärmeströmung aus dem Boden an die Pistenplatte zugrunde gelegter Temperaturverlauf. S Scheitelpunkt der als Parabel angenommenen Tautochrone, G Uebergangspunkte zwischen ungefrorenem Boden und gefrorenem Kieskoffer bzw. zwischen der Parabel mit dem Neigungswinkel φ_e und der Geraden mit dem Neigungswinkel φ_k . Es wird einfachheitshalber angenommen, der Punkt E am Uebergang vom Kieskoffer zur Pistenplatte liege ebenfalls auf der durch S und G bestimmten Parabel



fläche des Wassers eine Eisschicht, deren Dicke mit der Zeit zunimmt. Stephan hat unter Berücksichtigung der Gefrierwärme σ die nachstehende Formel zur Berechnung der Eisdicke abgeleitet [2] S. 144

$$\xi = \sqrt{2 rac{\lambda}{\sigma \, \gamma} \, artheta_{
m I}} \, \, \sqrt{\, t}$$

Hierin bedeuten:

ξ die Stärke der Eisschicht in m,

 $\vartheta_{\rm I}$ die Oberflächentemperatur des Eises in °C,

σ die Gefrierwärme des Wassers in kcal/m³,

λ die Wärmeleitzahl des Eises in kcal/mh°C.

Die Anwendung dieser Gleichung auf Bodenmaterial ist umstritten. Man erhält zu grosse Eindringungstiefen für den Frost, da weder die Wärmekapazität des gefrorenen noch die des ungefrorenen Bodens berücksichtigt sind. Die erhaltenen Werte sind in Tabelle 3 und Bild 19 mit denen anderer Autoren verglichen.

3. Die Formel von Neumann

Das Eindringen des Frostes in den Erdboden hat Neumann für den isotropen, feuchten Halbraum eingehend behandelt. Er geht von der Annahme aus, dass die beim Vorrücken der Frostgrenze an der Oberfläche abzuführende Wärmeströmung gleich der Strömung sein muss, die zum Auskühlen des über der Frostgrenze liegenden Bodens nötig ist, vermehrt um die aus dem ungefrorenen Boden nachströmende Wärme. Der Einfluss des Wassernachschubes wird vernachlässigt. Für die Frosttiefe macht Neumann den Ansatz

(A)
$$\xi = \alpha \sqrt{t}$$

wobei α eine komplizierte, transzendente Funktion von σ , γ_e , w, $\vartheta_{\rm I}$, ϑ_e , α_k , α_e , λ_k , λ_e , C_k und C_e ist [2] S. 146.

4. Die Formel von Ruckli

Ruckli hat als erster den Einfluss des Wassernachschubes auf die Frosteindringung berücksichtigt, indem er die Abkühlungswärme der gefrorenen und der ungefrorenen Zone, die Gefrierwärme des Porenwassers und diejenige des aufsteigenden Wassers in die Berechnung einbezog. Für die praktische Anwendung ist ein Faktor m einzuführen, [2], S. 157, der zwischen 0,1 und 0,3 liegt und dessen Grösse einstweilen geschätzt werden muss.

5. Berechnung mit Hilfe des Frostindex

a) Das Diagramm des US Corps of Engineering

Ist der Frostindex bekannt, so kann die Frosteindringung z.B. mit Hilfe des Kurvenblattes des US Corps of Engineering geschätzt werden [23], [15] Bulletin 135, S. 138, [15] Bulletin 225 mit 41 Beispielen S. 48/58. In eine Formel gekleidet ergibt sich für die erste Schätzung, wenn ξ die Frosteindringungstiefe und F den Frostindex bedeuten:

(B)
$$\xi = \rho \sqrt{F}$$

wobei $\rho=0.1$ bis 0,2 ist, wenn F in Grad Fahrenheit mal Tage und ξ in Fuss eingesetzt werden.

Aus den Veröffentlichungen des US Corps of Engineering geht nicht hervor, welche Wärme- und Temperaturleitzahlen der Boden und der Kieskoffer aufwiesen. Auch die mittlere Jahrestemperatur des Bodens an den Beobachtungsstellen ist nicht angegeben. Bei einer Kunsteisbahn mit einer konstanten Temperatur von $\vartheta_t = -8^{\circ}$ C und 300 Betriebstagen wird der Frostindex 2400 Grad-Tage und für 200 Betriebstage 1600 Grad-Tage. Für 200 Betriebstage und eine mittlere Lufttemperatur von -8° C ($+18^{\circ}$ Fahrenheit) berechnet sich nach der Formel (B) die Frosttiefe zu

$$\xi = (0.1 \text{ bis } 0.2) \sqrt{18 \cdot 200} =$$

= 6 bis 12 Fuss = 180 bis 360 cm (vgl. Bild 17), bzw.
 $\xi = (3 \text{ bis } 6) \sqrt{18 \cdot 200}$ in cm, °Fahrenheit und Tagen

b) Zusammenhang zwischen den Formeln (A) und (B)

In Formel (A) bedeutet t die Betriebsdauer einer Kunsteisbahn in Stunden, während in Formel (B) der Frostindex F in Grad Celsius mal die Anzahl Betriebstage T einzusetzen ist. Da die Pistentemperatur $\vartheta_s=\vartheta_{\rm I}$ konstant ist, gilt $F=\vartheta_{\rm I}\cdot T=\vartheta_{\rm I}\cdot t/24$, woraus

$$t = \frac{24 F}{\vartheta_{\mathrm{I}}}$$

Damit folgt aus Gl. (A)

$$\xi = \alpha \sqrt{\frac{24}{\vartheta_{\mathrm{I}}}} \ \sqrt{F}$$

Mit $\vartheta_1 = -8^\circ$ C und 200 Betriebstagen wird $F = 1600^\circ$ C·Tage und $\xi = \alpha \cdot 69,3$ in cm. In Gl. (B) ist nach den Angaben des US Corps zu setzen $\rho = 0,1$ bis 0,2. Die entsprechenden Werte für α in Gl. (A) ergeben sich zu 2,6 bis 5,2, wobei ξ in cm erhalten wird. Diese α -Werte sind, wie noch gezeigt werden soll, ausserordentlich gross und ergeben stark überdimensionierte Kofferstärken.

c) Verbesserte Formel von Stephan

Da definitionsgemäss der Frostindex $F=\vartheta_1\cdot t$ ist, kann die Stephansche Formel auch geschrieben werden:

$$\xi = \sqrt{2rac{\lambda_g}{\sigma\,\gamma}}\,\,\sqrt{\,artheta_{
m I}\,t}\,=\,\sqrt{2rac{\lambda_g}{\sigma\,\lambda}}\,\,\sqrt{F}$$

oder mit Einführung der latenten Umwandlungswärme L

$$\xi = \sqrt{2rac{\lambda_g}{L}}\,\,\sqrt{F}\,\,\,\,\,\,$$
 in m, wobei

$$L = 80 \frac{w}{100} \gamma_e$$
 in kcal/m³

w = Wassergehalt

γ_e = Trockenraumgewicht in kg/m³

Um die Nachteile der Formel von Stephan zu beheben, wurde von verschiedenen Autoren versucht, einen KorrekturKoeffizienten einzuführen. Die gründliche Arbeit von Ruckli diente sowohl dem Corps of Engineers US Army als auch Berggren als Grundlage. Berggren verwendet statt der Wärmeleitzahl λ_g des gefrorenen Materiales das arithmetische Mittel aus der Wärmeleitzahl λ_g des gefrorenen und λ_u des nicht gefrorenen Materiales, d. h.

$$\lambda = \frac{\lambda_g! + \lambda_u}{2}$$

Diese Vereinfachung führt beim Zweischichtenproblem, wie es bei Kunsteisbahnen und auch im Strassenbau vorliegt, zu beträchtlichen Fehlern. Ist z. B. für den ungefrorenen Boden $\lambda_u=2,5\,$ kcal/mh °C und für die kiesige Isolationsschicht $\lambda_g=0,3\,$ kcal/mh °C, so wird $\lambda=1,4\,$ kcal/mh °C. Hieraus ergibt sich, dass die verbesserte Stephansche Formel für das Zweischichtenproblem mit Materialien von so stark verschiedenen Wärmeleitzahlen, wie sie bei Eisbahnen gewollt verwendet werden, nicht angewendet werden soll. Berggren setzt

$$\xi = \beta \sqrt{2 \frac{\lambda}{L} F}$$

Der Korrekturfaktor β ist bei Berggren eine Funktion von α , wobei α abhängig ist von der mittleren Jahres-Lufttemperatur ϑ_L , der Temperatur ϑ_s während der Frostperiode, ferner von der Wärmekapazität des Bodenmaterials und der latenten Umwandlungswärme L [15] Bulletin 135, S. 133, [15] Bulletin 225, S. 64. Zur Lösung werden Diagramme erstellt. Das Verfahren ist wenig übersichtlich. Die Abweichung zwischen der gerechneten Eindringungstiefe und der gemessenen beträgt für Kunsteisbahnen bis \pm 20 %, Tabelle 3 und Bild 19. Hieraus ist zu folgern, dass die verbesserte Formel von Stephan (auch Formel von Berggren genannt) nur für das Einschichtenproblem gilt. Für das Zweischichtenproblem, wie es bei Kunsteisbahnen vorliegt (Kieskoffer und gewachsener Boden mit sehr verschiedenen thermischen Eigenschaften), ergibt die Formel Werte, die sich von denjenigen der genauen Ansätze (Neumann und Ruckli) wesentlich unterscheiden.

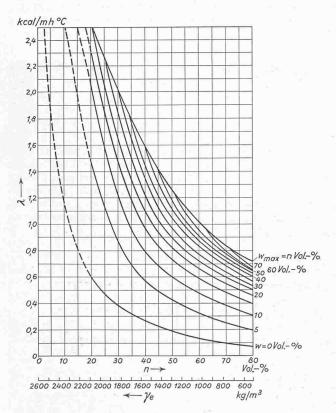


Bild 12. Abhängigkeit der Wärmeleitzahl der verschiedenen Bodenarten von Raumgewicht, Porenvolumen und Wassergehalt nach Kersten, Krischer und neueren russischen Angaben

6. Das Diagramm nach E. Emblick

Da die rechnerische Lösung der Gleichung von Neumann umständlich und zeitraubend ist, hat $E.\ Emblick$ Kurvenblätter entwickelt [13], bei deren Benützung jedoch für die Isolationszonen und für den gewachsenen Boden eine mittlere Wärmeleitzahl und ein mittleres Raumgewicht angenommen werden müssen. Das ist aber bei Kunsteisbahnen, wie bereits oben dargetan wurde, nicht zulässig. Tatsächlich weichen denn auch die α -Werte in der Gleichung (A) für die Frosttiefe, berechnet nach Neumann und nach Emblick, stark voneinander ab. Wie aus Bild 19 hervorgeht, nimmt α nach Neumann bei zunehmendem Wassergehalt des Bodens zu, nach Emblick würde er aber abnehmen.

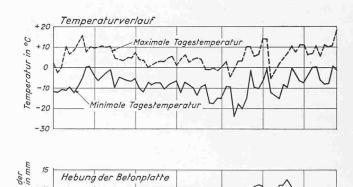
7. Vereinfachte Formel des Verfassers

a) Voraussetzung

Bei verschiedenen Kunsteisbahnen, z.B. Dolder u. Hallenstadion Zürich, Genf, Oberstdorf u. a. wurden 5 bis 10 Fernmeldethermometer unter der Betonplatte und am Fuss der Isolationsschicht (Kieskofferfuss) eingebaut. Aus den Messergebnissen (Bilder 9 und 10) zeigt sich, dass die Temperaturen im Kieskoffer anfänglich rasch sinken, sich nachher aber nur noch wenig ändern, dass dann ein quasi stationärer Zustand eintritt. In diesem Falle herrscht in der Isolationsschicht eine stationäre Wärmeströmung, und es ist wegen der Kontinuitätsbedingung die von der Isolationszone an die Pistenplatte abströmende Wärmemenge q_a gleich der aus dem Erdboden in die Isolationsschicht einströmenden Wärmemenge q_b . Bei richtig bemessenem Kieskoffer erreicht die Nullisotherme gegen Ende der Betriebszeit den untern Kofferrand, und die Temperaturkurve geht praktisch in eine Gerade über.

b) Berechnung der durch die Isolationszone hindurchströmenden Wärmemenge \mathbf{q}_a

Der Einfluss des Wassernachschubes kann bei der Wahl eines Kieskoffers als Isolationszone ausser Betracht gelassen werden, sofern unter dem Koffer eine kapillarbrechende



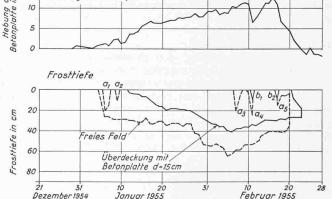


Bild 13. Beobachtungen über die Frosteindringung auf freiem Feld und unter einer 15 cm starken Betonplatte. Man beachte das rasche Auftauen der gefrorenen Zone, sobald die Lufttemperatur steigt.

 a_1 bis $a_5 = Auftauen$ des Bodens im freien Feld bei Zunahme der Lufttemperatur

 \mathbf{b}_1 bis $\mathbf{b}_2 = \mathbf{A}\mathbf{u}$ ftauen des Bodens unter der Betonplatte bei Zunahme der Lufttemperatur

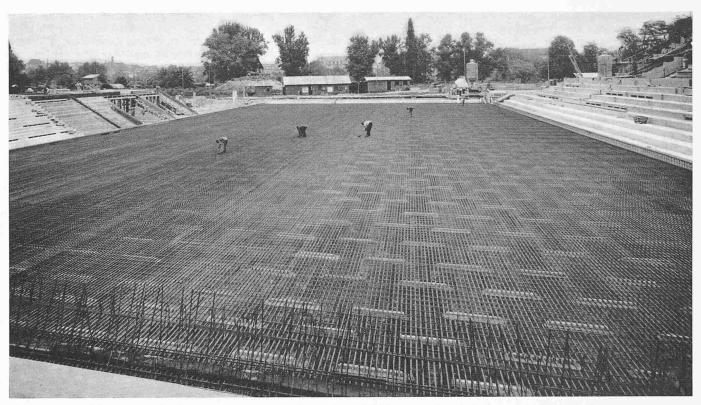


Bild 14. Kunsteisbahn Genf. Ansicht der Piste nach Verlegen der Kühlröhren, vor dem Betonieren der Platte

Zone angeordnet wird, durch die das Wasser weder kapillar noch osmotisch in den Koffer gelangen kann.

Der Einfluss der Gefrierwärme auf die Eindringungstiefe des Frostes ist klein, weil im stark porösen Kieskoffer nur wenig Wasser vorhanden ist. Dieses besteht aus Kondenswasser, das als Adsorptionswasser um die Kieskörner haftet. Das freie Wasser, das z. B. während der Tauperiode seitlich eindringen kann, sickert bei der grossen Durchlässigkeit des Kieskoffers rasch in die Tiefe. Es ist anzunehmen, dass das einzelne Kieskorn infolge der isolierenden Wirkung der Wasserhaut, die sich wegen Adsorption bildet, langsamer abkühlt als die Luft zwischen den Körnern. Bei einem Wassergehalt von wenigen Vol. % ergibt sich dadurch aber keine merkliche Vergrösserung der abzuführenden Wärme q_a .

An einem Beispiel ist der Einfluss der Gefrierwärme auf die Frosttiefe im Kieskoffer zahlenmässig ermittelt worden, s. Bild 19 und die Tabellen 2 und 3 in Beispiel 1, Abschnitt V. Dort ist auch ersichtlich, dass sich der Wassergehalt wegen der beim Gefrieren zusätzlich abzuführenden Wärme hemmend auf die Frosteindringungstiefe auswirkt. Allein, je mehr Wasser vorhanden ist, um so grösser werden die Wärmeleitzahlen und die Wärmekapazität des Kieskoffers. Im genannten Beispiel sind diese Umstände berücksichtigt. Wird die Gefrierwärme bei der Berechnung der Frostiefe vernachlässigt, so erhält man etwas zu grosse \(\xi\)-Werte; man hat also zu sicher gerechnet.

Unter Vernachlässigung des Einflusses des Wassernachschubes und der Gefrierwärme berechnet sich der stündliche Wärmefluss q_a pro m² Fläche zu

(1)
$$q_a = k (\vartheta_0 - \vartheta_1)$$
 kcal/m²h

Zur Berechnung der Wärmedurchgangszahl k dient die bekannte Gleichung

$$\frac{1}{k} = \frac{s_1}{\lambda_1} + \frac{s_2}{\lambda_2} + \dots + \frac{s_n}{\lambda_n}$$

wobei s_1 , s_2 , s_n die Stärken der einzelnen Isolationsschichten in m und λ_1 , λ_2 , λ_n deren Wärmeleitzahlen in kcal/mh°C bedeuten.

c) Berechnung der aus dem Erdboden nachströmenden Wärmemenge $q_{\rm b}$

Die Temperatur im Erdboden unterhalb der Isolationsschicht steigt von der tieferen Temperatur ϑ am Uebergang

zwischen Isolationsschicht und Erdboden mit zunehmender Tiefe allmählich auf die ursprüngliche Bodentemperatur $\vartheta_{\rm II}$. Man nennt die Kurve des Temperaturverlaufs die Tauto-chrone. Für sie bestehen hauptsächlich zwei Annahmen, nämlich 1. die Tautochrone folge dem Gausschen Fehlerintegral [21] S. 101, 200, [22], [12] S. 81/84, [15] Bull. 135, S. 132, oder 2. die Tautochrone sei eine Parabel (Ruckli) [2] S. 150, 161. Grundsätzlich könnten auch andere Kurven in Betracht gezogen werden, doch empfiehlt sich die Parabel, weil sie die

Bild 15. Kunsteisbahn Genf. Links Piste mit Kühlröhren auf Betonklötzen und Querarmierung, rechts Leitungskanal

Verhältnisse in einfachster Form wiedergibt. Da das Kiesmaterial nie völlig homogen ist, wird der wirkliche Temperaturverlauf mit der theoretisch richtigen Kurve für homogenes Material nicht übereinstimmen.

Die Gleichung für die Wärmeströmung in Richtung der vertikalen x-Axe, bezogen auf eine Querschnittsfläche von 1 m^2 , lautet

(2)
$$q_b = -\lambda_e \frac{\partial \vartheta}{\partial x}$$
 kcal/m²h

Nach einer bekannten Eigenschaft der Parabel (Bild 11) ist der Temperaturgradient an der Uebergangsstelle zwischen Isolationsschicht und Erdoberfläche

(3)
$$\frac{d\vartheta}{dx_{(x=0)}} = \frac{2\,\vartheta_{\text{II}}}{x_s}$$

Dieser Gradient ist wegen der grösseren Wärmeleitzahl des Erdbodens grösser als das Temperaturgefälle $\vartheta_{\rm I}/\xi$ in der Isolierschicht (Bild 11). x_s bedeutet die Tiefe jener Schicht unter der Nullisotherme, an welcher die Temperaturkurve in die unbeeinflusste Erdtemperatur $\vartheta_{\rm II}$ übergeht. Dort wird zweckmässigerweise der Scheitelpunkt der Parabel angenommen. Aus Gl. (2) folgt mit Gl. (3):

(4)
$$q_b = 2 \; \lambda_e \, rac{artheta_{
m II}}{x_s} \;\; ext{kcal/m}^2 ext{h}$$

Nimmt man einen parabelförmigen Temperaturverlauf an, so kann, wie Ruckli gezeigt hat, [2] S. 150, [21] S. 141, gesetzt werden²)

(5)
$$x_s = x_{s'} - \xi = x_{s'} \sqrt{\frac{\vartheta_{\text{II}}}{\vartheta_{\text{II}} - \vartheta_{\text{I}}}} = x_{s'} \beta$$

wobe

(6)
$$\beta = \sqrt{\frac{\vartheta_{\text{II}}}{\vartheta_{\text{II}} - \vartheta_{\text{I}}}}$$

und

$$(7) x_s' = \sqrt{12 a t}$$

Da ein Mehrschichtenproblem vorliegt, müsste eigentlich für die gefrorene, aus Kies bestehende Isolationszone eine andere Temperaturleitzahl a eingesetzt werden als für

2) Hierbei wurde nach Ruckli die vereinfachende Annahme getroffen, die Temperatur ϑ_1 an der Trennschicht zwischen Betonplatte und Isolationszone ($x_s'=0$) liege ebenfalls auf der Parabel (Punkt E in Bild 11).

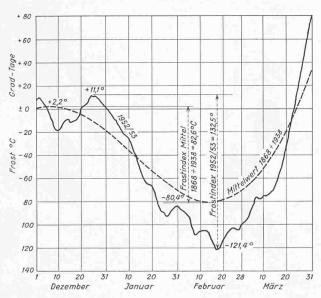


Bild 16. Temperatursummenkurve (Grad-Tage) zur Bestimmung des Frostindex. Standort: Schweizerische Meteorologische Zentralanstalt in Zürich auf 560 m ü. M. Der Frostindex betrug im sehr kalten Winter 1928/29 390,4 ° C · Tage, im Mittel der drei kältesten Winter innerhalb 30 Jahren 343,2 ° C · Tage, im warmen Winter 1954/55 50 ° C · Tage

den gewachsenen ungefrorenen Untergrund. Neumann hat in seiner Formel [2] S. 146, Gl. (8) diesen Unterschied berücksichtigt. Nun weichen aber die in Frage kommenden Temperaturleitzahlen (im Gegensatz zu den Wärmeleitzahlen) nur wenig voneinander ab [31] S. 13, weiter stehen nach Gl. (7) die Werte a unter der Wurzel, und schliesslich ist die Stärke der gefrorenen Zone ξ mit der Temperaturleitzahl a_g klein gegenüber der Tiefe x_s der ungefrorenen Abkühlungszone mit der Temperaturleitzahl a_u , so dass mit genügender Genauigkeit mit der selben Zahl a gerechnet werden kann.

Setzt man Gl. (7) in Gl. (5) und den so ermittelten Ausdruck für x_s in Gl. (4) ein, so erhält man

(8)
$$q_b = \frac{\lambda_e \vartheta_e}{\beta \sqrt{3} a} \frac{1}{\sqrt{t}}$$

wobei für a die Temperaturleitzahl für den ungefrorenen Boden zu wählen ist. Da nach längerer Betriebszeit $q_a \cong q_b$ wird, ergibt sich mit den Gl. (1) und (8)

(9)
$$-k \vartheta_{\mathbf{I}} = \frac{\lambda_e \vartheta_e}{\beta \sqrt{3 a}} \frac{1}{\sqrt{t}}$$

d) Formel zur Bestimmung der Kofferstärke

Besteht die Isolationszone aus einem Kieskoffer von der Stärke ξ und der Wärmeleitzahl λ_k , so gilt $k=\lambda_k/\xi$, womit man aus Gl. (9) erhält

(10)
$$\xi = \frac{\vartheta_{\rm I}}{\vartheta_e} \frac{\lambda_k}{\lambda_e} \beta \sqrt{3 a} \sqrt{t} = \alpha \sqrt{t}^{3}$$

$$\delta = \sqrt{a_{\rm II} \tau_B} \frac{\lambda_{\rm I}}{\lambda_{\rm II}} \frac{t_E - t_0}{t_\infty - t_E}$$

Besteht der Unterbau aus verschiedenartigen Schichten, so geht die Formel (10) unter Berücksichtigung des Wärmedurchgangs-Widerstandes

$$rac{1}{k} = \sum_{0}^{i} rac{s_i}{\lambda_i} + rac{s_k}{\lambda_k}$$

in die Formel über

(11)
$$\sum_{0}^{i} \frac{s_{i}}{\lambda_{i}} + \frac{s_{k}}{\lambda_{k}} = \frac{\vartheta_{I}}{\vartheta_{e}} \frac{1}{\lambda_{e}} \beta \sqrt{3 a} \sqrt{t}$$

ode:

3) Eine entsprechende Gleichung ist in [32], S. 140, Gl. (121c) angegeben. Leider sind in der Ableitung aus Gleichung (120) einige Fehler unterlaufen; die richtige Schreibweise der Gl. (121c) wäre:

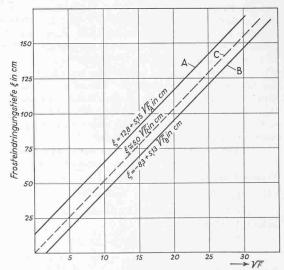


Bild 17. Beziehung zwischen Frosteindringungstiefe ξ (Tiefe der Nullisotherme) und dem Frostindex nach den Angaben des US Corps of Engineers. Bei der Berechnung des Frostindex F sind die Temperaturen in Fahrenheit und die Zeit in Tagen einzusetzen [26], Bull. 225. Die Kurve A gilt für Gradtage bei Bezugstemperaturen von 29 ° F, Kurve B für solche von 32 ° F und Kurve C für solche von 30 ° F

$$egin{aligned} s_k &= rac{artheta_{
m I}}{artheta_e} rac{\lambda_k}{\lambda_e} \; eta \; igvee 3 \, a \; igvee t \; - \lambda_k \sum_0^i rac{s_i}{\lambda_i} \ & s_k = \xi - A^*, \; \; {
m wobel} \; \; A^* &= \lambda_k \sum_0^i rac{s_i}{\lambda_i} \ & \end{array}$$

Für die gemachten Annahmen wird

$$A* = 0.45 \left[\frac{0.1}{1.0} + \frac{0.01}{0.3} + \frac{0.03}{0.8} \right] = 0.07 \text{ m}$$

Dabei bezieht sich das erste Glied in der eckigen Klammer auf die Betonplatte, das zweite auf die Gleitschicht und das dritte auf den Ausgleichbeton. Bei Berücksichtigung der isolierenden Wirkung dieser Teile kann die Kieskofferstärke um A^* verringert werden. Wird eine kapillarbrechende Zone von der Stärke B unter den Kieskoffer gelegt, so wird die Stärke der Gesamtkonstruktion

$$s_k = \xi - A^* + B$$

Praktisch wird $A^* = B$ gewählt, somit wird $s_k = \xi$

V. Numerische Berechnungen

1. Berechnung der Frosttiefe

Der Berechnung des Faktors α in der Formel (A) sollen die nachfolgenden Zahlenwerte zugrunde gelegt werden. Sie sind anlässlich der Projektierung einer Kunsteisbahn in Berlin verwendet worden.

 $\begin{array}{l} \gamma_k = 1500 \text{ kg/m}^3 \\ \gamma_e = 1720 \text{ kg/m}^3 \\ n_k = 0 \div 6 \text{ Vol. } \% \\ n_e = 35 \text{ Vol. } \% \\ \gamma_{k'} = \gamma_k + n_k \cdot \gamma_w \\ \gamma_{e'} = \gamma_e + n_e \cdot \gamma_w = 2070 \text{ kg/m}^3 \\ \lambda_e = 1,0 \text{ kcal/m h °C nach Krischer, Bild } 12 \\ \vartheta_0 = 0^\circ; \ \vartheta_1 = -8^\circ\text{ C}; \ \vartheta_{II} = \vartheta_e = 10^\circ\text{ C} \\ \beta = \sqrt{\frac{\vartheta_{II}}{\vartheta_{II} - \vartheta_{I}}} = 0,75 \text{ [Gl. (6)]} \\ C_k = 1500 \cdot 0,2 + n_k \cdot 0,45 \\ c_e = 0,2 \text{ kcal/kg °C} \\ C_e = 1720 \cdot 0,2 + 350 \cdot 1 = 690 \text{ kcal/m}^3 °C \\ a_k = \frac{\lambda_k}{C_k} = \frac{0,45}{300} = 0,00150 \text{ m}^2/\text{h} \\ a_e = \frac{\lambda_e}{C_e} = \frac{1,0}{690} = 0,00145 \text{ m}^2/\text{h} \end{array}$

Der Wassergehalt w in Gew. % des Trockengewichts ergibt sich aus der Beziehung

$$w \gamma_k = n_k \gamma_w \quad \text{zu} \quad w = \frac{n_k}{\gamma_k} \gamma_w$$

Die Berechnung der α -Werte in Gl. (A) ist mit Hilfe der von Neumann angegebenen transzendenten Gleichungen durchgeführt worden, und zwar sowohl *ohne* als auch *mit* Berücksichtigung der Gefrierwärme. Es würde zu weit führen, hier auf die Einzelheiten der Berechnung einzugehen, da die Auswertung beträchtliche mathematische Kenntnisse und einen grossen Zeitaufwand erfordert. Auch bei der Berechnung des α -Wertes nach der Formel von Ruckli wurde ohne und mit Berücksichtigung der Gefrierwärme gerechnet. Die Ergebnisse sind in Tabelle 2 zusammengestellt. Bei einem porenreichen und daher stark luft- und wasserdurchlässigen Kieskoffer ist der Wassergehalt so klein, dass der Einfluss der Gefrierwärme vernachlässigt werden kann. Der Kieskoffer wird alsdann eher zu reichlich bemessen.

Die Werte, die nach der Formel von Berggren mit den oben angegebenen Zahlenwerten erhalten wurden, sind in Tabelle 3 aufgeführt.

Auffallend ist, dass die α -Werte nach der Formel von Berggren mit zunehmendem Wassergehalt abnehmen, während sie nach den genaueren Formeln von Neumann und Ruckli zunehmen. Offensichtlich wirken mit zunehmendem Wassergehalt zwei Einflüsse gegeneinander: Die Wärmeleitzahl des Kieskoffers steigt, Bild 12, was grössere Isolationsstärken bedingt, während diese infolge grösserer Gefrierwärme wieder kleiner wird. Nach den Formeln von Neumann und Ruckli wird der Erhöhung der Wärmeleitzahl grössere Bedeutung beigemessen als der Zunahme der Gefrierwärme.

E. Emblick ist von der transzendenten Neumannschen Gleichung ausgegangen und hat verschiedene Vereinfachungen vorgenommen. Die α -Werte sind sehr hoch ausgefallen. Sie ergeben Kieskofferstärken, die gestützt auf praktische Erfahrungen an ausgeführten Kunsteisbahnen entschieden zu gross sind. Im weitern gilt grundsätzlich die gleiche Bemerkung, wie sie oben für die Formel von Berggren gemacht wurde.

Rechnet man nach der vereinfachten Formel (10), so erhält man die in Tabelle 3, Rubrik 5, angegebenen α -Werte, die sich, wie ersichtlich, nur unwesentlich von denen nach der genauen Berechnungsart von Neumann unterscheiden. Der besondere Vorteil der Formel (10) liegt darin, dass sie auf

Tabelle 2. α -Werte, berechnet nach den Formeln von Ruckli und von Neumann ohne und mit Berücksichtigung der Gefrierwärme.

Wassergehalt		ohne Gefrierwärme			mit Gefrierwärme		
Gew. %	Vol. %	Ruckli	Neumann	Mittelwert	Ruckli	Neumann	Mittelwert
0	0	1,28	1,32	1,30	1,28	1,32	1,30
1,33	2	1,60	1,84	1,72	1,53	1,75	1,64
2,67	4	1,82	2,13	1,97	1,72	1,93	1,82
4,0	6	2,15	2,54	2,35	1,86	2,18	2,01

Ruckli: [2] S. 160, Formeln (37), (33a), (33b), (33c)

Neumann: [22] oder [2] S. 146.

Tabelle 3. lpha-Werte nach den Formeln und Diagrammen verschiedener Bearbeiter.

Wasserge	ehalt	Stephan	Berggren	US Corps	Emblick	Bendel	Mittelwerte1
Gew. %	Vol. %	1	2	3	4	5	6
0	0	∞	∞		3,7	1,15	1,30
1,33	2	6,0	3,16	2,6	3,3	1,56	
2,67	4	4,8	3,06	bis	3,05	2,00	
4,0	6	4,46	2,87	5,2	2,95	2,45	

 Die Zahlen der Kolonne 6 sind die Mittelwerte derjenigen von Ruckli und von Neumann, siehe Tabelle 2.

Anmerkung. Die Zahlen der Kolonnen 2 und 4 wurden unter Berücksichtigung der Gefrierwärme berechnet, diejenigen der Kolonnen 3 und 5 ohne Gefrierwärme. Bei den Kunsteisbahnen in Sitten, Zürich-Dolder, Landsberg, Oberstdorf, Genf u. a. wurde ein grober Kies verwendet, dessen Wassergehalt unter 3 Vol. % lag. In diesen Fällen konnte der Einfluss der Gefrierwärme vernachlässigt werden, wie auch aus den Temperaturmessungen am Fusse des Kieskoffers abgeleitet werden kann.

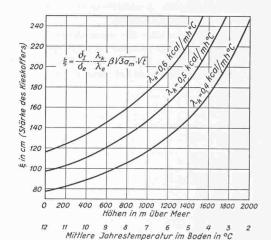


Bild 18. Zunahme der Kieskofferstärke mit abnehmender mittlerer Jahrestemperatur bzw. mit zunehmender Meereshöhe für verschiedene Wärmeleitzahlen des Koffermaterials bei einer Temperatur im Kühlröhrensystem von — 8°C und einer Temperaturleitzahl von 0,0020 m²/h, einer Wärmeleitzahl des Bodens von 1,2 kcal/mh °C und einer Betriebsdauer von

3600 Stunden

Tabelle 4. Stärke und Kosten des Kieskoffers von gleicher Isolierwirkung aber veränderlicher Wärmeleitzahl λ_k .

λ _k kcal/m h ° C	α	Koffer- stärke m	Kosten in Fr./m²	Gesamte Kofferkosten* Fr.	
0,35	2,02	1,4	28	50 400	
0,45	2,60	1,8	36	64 000	
0,55	3,20	2,2	44,4	79 920	
0,65	3,75	2,6	52	93 600	

*) Hinzu kommen die vermehrten Aushubkosten.

einfache Weise folgende Einflüsse auf die Stärke der Isolationsschicht erkennen lässt:

- 1. die mittlere Bodentemperatur ϑ_e , die hauptsächlich von der Höhenlage ü. M. abhängt.
- 2. die thermischen Eigenschaften des Kieses (λ_k)
- 3. die thermischen Eigenschaften des Bodens (λ_e) .

2. Der Einfluss der Höhenlage auf die Isolationsstärke

In Formel (10) sind die Werte ϑ_e entsprechend der Höhenlage der Kunsteisbahn über Meer einzusetzen. Aus Bild 18 geht die Zunahme der Isolationsschicht in Abhängigkeit der mittleren Jahrestemperatur bzw. der Höhenlage hervor, wobei eine Betriebszeit von 150 Tagen zu Grunde gelegt wurde.

3. Der Einfluss der Kiesqualität auf die Isolationsstärke

In Formel (10) ist die Wärmeleitzahl des Kieses entsprechend dem Raumgewicht des Kieses nach Bild 12 einzusetzen. Bei niedrigem Raumgewicht hat es viele Hohlräume im Kies, die mit schlecht leitender Luft ausgefüllt sind. Je kleiner das Raumgewicht, um so schlechter ist die Wärmeleitung. Der Kies, der für die Erstellung der Isolationszone verwendet wird, soll nicht verdichtet werden, sonst verringert sich das Porenvolumen, und die Wärmeleitzahl nimmt merklich zu.

Bei einer ausgeführten Kunsteisbahn ist die Qualität des Kieses von der Bauherrschaft nachträglich mit der Begründung geändert worden, der gewählte Kies sei frostunempfindlich und billiger. Man gab sich aber nicht Rechenschaft über die Verschlechterung der Wärmeleitzahl. Messungen mit Fernthermometern ergaben, dass die Wärmeleitzahl des verwendeten Kieses rd. 0,9 kcal/mh°C betrug statt 0,45 des zuerst bestimmten Materiales. Die Folge war, dass die Nullisotherme in den gewachsenen Boden eindrang und sich Hebungen an der Betonplatte zeigten.

4. Die Kosten des Kieskoffers in Abhängigkeit von seinen thermischen Eigenschaften.

In Tabelle 4 sind für verschiedene Wärmeleitzahlen des Kieskoffers die für gleiche Bedingungen erforderlichen Kofferstärken und die Kofferkosten für eine Kunsteisbahn von 1800 m² zusammengestellt. Aus ihr ergibt sich, dass es sich

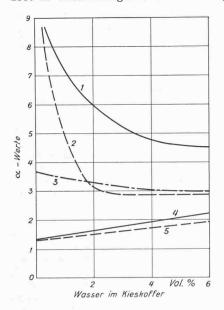


Bild 19a (links). Vergleich der Formeln von Stephan 1, Berggren 2, Emblick 3, Neumann 4 und Ruckli 5 unter Berücksichtigung der Gefrierwärme des im Koffer enthaltenen Wassers. Aufgetragen sind die α-Werte in Formel (A) in Abhängigkeit des Wassergehaltes in Vol. %.

Bild 19b (rechts). α-Werte. Kurve 6 stellt die Mittelwerte der nach Neumann und Ruckli berechneten α-Werte ohne Berücksichtigung der Gefrierwärme dar. Kurve 7 dasselbe mit Berücksichtigung der Gefrierwärme und Kurve 8 die nach Gleichung (10) des Verfassers berechneten a-Werte, ohne Berücksichtigung der Gefrierwärme

lohnt, einen guten Kies zu wählen, dessen Wärmeleitzahl klein ist. Es genügt nicht, für den Kieskoffer ein nach dem granulometrischen Frostkriterium frostsicheres Kiesmaterial zu nehmen. Da es sich bei den Kunsteisbahnen vorwiegend um ein thermodynamisches Problem handelt, ist es notwendig, den Kies für die Isolationsschicht nach seiner Wärmeleitzahl, seiner Wärmekapazität und seiner Temperaturleitzahl auszuwählen.

VI. Schlussfolgerungen

A. Berechnungsgrundlagen

Die Stärke der Isolationszone unter einer Kunsteisbahn ist abhängig von der Temperatur im Röhrensystem und von der mittleren Jahrestemperatur im Boden, ferner von den Wärmeleitzahlen, der Wärmekapazität und den Temperaturleitzahlen des Kieskoffers und des gewachsenen Bodens.

B. Gefrierwärme

Für die Berechnung der Stärke der Isolationszone darf der Einfluss der Gefrierwärme vernachlässigt werden, wenn die Wassermenge weniger als 3 Vol. % beträgt. Dies trifft praktisch bei den Isolationsschichten aus grobem Kies ohne Sand zu.

C. Berechnung der Stärke der Isolationszone

Unter der unter B gemachten Voraussetzung kann die Stärke ξ der Isolationsschicht mit Hilfe der vom Verfasser neu entwickelten Formel berechnet werden, die lautet:

(10)
$$\xi = \alpha \sqrt{t} = \left[\frac{\vartheta_{\rm I}}{\vartheta_e} \frac{\lambda_k}{\lambda_e} \beta \sqrt{3a} \right] \sqrt{t}$$

(10) $\xi = \alpha \sqrt{t} = \left[\frac{\vartheta_{\rm I}}{\vartheta_e} \frac{\lambda_k}{\lambda_e} \beta \sqrt{3 a} \right] \sqrt{t}$ Diese Formel lässt die Einzeleinflüsse wie Höhenlage, Bodenbeschaffenheit und Kiesqualität übersichtlich beurteilen. Wie aus Bild 19 ersichtlich, ergibt sie Kofferstärken, die mit denen nach den Formeln Neumann und Ruckli gut übereinstimmen. Diese Formel ist mit Erfolg auch bei der Dimensionierung von Strassen und Flugpisten im In- und Ausland angewendet worden.

D. Vergleichung der verschiedenen Formeln

Aus Tabelle 3 ergibt sich, dass die α-Werte nach den Formeln Neumann, Ruckli und des Verfassers grösser werden, wenn der Wassergehalt zunimmt, während sie nach den Diagrammen von Berggren und Emblick abnehmen. Wahrscheinlich hängt dies damit zusammen, dass Berggren und Emblick die transzendente Gleichung, die Neumann mit Hilfe des Gausschen Fehlerintegrals aufstellte, zu stark vereinfachten.

E. Richtwerte

Die Temperatur des Eises $\vartheta_1 = -8$ bis -10° C.

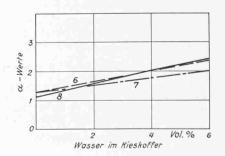
Die Bodentemperatur, abhängig von der Höhenlage über Meer der Kunsteisbahn $\vartheta_e=4^\circ$ bis 15° C.

Die Wärmeleitzahl des Kieskoffers ist für porenreichen, groben Kies $\lambda_k=0.3$ bis $0.4~{
m kcal/m}\,{
m h}\,{
m ^{\circ}C}$ $\lambda_k = 0.35$ bis 0.55mittelgroben Kies $\lambda_k = 0.5$ bis 1.0 sandigen Kies

Die Wärmeleitzahl für den gewachsenen Boden ist stark abhängig vom Wassergehalt; sie beträgt: $\lambda_e = 0.6$ bis 2.4

Die Frostdauer ist gleich der jährlichen Betriebsstundenzahl. Diese liegt meist zwischen t=2400 bis 4000 h.

Die Temperturleitzahl a=(2 bis 3,3) 10^{-3} m²/h, selten $1,5 \times 10^{-3} \text{ m}^2/\text{h}.$



Die Nebeneinflüsse, wie Intensität der Sonnenbestrahlung, Auftreffwinkel der Sonnenstrahlen, Windexposition (Föhnlage), Luftfeuchtigkeit usw. sind rechnerisch schwierig zu erfassen. Sie wirken sich hauptsächlich auf die erforderliche Kälteleistung aus und beeinflussen nur wenig die Isolationsschicht.

F. Bestimmung der thermischen Eigenschaften des Materials

Für eine wirtschaftliche Bemessung des Kieskoffers sollten die Verfahren zur Bestimmung der Wärmeleitzahlen des Bodens und des Kieses weiter entwickelt werden. Die vom Verfasser durchgeführten Versuche ergaben, dass die Bestimmung der Wärmeleitzahlen gleichzeitig an mehreren Stellen des Bodens, bzw. des Kieskoffers vorgenommen werden muss, um einen richtigen Mittelwert zu erhalten. Für die erste Orientierung geben die Bestimmungen der Luft-Durchlässigkeit der Materialproben einen guten Anhaltspunkt über die Grösse der Wärmeleitzahl.

Literaturverzeichnis

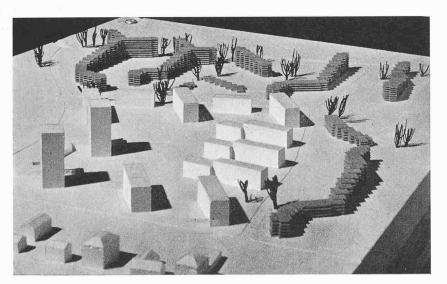
- L. Bendel: Ingenieurgeologie, Bd. I und Bd. II, Wien 1948, Springer-Verlag.
- [2] R. Ruckli: Der Frost im Baugrund, Wien 1950, Springer-Verlag.
- [3] L. Bendel: Bodenuntersuchungen im Grundbau, Frostgefährlichkeit des Bodens, Ingenieur-Handbuch Bd. I, 1953.
- [4] L. Bendel: Untersuchung des Untergrundes und der Tragschicht für den Strassenbau in Immensee, «Strasse und Verkehr» 1955, Heft 6.
- [5] Schweizerische Normen-Vereinigung (SNV), Nr. 40375: Frostkriterien, Tragschicht.
- [6] D. Bonnard, R. Desponds, E. Recordon: Influence du gel sur la stabilité des voies ferrées. «Bull. Techn. de la Suisse Romande», 1958, Nr. 11.
- [7] Versuchsanstalt für Wasserbau und Erdbau an der ETH. 7 Berichte über Frostversuche 1953/1956.
- [8] L. Schaible: Frost- und Tauschäden an Verkehrswegen und deren Bekämpfung, Berlin 1958, Kap. 4: Frostkriterien, Frostgefahr und Tragfähigkeit.
- [9] Forschungsgesellschaft für das Strassenwesen. Richtlinien für die Verhütung von Frostschäden in Strassen. Köln 1951.
- [10] P. Siedeck: Praktische Erfahrungen in der Frostforschung in Deutschland, «Strasse und Verkehr» 1956, Nr. 7.
- [11] G. Schnitter und Ch. Schaerer: Bericht der VAWE, ETH, Zürich, vom 3. Febr. 1956 betr. Dimensionierung der Strassen gegen Frostschäden in verschiedenen Ländern der nördlichen Hemisphäre.
- [12] R. Jumikis: The frost penetration problem, New Jersey 1955.
- [13] E. Emblick: Le champs de température sous la dalle d'une patinoire artificielle, «Industrie et Technique» 15. Dezember 1958. S. 1.

- [14] E. Schmid: Thermodynamik, 8. Aufl., Berlin 1956, Springer-Verlag, S. 353.
- [15] Highway Research Board: a) Bulletin 35, 40, 71, 135, 168, 207, 218, 225;
 - b) Abstracts Vol. 28, Nr. 4 und 10 1958, Vol. 29, Nr. 5 1959;c) Bibliographie: Frostaction in soil, 1948, 1952;
 - d) Proceedings 1959.
- [16] F. Balduzzi: Experimentelle Untersuchung über den Bodenfrost. Mitteilungen der Versuchsanstalt für Wasserbau und Erdbau an der ETH, Heft Nr. 44/1959.
- [17] A. Bley: Ueber ein Verfahren zur unmittelbaren Ermittlung der Frostempfindlichkeit von Böden. «Forschungsarbeiten aus dem Strassenwesen», Neue Folge 37, Kirschbaumverlag, Bielefeld, S. 211.
- [18] A. Dücker: Einfache Erkennungsverfahren zur Bestimmung der Frostempfindlichkeit des Strassenuntergrundes, «Strasse und Autobahn», 1951, Heft 2, S. 380.
- [19] W. Schaad: Beitrag zur Frage des Bodenfrostes. Studie im Auftrag der Vereinigung schweiz. Strassenfachmänner, 1957 (unveröffentlicht).
- [20] Fundamental and Pratical concepts of Soil Freezing, «Bulletin 168 Public Publication 528, Highw. Res. Board», 1957.
- [21] Hütte I, Theoretische Grundlagen, 28. Auflage.
- [22] Gröber, Erk, Grigull: Wärmeübertragung, Berlin 1933, Springer-Verlag.
- [23] Manual for frost condition evaluation of airfield pavements. New England, Div. Boston, Mass. USA, Nov. 1953.
- [24] E. Zschiedrich: Neue Bauarten von Kunstlaufbahnen, «Betonund Stahlbetonbau», 1957, Heft 2, S. 25.
- [25] R. Hemmleb: Dehnungsmessungen an der vorgespannten Platte des Eisstadions Zweibrücken. «Beton- und Stahlbetonbau», 1957, Heft 2, S. 31.
- [26] Auslegeschrift 1 031 822. Unterlageplatte für eine Eislaufbahn. Dortmunder Typ.
- [27] F. Vaessen: Die Eislaufbahn in der Dortmunder Westfalenhalle. «Beton und Stahlbeton» 1953, Heft 4, S. 90.
- [28] A. Scheunert: Die Beanspruchung von vorgespannten Rollschuhbahnen. «Bautechnik» 1960, Heft 4, S. 143.
- [29] Die Kunsteisbahn beim Dolder in Zürich, SBZ, Bd. 99, S. 13 (9. Jan. 1932).
- [30] v. Sinner u. Beyeler: Kunsteisbahn und Wellenbad Dählhölzli in Bern. SBZ, Bd. 104, S. 191 (27. Okt. 1934).
- [31] O. Vuorelainen: Thermal conditions in the ground from the viewpoint of foundation work, heating and plumbing installations and draining. Helsinki 1961.
- [32] R. Plank: Handbuch der Kältetechnik, Dritter Band, Berlin, Göttingen, Heidelberg 1959, Springer-Verlag, S. 140.
- [33] L. Bendel. Die Beurteilung des Baugrundes im Strassenbau unter besonderer Berücksichtigung der Frostgefährlichkeit des Bodens. «Schweiz. Zeitschr. f. Strassenwesen» 1935, Nrn. 14, 15, 16, 17 u. 18.

Adr. des Verfassers: Dr. L. Bendel, Ing., Alpenquai 33, Luzern.

Ideenwettbewerb für eine Wohnbebauung im Grüzefeld, Winterthur

DK 711.58



1. Preis, Projekt Nr. 21, Verfasser Cramer & Jaray & Paillard und P. Leemann Modellbild aus Süden

Aus dem Programm

In der Stadt Winterthur besteht immer noch ein grosser Mangel an einfachen, aber zweckmässigen Wohnungen zu niederen Mietzinsen. Dieser Mangel soll behoben werden durch die Erstellung wirtschaftlichster Haustypen in grösseren Bauetappen nach städtebaulich günstigen Ueberbauungsvorschlägen. Der Stadtrat von Winterthur veranstaltet zur Gewinnung geeigneter Entwürfe einen allgemeinen Ideenwettbewerb, für dessen Durchführung ausser den nachstehenden Bedingungen die Grundsätze des S.I.A. und des BSA für das Verfahren bei architektonischen Wettbewerben massgebend sind.

Die städtebauliche Aufgabe, ein neues Wohnquartier zu entwickeln, kann nur dann sinnvoll gelöst werden, wenn neben den kubischen auch die wohntechnischen und wirtschaftlichen Grundlagen geschaffen werden. Städtebau, Architektur und Wirtschaftlichkeit sind, sobald Verwirklichungen bevorstehen, gleichwertig und gleichzeitig generell