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Tabelle 3

9Jh m aj.3 9Km Bei. gl.

1 2,37830 —0,96217 —

2 —0,96217 2,37830
—0,38958

—0,96217 —

— 1,98872 —0,96217 —

3 —0,96217 2,37830
—0,46551

—0,96217 :—¦

— 1,91279 —0,96217 —

m —1,92434 2,37830
—0,96798

51,8915

— 1,41032 51,8915

m 3,623 8,954 18,508 36,794
\ Md

h

AusdenFlanschbiegungsmomenten SIR111:—EJwn" ergeben
sich die Flanschausbiegungen y als Seilpolygon, während nun

die Torsionsanteile t G-Ja • </>' GJd- */h • 17' durch
Differentiation mit den Gleichungen (6) bestimmt werden können,

wenn man nicht vorzieht, diese durch numerische
Lösung der Timoshenko-GlSchung (10a) mit tA' -B' 0
direkt zu lösen.

Hätten wir mit Aa: Z/4 100 cm, y 0,151321, gerechnet,

so hättenwir 2ßm — 37,101 M^/h, also um 0,83% grösser
erhalten, während mit Aa; 2/2 200 cm sich aus einer einzigen

Gleichung 2ßm 39,869 Mdjh oder um 8,36 % grösser
ergeben hätte. Wir können daraus schliessen, dass für die
gewählte Teilung Aa; 50 cm der Fehler von äßm kleiner als
0,1 % sein wird. Diese praktisch mehr als genügende
Genauigkeit wird dann eingehalten, wenn durch entsprechende
Intervallteilung y ^ 0,05 gehalten wird.

8. Durch Kombination lassen sich die skizzierten Grundlagen

erweitern, so dass auch höhere Differentialgleichungen
numerisch gelöst und auch Membranen, Platten und Scheiben
berechnet werden können. Immer aber muss das Ziel einer
numerischen Methode sein, das gewünschte Ergebnis in
genügender Genauigkeit mit einer möglichst kleinen Zahl von
Bestimmungsgleichungen zu erhalten; an diesem Grundsatz
ändern auch die neuesten Hilfsmittel, die elektronischen
Rechenmaschinen, nichts.

Calcul numerique des plaques et des parois minces
Par Pierre Dubas, professeur assistant, EPF, Zürich *) DK 624.073:518.12

Introduction
Le präsent article traitera le calcul numerique des corps

plans minces, c'est-ä-däre des corps dont l'öpalsseur est fälble
par rapport aux dimensions du feuillet moyen, equidistant des
faces. Selon le mode de sollicitation (fig. 1), on parle de

Plaques minces fKchies, lorsque les forces ext&rieures s'exer-
cent normalement aux faces, ou de parois minces, lorsque
les lignes d'action sont situees dans le feuillet moyen et que
la distribution est uniforme sur FSpaisseuri).

/
Parois mince Fig. 1. Plaque mince flechie

Nous nous proposons de montrer, dans les grandes
lignes, comment on peut appliquer ä ces probiemes ä deux
dimensions la methode du polygone funiculaire. Dans son
article qui precSde, le professeur F. Stüssi, le crßateur de
cette methode, en a expose les princlpes; nous les sup-
poserons donc connus.

Theorie generale des plaques et des parois minces

II n'est certes pas necessaire de rappeler les hypotheses
simplificatrices et les conditions d'equilibre et de compati-
bilite qui permettent d'etablir les equations diff.rentielles

*) Conference falte le 11 novembre 1960 ä. l'occasion de la reunion
du groupe professionnel des ingenieurs S. 1. A. des ponts et char-
pentes.

x) II s'agit donc d'un Probleme d'elasticit<5 plane; on dit parfois
tranche mince ou dlsque, ce qui est la traduction litt, rale du terrae
allemand Scheibe.

2) F. stüssi: Numerische Methoden der Baustatik, Schweizerische
Bauzeitung, page 275 du pr.sent numero.

regissant les probiemes bidimensionnels. Nous nous content

erons Ici d'ecrire ces equations bien connues3).
Dans le cas des plaques fl&chies isotropes, il s'agit de

l'equation de Lagrange:

(1)
34tc

+ 2-
d*w

dx*dy* +
d*w p(x,y)
3j/* D

oü w represente l'ordonnße de la surface elastique, p designe
_3ÄS

la Charge appliquöe et D est une constante de-
12(1 — 1,2)

pendant de l'epaisseur h de la plaque et de l'elastieite de la
matiere.

Lorsque la plaque est anisotrope, ou plus specialement
orthogonalement anisotrope (en abrtge' orthotrope), c'est-ä-
dire lorsqu'elle presente, par rapport ä ses propriStös 61as-

tiques, deux directions privilßgiSes paralleles aux axes de
coordonnees, on obtient l'equation de Boussinesq:

(2) D,
3*u>

"äse*" + 2DX
34w

dx*dy*
3*1«

Les constantes Dx, Dxy, Dv sont fonctions des rigidites ä la
flexion et ä la torsion de la plaque orthotrope.

Ces equations differentielles permettent en principe de

determlner, en tenant compte des conditions au contour dont
nous allons parier, les ordonnees w de la surface elastique.
Les sollicitations interieures sont alors donnees par les re-
lations bien connues, reproduites ci-dessous pour les plaques
Isotropes:

(3a) Moments de flexion: M,

(3b) Moment de torsion: Mx

(3c) Efforts tranchants: Qr

•»«3*tt> d*w
+ '3a;»

¦ D (1—I-)

dy*
i*W

dx dy

— D

(3d) Reactions d'appui: Vx Qx +

3

dx

dMxy
dy

d*w
dx*

I

dy*)
d*%o

M„ Qy> Vy Par permutation de a; et y.

3) On consultera par exemple, pour les plaques minces, S. Timo-
shenko et 8. Woinowsky-Krieger: Theory of Plates and Shells, 2eme
edition, McGraw-Hill, 1969; pour les parois minces, B. Tbnoshenko et
J. N. Goodier: Theory of Elasticity, 2eme edition, McGraw-Hill, 1951.
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Les conditions au contour, qui caracterisent et indivi-
dualisent le probleme pose, doivent egalement 6tre exprimöes
en fonction des ordonnöes w. Si l'on considere, pour fixer
les idöes, un bord rectiligne parallele ä Taxe des y, d'Gqua-
tion x a, on peut distinguer les cas principaux suivants:

bord simplement appuye

(w). 0

(d*U3\——-) =0, d'apres l'equation (3a)

puisque w et ses derivees par rapport ä y sont identiquement
nulles tout le long du bord considere.

bord totalement encastre'

(w) =0
dVO

\ dx )x-a

bord Ubre

(M_) (Vx).

On peut naturellement envisager d'autres conditions, par
exemple lÄappui ou un encastrement Elastique.

Quant aux probiemes de l'6lasticitä plane (parois
minces), ils obeissent ä l'equation differentielle suivante, lorsque
la mattere est isotrope:

(4)
d*F
~dx* + 2

d*F
dx*dy*

3*F
~dy*

0

F est la fonction de tension ä'Airy, d6finie par les relations
suivantes entre ses derivees et les contraintes de l'6tat bidi-
fnensionnel etudie:

(5)
d*F

~dy*
d*F d*F
dx* dxdy

Ces relations qui satisfont directement aux conditions d'equi-
libre du parallelipipede elementaire, restent donc valables
lorsque la mauere est orthotrope, mais l'equation differentielle

se generalise et devient:

(6) Ex
d*F
dx* 22-,

d*F
dx*dy'< + Ey

3<F

dy*
0

Quant aux conditions au contour, elles peuvent etre de
deux sortes. On parle de probiemes aux tensions lorsque la
röpartition des contraintes tout le long du contour est con-
nue (ou imposee). En considerant comme precedemment un
bord parallele ä Taxe des y, on aura alors, d'une part [6qua-
tion (5)]:

pour x a: ox
3_F

dy*
donne

Par une double Integration ou, pour parier statique, ä l'aide
d'un polygone funiculaire, on remonte sans difficultes aux
valeurs de la fonction F tout le long du bord*).

La condition relative aux cisaillements, d'autre part,
s'exprime par la relation:

pour x a

d'oü

d*F

dF - f.

dx dy

xy dy

donne

\-C

par une simple Integration le long du bord; la constante C

est fixee par les conditions aux coins du contour.

*) Remarquons ici que le plan de reforence de la fonction ä'Airy
peut etre choisi de facon arbitraire; en effet, toute fonction F* de la
forme F* F + Ax + By + C, oüA.BetC eont des constantes quel-
conques, satisfait ä l'equation differentielle et conduit au meme _tat
de contraintes que la fonction F. Sur deux bords du contour, la ligne
de fermeture du funiculaire peut donc etre cholsie de fagon
arbitraire; 11 auffit que les deux lignes se coupent, definissant ainsi le
Plan de ref _rence.

Quant aux probiemes aux döformations, ils concernent
les connexions «g[ coactions entre des Clements en contact;
les conditions au contour expriment alors la compatibilite
des deformations des eiements jointifs. II s'agit donc de
probiemes hyperstatiques au plus haut degrö. Nous mention-
nerons simplement ici le cas elementaire d'une paroi mince
lifie, le long de Tun de ses bords parallele ä Taxe des y, k une
nervure supposee indeformable longitudinalement mais sans

rigidite transversale appreciable (perpendiculairement au
bord envisagS). La condition ä remplir s'6crit:

ey —-^¦(<ry — "Ox) =0

La comparaison des equations differentielles (1) et (2)
des plaques minces et des equations (4) et (6) des parois
minces montre une analogie frappante. II en est de meme

pour les conditions au contour; dans le probleme aux
tensions, par exemple, les valeurs de la fonction et de sa dgrivße

premiere sont imposöes le long du contour, ce qui correspond
ä une plaque totalement encaströe. On peut donc se reprö-
senter la fonction Ä'Airy comme la surface elastique d'une
plaque flechie, qui ne serait soumise ä l'action d'aucune
force exterieure (p 0), mais dont le pourtour devrait
suivre des deformations imposßes. Comme le montrent les
relations (5), les contraintes correspondent aux courbures
de la plaque le long de la fibre perpendiculaire ä la direction
de la contrainte consideree. La contrainte de cisaillement se
deduit de la torsion geodesique de la surface elastique.

Resolution des equations differentielles des plaques et des

parois minces par la methode du polygone funiculaire

Comme nous venons de le rappeler, les probiemes de

plaques f lechies ou de parois minces se ramenent ä la resolut

ion d'une equation aux derivees partielles du type:

(2)
34ioDx— + 2Dxy

d*w
dx*dy*

D,
d*W

- p (a;, y)

si l'on designe en general par w la fonction inconnue.
Les coefficients Dx, DX!I, Dv sont constants sur toute la

surface consideree, tandis que la fonction de Charge p peut
varier d'une fagon quelconque. II faut de plus tenir compte
des conditions au contour, souvent exprimees par des
relations ne contenant que les ordonnees w (ou F) inconnues et
leurs derivees premieres ou secondes.

Des Solutions mathematiques simples n'existent que pour
des probiemes elementaires, souvent sans interet pratique.
Dans la plupart des cas, on doit recourir ä des developpe-
ments analytiques compliques, qui ne sont guere du ressort
du praticien. On comprend des lors l'interet des methodes
numeriques, plus accessibles.

Rappeions ici la m&thode aux diff&rences finies, intro-
duite par exemple par Marcus dans l'etude des plaques
flechies. Cette methode peche malheureusement par son
manque de precision; il semblait donc interessant d'etendre
aux probiemes bidimensionnels, regis par l'equation (2), la
methode du polygone funiculaire dont le professeur F. Stüssi
montre dans son article precite2) la pr.cision etonnante.
Ceci est d'autant plus indique que l'equation (2) repräsente
au fond une generalisation de l'equation bien connue de la
poutre flechte ») d^w/dx* p/EJ correspondant ä un double
funiculaire.

Comment allons-nous resoudre l'equation differentielle (2)
qui nous Interesse? Au lieu de chercher ä connaitre les
valeurs de la fonction w (ou F) en chaque point du domaine
considere, nous nous contenterons de determiner ces valeurs
en un nombre fini de points; pour ce faire, nous decrirons
le domaine par un reseau rectangulaire. Toutes les mailies,
parallelement ä Taxe des x, auront la meme longueur Aa;;

5) Chaque terme de l'equation (2) peut d'ailleurs etre considere
comme une Charge p„ p«_, py, ce qui permet de r_soudre le Probleme
en conservant tout au long des calculs l'analogie avec la poutre
flechie; voir & ce sujet Ch. Dubas: Contribution & l'.tude du voile-
ment des tfiles raidies, Publ. no 28 de l'Institut de statique appliqu.e
& l'EPF, Leemann, Zürich 1948, p. 84.
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n+2 m-2 m-1 m m+1 m+2

n+1

n m,n
<

n-i

n-2
r«-Ax->i

dans la direction y, on aura Ay (fig. 2). II est bien evident
que ce reseau convient specialement aux surfaces rectan-
gulaires, mais on peut egalement traiter des trapezes ou des
paralieiogrammes.

C'est aux noeuds du
reseau que l'on va remplir
l'equation differentielle
(2). A cet effet, on eii-
mine les derivees partielles

en y substituant des
relations liant les valeurs
de la fonction inconnue
(w ou F) aux nceuds;
ces valeurs nodales de-
viennent ainsi les incon-
nues duprobleme. Comme Fig. 2.

on peut ecrire en chaque
nceud l'equation differentielle tra__sform6e, en tenant campte
sur les bords des ccödittons au contour, on obtiendra autant
d'equations que d'inconnues. Ces equations algebriques sont
lineaires et leur resolution n'offre pas de difficultes majeuröjftS
bien qu'elle soit fastidieuse si le nombre d'inconnues est
eieve6).

L'elimination des derivees s'opere naturellement ä l'aide
de la relation du polygone funiculaire. On peut utiliser ä cet
effet divers proced6s; nous n'examinerons ici que le procede
dit explicite ou formel parce qu'il conduit ä des Schemas
fixes pour l'etablissement des equations lineaires, Schemas
semblables en principe ä ceux de la methode aux differences
finies 7).

Nous ailons montrer maintenant comment on etablit
ces Schemas. Donnons d'abord les formules de base utilisees.

II s'agit bien entendu avant tout de la relation du polygone

funiculaire. Dans notre cas, c'est-ä-dire pour des
derivees partielles secondes et quatri6mes, la relation (3)
de I'articleB^§cite2) du professeur F. Stüssi s'ecrit:

relation entre ordonnSes w et d6riv6es secondes

EÜÜ tSm-i — 2wm + «Wi Aa; K, /d*w\
\"3iä"J

relation entre derivees secondes et dSriv&es quatriemes

\d**)m.t~ \~dx*~)m+\d&~)m + i~
/ d*W \

On pourrait bien entendu ecrire des relations semblables pour
les derivees par rapport ä y, le long des lignes verticales du
reseau.

Les relations (7) et (8) sont exactes, puisque l'on n'a
fait aueune hypothese sur la forme de la Charge nodale K. Si
l'on admet des charges nodales paraboliques, la relation (7)
devient, par analogie avec la relation (5a) de -'article
precite *):
(9)

Ax* r/d*w
12 V 3a;2 )m-i \ dx* )m^ \ dx* )m + 1

Cette formule est approchie et sa precision dependra de la
plus ou moins bonne concordance de la courbe reelle des
d*w/dx* avec la parabole determlnee par les trois valeurs
considerees.

o) Dans ce cas, l'utilisation de machines ä calculer electroniques
sera interessante. Remarquons ici en passant que la capacite de ces
machines est malgre tout limitee; la methode du polygone funiculaire
qui conduit, pour la meme precision, k un nombre d'inconnues bien
inferieur ä celui de la methode aux differences finies, conserve donc
ses avantages.

7) Pour certaines conditions au contour, par exemple le bord libre
d'une plaque flechiej ce proc.d£ n'est pas applicable, parce que les
relations au bord contiennent des derivees troisiemes des ordonn.es
inconnues; l'elimination s'opere alors directement, k partir du reseau
particulier considere. Voir k ce sujet P. Dubas: Calcul numerique des
plaques et des parois minces, Publ. no 27 de l'Institut de statique
appliquee ä l'EPF, Leemann, Zürich. 1956.

Pour simplifier l'ecriture dans les eiiminations, nous
introduisons la notion de Charge nodale generalisee T£. De la
Charge nodale le long d'une ligne, on passe en effet facile-
ment ä la Charge nodale K d'une surcharge p repartie sur
une surface. Si l'on admet par exemple une distribution para-
bolique dans les deux sens, l'equation (4b) du professeur
F. Stüssi se generalise en (fig. 2):

(10) Kn _ Ay 1

10
12 1

1 10 1
10 100 10

^Sll 1

Km(p)
Ax

T_T
1 10 lKn(p)

AxAy
144

Revenons maintenant ä l'equation differentielle (2); eile
doit etre bien entendu satisfaite en chaque point du domaine
et en particulier en tous les noeuds du reseau choisi. Rien ne
nous empeche donc de multiplier, en un nceud determine,
tous les termes de l'equation (2) par un m6me coefficient;
de proceder de meme, en un autre nceud du reseau, avec un
autre coefficienrade sommer enfin les equations, ecrites aux
divers nceuds, ainsi multipliees. Si les coefficients choisis
correspondent ä ceux donnant les charges nodales generali-
sees 2, on pourra donc ecrire, sous une forme symbolique
condensee:

(11) DXK
ldMß\
\~dx*~) + 2DxyS\

d*W

dx*dy*
DVK

'dMß
dy* K(p)

Examinons le premier terme de gauche. En explicitant le
symbole comme indique dans la formule (10) et en tenant
compte de la relation du polygone funiculaire (8), ce terme
s'Scrit:

(12) K d*W
Hx*1 Ay

12
i o*w \
{ dx*)

10

Ay
12 Ax

+ 1—2+1
+ 10—20+10
+1—2+1

d*W
~dX*~

Quant ä la relation (9), rien ne nous empeche de 1'ecrire
1 fois sur la ligne superieure et inferieure et 10 fois sur
la ligne mediane. En passant tous les termes ä droite on ob-

Ay
tient, apr6s multiplicatton par —

Aa;»

(13) 0 Ay
12 Aa;

1—10—1
10 —100 — 10
•1—10—1 dx*

Ay
Axa

+ 1

+ 10
+ 1

¦2+1
¦20+10
-2+1

Par addition nceud ä nceud de (12) et (13) il vient:

K

+ 1—2 +1
+ 10—20+10
+ 1—2+1

Le second terme de l'equation (11) devient de la meme
facon:

dX*

Ay
Ax

— 1
— 10
— 1

d*w Ay
dx* ' Ax*

_ / d4W*( 3a;2 dy*
Ay
12 K, \dx-dy*)

Ay
12 Aa;

1—2+1
10 — 20 + 10

1—2+1
d*W

dy

En considerant les relations semblables ä (9), ecrites pour
les derivees par rapport ä y le long des lignes verticales, on
obtient directement:

k( diw/ d*W \
\dX*dy* I AxAy

+ 1
— 2

+ 1
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Quant au troisieme terme, il se transforme comme le premler,
avec simple permutation de x et de y ainsi que des lignes

la relation
1

horizontales et verticales. On peut donc ecrire

intermediaire suivante, apres multiplication par AxAy

(14)
Ax*

+ 2

— 1

— 10
— 1

d*w
dx* + ______

Aar*

+ 1—2+1
+ 10—20+10
+ 1 2+1

Ax* Ay*

+ 1
— 2
+ 1

+

Ay*

Du

10

¦2 +1
- d*W

dy*

Ay*

+ 1

— 2

+ 1

10+1
20—2
10+1 AxAy K(p)

Pour eliminer les deriv6es partielles du deuxieme ordre
restantes, il suffit d'ecrire la relation intermediaire (14), eile
aussi valable en chaque point du reseau, un certain nombre
de fois au nceud considere et dans les points voisins du
reseau.

Pour un nceud interieur, c'est-ä-dire situe au moins ä
deux mailies dttä contour, il s'avere que l'elimination des
derivees secondes est possible si l'on ecrit la relation (14)
selon le schema m.me des charges nodales [formule (löHi
On obtient en effet ainsi des groupes ternaires de deriv6es
secondes, de la forme 1—10—1, qui s'61iminent gräce ä la
relation (9).

Sans donner le detail des Operations, nous pouvons donc
ecrire le schema general (A).

Schema (A)
Independant des conditions au contour

°-ffi
+1 -4 +6 -4 +1

+20 -80 +120 -80 +20

+102 -408 +612 -408 +102

+20 -80 +120 -80 +20

+1 -4 +6 -4 +1

Rappeions que ce schema donne, pour les points interieurs,
les coefficients des equations lineaires en w remplagant
l'equation differentielle (2). Dans le terme de droite, K (p)
est la Charge nodale generalisee, donnee par exemple par la
relation (10) pour une repartition parabolique.

Pour les premieres lignes du reseau, ä 1 maille du bord,
il faut tenir compte des conditions au contour impos6es. Nous
n'examinerons Ici que des bords paralleles aux axes de co-
ordonnees, avec des conditions au contour de la forme (bord
parallele ä l'axe des y, par exemple):

w + 2D„

pour x — a

w donne et

ou w donne et

32«;
~~dx*~

dw
dx

donne

donne

La condition relative aux ordonnees. w sur le contour
est facile ä satisfaire: il suffit de multiplier les valeurs
donnees par les coefficients des Schemas, correspondant aux
points sur les bords; on obtient ainsi des termes connus des

equations.
/ d*w \Quant ä la condition | donn6, eile ne pose guere\ dx* lx=a

de probleme puisque la relation intermediaire (14) contient
aussi des derivees secondes. L'elimination s'op6re comme
pour les points interieurs, mais en ecrivant la relation
intermediaire (14) sous la forme

+ 10+1
+ 100 + 10

+ 10+1
et

100
10

10
1

+1 +8 —18 +8 +1

+8 +64 -144 +64 +8

-18 -144 +324 -144 -18

+8 +64 -144 +64 +8

+1 +8 -18 +8 +1

w

le long: d'un bord

en un com

•o!
+1 +20 +102 +20 +1

-4 -80 -408 -80 -4
+6 +120 +612 +120 +6

-4 -80 -408 -80 -4
+1 +20 +102 +20 +1

¦w

+1 +10 +1

+10 +100 +10

+1 +10 +1
¦AxAyK(p)

Schema (B)
d*w°

Sur la ligne m — 1, derivee —— donnee
3a;2

D m
-2 +5 -4 +1

-40 +100 -80 +20

-204 +510 -408 +102

-40 +100 -80 +20

-2 +5 -4 +1

W + 2D.

+10 -19 +8 +1

+80 -162 +64 +8

-180 +342 -144 -18

+80 -152 +64 +8

+10 -19 +8 +1

¦10

MW
+10 +101 +20 +1

-40 -404 -80 -4
+60 +606 +120 +6

-40 -404 -80 -4
+10 +101 +20 +1

w DxAy*

-20

-102 02U>°

-20 dx*

-1

+

+10 +1

+100 +10

+10 +1
• AxAyK(p)

Schema (B')
nßsSt d*W<>

Sur la ligne n + 1, derivee donnee
dy*

Tourner le schema (B) de ir/2 et permuter x et y
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Schema (C)

Sur la ligne m — 1, derivee
3w"
3a;

donnee

MW

+d m*

-11 +18 -9 +2

-220 +360 -180 +40

-1122 +1836 -918 +204

-220 +360 -180 +40

-11 +18 -9 +2

+16 +162 +36 +2

-64 -648 -144 -8
+96 +972 +216 +12

-64 -648 -144 -8
+16 +162 +36 +2

¦w + 2D„

+16 -30 +12 +2

+128 -240 +96 +16

-288 +540 -216 -36

+128 -240 +96 +16

+16 -30 +12 +2

w D, m

w

+18 +2
dvfi |
dx

+160 +20

+16 +2
AxAyK(p)

ScMma (CC)

Sur la ligne m - 1, derivee

Sur la ligne n + 1, derivee

dw»
dx

3w<>

dy

donnee

donnee

MW

+

+

MW

MW

1-88 +144 -72 +16

-891 +1458 -729 +162

-198 +324 -162 +36

-11 +18 -9 +2

1-88 -891 -198 -11

+144 +1458 +324 +18

-72 -729 -162 -9
+16 +162 +36 +2

1+48 +486 +108 +6

Schema (C)

Sur la ligne n 1, derivee -
dvfi
dy

donnee

w + 2D„

1+128 -240 +96 +16

-240 +450 -180 -30
+96 -180 +72 +12

+16 -SO +12 +2

w

• w -MW
1+48

+486 Ax

+6

dvfi
dy

Ay +
1+16

Tourner le schema (C) de tt/2 et permuter x et y

La condition / dw\
\ dx j_ donnö est un peu plus delicate. II faut

d'abord etablirune relation entre la derivee premiere dwßx et
les ordonnees w et leurs derivees secondes d*w/dx*, seules ä
intervenlr dans (14). Cette relation se deduit de l'analogie
entre l'effort tranchant et la derivee premiere du moment
de flexion. II s'agit donc de la relation (6a) de Particle
pr6cite2) du professeur F. Stüssi, relation qui devient:

details, nous nous contenterons de re-
produire ici les Schemas8) obtenus
(pour les denominations, voir fig. 2).

En resolvant les equations lineaires,
etablies ä l'aide des Schemas repro-
duits ci-dessus, on obtient les valeurs
des ordonnees inconnues w aux
divers nceuds du reseau.

Pour determiner les sollicitations
interieures (M, Q, V) dans les plaques
flechies, ou les contraintes de l'etat
d'elasticite plane, on a besoin des
derivees de la fonction w (ou F), comme
le montrent les relations (3) et (5),
en particulier des derivees secondes.

A cet effet, on utilise de nouveau
la relation du polygone funiculaire
(9), qui donne justement une relation
entre les valeurs des ordonnees w en
certains points et celles des derivees
secondes aux memes points. En ecri-
vant cette relation aux divers points
d'une ligne du reseau choisi et en
tenant compte des conditions aux

bords9) (c'est-a-dire aux extremit6s des lignes considerees),
on obtient autant d'equations lineaires qu'il y a de derivees
inconnues.

Pour une ligne comportant un nombre de mailies deter-
mine, on etablira une fois pour toutes des tableaux permet-
tant de passer, par multiplication et sommation, des ordonnees

w aux derivees secondes w". Nous donnons ä, titre
d'exemple les deux tableaux10) ci-dessous:

Tableau (l_). Quatre mallies, derivee seconde w" donnee au bord

dvft
dx

%— • AxAyK(p)
+2

V dx )m.i
A*2 L. - / d*w \ Ä I

Aa; w„

d*w' d*W
mm* /,

Cas symetrique

tOl Wl*=l w>2 toa* 1 108 1 I01''=l0j«=l/J8
w 0 partoutWi" w'{t 0

Wi"
w%"

+19,591837
— 3,918367

—43,102041
+ 47,020408

+ 23,510204

— 43,102041
— 0,10204082

+ 0,02040816

En ecrivant la relation intermediaire sous la forme

+ 16+2
+ 160 + 20

+ 16+2
on elimine facilement les derivees secondes ä l'aide de la
formule (9), si l'on prend soin d'ajouter sur chaque ligne la
relation (15) multipliee par un coefficient approprie. Pour
les coins, on procede de fagon analogue. Sans entrer dans les

8) Ces Schemas sont tir.s de l'ouvrage cite ä la note '). Comme
cette publication est Spuis_e, nous avons pens_ utile de reproduire
les sch.mas in extenso dans le pr.sent article.

9) Ces conditions, pour les cas usuels Que nous avons seuls con-
sideres ici, s'exprlment toutes en fonction des inconnues w et des
d6riv.es secondes; pour dwßy donnS, on tiendra bien entendu compte
de la formule (15).

10) Rappeions que dans la methode aux diff.rences, la derivee
seconde en un point s'exprime par (1/ii-) (to.-i—2tom + i_m+i).
c'est-ä-dire uniquement par l'ordonn_e au point consideVS et aux
deux points voisins. La diff„rentiation est donc plus facile ä effec-
tuer, mais eile est beaucoup moins pr_cise.
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Tableau (Ils). Huit mailies, derivee premiere w' donnee au bord

Cas symetrique

io_ iOi»=l 102 W?2» 1 Wl M>8* 1 Wi Wi» 1 M>5 1 Wi'Ax
w'ltAx 1

w 0 partouttc_ ici, 0

Wh"

Wi"
Wi"
Wi"
w&"

—314,76273
+109,38136

|||Il,05090
+ 1,12764

— 0,22553

+ 408,55756
—204,27878
+ 98,23023

— 10,02349

+ 2,00470

—115,44558
+105,72279
— 173,78230

+ 96,10023

— 19,22005

+ 24,05638

— 12,02819

+ 96,22553
—182,22709

+ 190,04542

— 2,40564
+ 1,20282

— 9,62255

+ 95,0_S71
—172,60454

—240,61394
+ 24,30697

— 2,45576

+ 0,25059

— 0,05012

Sch&ma (BB')
3*iiw,-

Sur la ligne m —-1, derivee —^^ donnee

Sur la ligne n + 1, derivee -

3a;*

d*w°
Üi. donnee

Ces tableaux s'appliquent ä des
courbes w symetriques par rapport
au milieu de la ligne u). On peut
etablir des tableaux analogues pour
le cas antisymetrique par rapport au
centre. La lettre l designe la longueur
totale de la ligne consideree.

Exemple numerique

1 Nous pensons utile de donner ici
~p un exemple complet. H s'agit d'un cas

de plaque flechie, oe qui permettra
une comparaison avec les resultats
donnes par la methode analytique.

Les donnees du probleme ressor-
tent de la figure 3: la plaque, admise
isotrope, est rectangulaire, avec les
deux bords etroits encastres et les
autres simplement appuyes. Avec les
notations de la figure, les conditions
au contour sont donc les suivantes:

MW

AxVMW

+ Dv-Ax2-

1-20 +50 -40 +10

-202 +505 -404 +101

-40 +100 -80 +20

-2 +5 -4 +1

1-20 -202 -40 -2

+50 +605 +100 +5

-40 -404 -80 -4
+10 +101 +20 +1

-10

Schema (CB')

Sur la ligne m — 1, derivee ¦
3a:

D (W
110 1 + 180

dy*

1-90 +20

-32 -72

MAxV
Ay)

+ D„Ax2

Schema (BC)
Sur la ligne m — 1, derivee

Sur la ligne w + l, derivee

d*U>°

~dX*~

dw°
dy

•U. + 2D,

donnee

d*W°
Sur la ligne n +1, derivee „ „ donnee

-1111 +1818 1-909 +202

-220 +380 -180 +40

-11 +18 -9 +2

1+100 -190 +80 +10

-190 +381 1-152 -19

+80 -152 +64 +8

+10 -19 +8 +1

w

-10

•w DXA y2'
d2w°

dx2

¦+ +100 +10

+10 +1
AxAyK(p)

w + 2D,

1+160 -300 +120 +20

-304 +570 -228 -38

+128 -240 + 96 +16

+16 -30 +12 +2

+80 +810 +180 +10

-64 -648 -144 -8
+16 +162 +36 +2

D-(W
1+60

dvfi
dx

Ax

dh
dy2

+160 +20

+16 +2

donnee

donnee

• AxAyK(p)

mas speciaux
asterisque *:

(16) w 0
d*w

~~dx*~
0

pour x =_= ± -7r

dw
dy

0

pour y =_ ± -s-

Pour ecrire le Systeme d'equations
lineaires en w, on utilisera donc le
schema (A) pour les nceuds interieurs,
le schema (B) pour les nceuds sur la
premiere ligne parallele au bord ap-
puye, le schema (C) pour les noeuds

sur la premiere ligne parallele au
bord encastre et le schema (BC)
pour le nceud au coln. Comme les
eiements paralleles ä Taxe des y sont
encastres, tandis que ceux paralleles
ä l'axe des x sont appuyes, on a
choisi un reseau ä 8 mailles dans le
sens y et ä 4 mailles dans le sens x.
On obtient ainsi une precision du
m6me ordre dans les deux directions.

On a donc Aa? o/4 et Ay b/8
l,6a/8; les coefficients multipliant

" les termes des Schemas valent ainsi:
(Ay/Ax)* (0,2/0,25)2 0,64 pour le
Premier terme; 2 pour le second et
(Ax/Ay)* - (0,25/0,2) 1,6625 pour
le troisieme. Comme Dx _..,,, Dy

D, on peut passer ces coefficients
constants ä droite, dans le terme de
Charge [voir 6quatIon (1)]. Pour fa-
ciliter le travail d'etablissement des
equations, nous groupons en un seul
les trois termes en w de chaque
schema, apres multiplication par les
coefficients respectifs que nous ve-
nons de determiner, ce qui donne,
dans notre cas particulier, les sche-

suivants, que nous distinguerons par un

Schema (A) * Independant des conditions au contour

Tourner le aoh4ma (OB') de ir/2 et permuter x et y.

u) Le point 1 d.signe le point sur un bord, le point 1* sur
l'autre bord, et ainsi de suite.

+ 4,2036 + 44,69 + 127,216 + 44,69 + 4.2025

+22,66 — 48.2 — 848,7 — 48,2 1 +22,66

+38,656 —361,62 + 1995,93 —361,62 +38.655

+22,66 — 48,2 — 848,7 — 48.2 + 22,55

+ 4,2026 + 44,69 + 127,215 + 44.69 + 4,2025
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Schema (B)* Bord appuye, parallele k Faxe des y Pour les derivees
d*w

on a recours au tableau (Hs), avec

+ 123,0125 + 44.69 + 4,2025

— 871,25 — 482 +22,55

+ 1957.275 —361.62 +38,655

— 871.25 — 48,2 + 22.55

+ 123.0125 | + 44.69 + 4.2025

Schema (C)* Bord encastre, parallele ä l'axe des x

1

+71.805 —33_.22 +4570,83 —332,22 +71.805

+32.9775 —•81.41 —1728,135 —181.41 +32.9775

+ 8.405 + 89.38 + 254,43 + 89.38 + 8.405

Schema (BC)* Coin: bord appuyfe parallele ä l'axe des y
bord encastre parallele ä l'axe des x

1

1

+4499.025 —332. 2 +71.805

—1761.1125 —181,41 +3-9775

+ 246,0-5 + 89.5)8 + 8.405

La Charge p sera admise uniformement repartie sur
toute la surface. Comme la plaque est symitrique par rapport

aux 2 axes de coordonnies et qu'elle est symetriquement
charg6e, la surface elastique pr6sentera les memes symetries
et l'on n'a que 8 ordonnees w inconnues, comme cela ressort
de la numerotation adoptee dans la figure 3.

11 est maintenant aise d'ecrire les 8 equations lineaires
qui permettront de determiner les ordonnees w. On tiendra
bien entendu compte des nceuds intervenant plusieurs fois
dans un meme schema par raison de symetrie. Pour la
premiere equation, par exemple, ecrite en a k l'aide du schema
(A)*, le coefficient de b vaudra 2- (—361,62), celui de c
2-(—848,7), celui de d 4(—48,2) etc. Pour obtenir une
matrice en grande partie symetrique par rapport k la diagonale

principale, il faut des lors multiplier par 2 les equations
ecrites en b et c, par 4 celle ecrite en d etegjbes coeöfcients
sont indiques dans la premiere colonne du Systeme d'equa-
tions, reproduit plus loin, tandis que la seconde colonne
designe le Schema employe et la troisieme le nceud oü est
ecrite l'equation.

Quant ä la derniere colonne, eile contient les termes de

Charge, donnes ici uniquement par les termes en K des
Schemas generaux pulsque ordonnees w°, derivees premieres
dw°/dy et d6rivees secondes d*u}°ßx* sont nulles au contour
selon les conditions (16). La Charge nodale d'une surcharge
uniformement repartie sur une surface vaut evidemment
K (p) =p Ax Ay, comme cela ressort d'ailleurs egalement de la
relation (10). Le produit Ax Ay K~ (p) vaut donc p Ax*Ay*
soit 0,0025 a*p avec Aa; 0,25 a et Ay 0,2 a.

Le terme de Charge du schema (A) s'eleve ainsi k:

144 • 0,0025a«p 0,36a4p.

On obtient de mSrne 0,33 a*p pour (B), 0,54a*p pour (C)
et 0,495a*p pour (BC).

La resolution du Systeme se fait aisement, par exemple
gräce ä l'algorithme de Gauss. Les Solutions trouvees sont
indiquees sous le tableau HI.

Pour determiner les moments de flexion, il faut con-
naitre les derivees secondes [voir equation (3a)]. On utlllse
ä cet effet le tableau (l|) pour les lignes paralleles ä l'axe
des x, avec les conditions aux bords iv% i»_» 0 et Wi"_=
_!!•"= 0. Au point a on obtient ainsi

Wi WSBp1 0 et wi'= w!*' 0, tandis que, sur la ligne
centrale, w% wg, w% — we, Wi wc et tue wa.

On trouve facilement

et I d*w 1

PO«
~D~
pa*

0,10824

0,03004

Si l'on admet un coefficient de Poisson v 0,3, les moments
de flexion valent donc, d'apres les relations (3):

Point a: Mr pa* (0,05632 + 0,3 • 0,03004) + 0,06533 pa?
My pa* (0,03004 + 0,3 ¦ 0,05632) + 0,04694 pa"

Bord »ffiafy —0,1082 pa*

Rappelons encore que l'ordonnee
maximale vaut wm&x — 0,006047
pa*/D. Les valeurs donnees par
Timoshenko dans son ouvrage
precite3) (page 187) sont de

'y
m encaslre •m

3

h q h
o.
Q_

f e f C
a,

d c d Simplerr

<
b a b

d c d
X

F e f
h fl h

¦

< a-4Ax- *_B

+ 0,0650 pour
+ 0,0469 pour
— 0,1090 pour
+ 0,00603 pour

«.)_
(My)a
(My)m
Wrnav.

Fig. 3

Ces valeurs, que l'on peut consi-
derer comme exactes, donnent
des differences de

+ 0,5 %
+ 0,1 %
— 0,7 %

et + 0,3 %.

La pr&cision est donc remarquable, bien que la trame soit
assez lache. Ein poussant plus loin la differentiation, on de-
terminerait sans difficultes, ä l'aide de relations analogues k
(15), les moments de torsion, efforts tranchants etc.

Autres exemples d'application
L'exemple numerique precedent n'a qu'une valeur didac-

tique, pulsque la Solution exacte en est connue. Dans la
pratique, on utilisera bien entendu la methode du polygone
funiculaire dans des cas plus difficiles. Citons le calcul des plate-
lages metalliques des grands ponts modernes, souvent
idealises comme dalles orthotropes (fig. 4). Par rapport ä
notre exemple, l'orthotropie n'apporterait aueune compli-
cation: il suffirait, dans l'etablissement des Schemas )*,
de tenir compte des valeurs de Da D™, Dy.

%»fesä

ä
Flg. 4. Detail du platelage du pont-rall de Farbhof, ä Zürich

d*W
3P~ -=l»8 a* (+ 47,020408 • 4,34510 — 43,102041 • 6,04682) • 10"» pa4 pa*

D 0,05632
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Tableau

Systeme d'equations

Wa Wb wc wd we Wf Wg Wh T. Charge

1 X (A)* a +1995,93 — 723,24 —1697,4 — 192,8 + 254,43 + 178,76 0,36

2 X (B)* b — 723,24 +3991,86 — 192,8 —3394,8 + 178,76 + 508,86 0,66

2 X (A)* c —1697,4 — 192,8 +4246,29 —1267,72 —1697,4 — 192,8 + 254,43 + 178,76 0,72

4 X (B)* d — 192,8 —3394,8 —1267,72 +8492,58 — 192,8 —3394,8 + 178,76 + 508,86 1,32

2 X (A)* e + 254,43 + 178,76 —1697,4 — 192,8 +3991,86 —1446,48 —1697,4 — 192,8 0,72

4 X (B)* fl + 178,76 + 508,86 — 192,8 —3394.8 —1446,48 +7983,72 — 192,8 —3394,8 1,32

1 X (C)* g + 254,43 + 178,76 —1728,13. — 362,82 +4570,83 — 664,44 0,54

2 X (BC)* h + 178,76 + 508,86 — 362,82 —3456,27 — 664,44 +9141,66 0,99

^Solutions xo-.^ 6,046 82 4,345 10 5,452 90 3,923 90 3,767 53 2,725 62 1,457 35 1,069 20
pa*-

X
D

0.25a

4 Po

14Po

0,125a 0,75a CV-Sa

Flg. 5.

3.21875

._>

Fig. 6. Poutre simple, fonction de tension ä'Airy

.po

-4.0

+0.14

0.96

-

4 0

-4p

a/8a/8

-4p0

+0,24 iA
—ps*i
f, :

1.5

' I

\H

2.08 1.92 +11.84

Navier +1.125

•i rrrn

Fig. 7. Poutre simple, contraintes cy (en fonction de po) Fig. 8. Poutre simple, contraintes <j„ et r (en fonction de po)
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Les parois minces sont encore peu etudiees mathema-
tiquement. Nous donnerons ici un exemple apparemment
simple, celui d'une paroi carree, sollicitee par des efforts
uniformement r6partis sur une partie des cötes (fig. 5); il
s'agit donc d'une poutre simple de grande hauteur, poutre
k laquelle la theorie classique de la resistance des materiaux
n'est evidemment plus applicable.

Sans donner de calculs numeriques, nous reproduirons12)
la forme de la fonction d'Airy13) (fig. 6) et les contraintes
qu'on peut en deduire (fig. 7 et 8).

Precision de la methode

De nombreux calculs comparatifs sur des plaques, sou-
mises ä diverses conditions au contour, nous ont permis de
formuler le crltere de precision suivant:

Si l'intervalle entre deux points d'inflexion consecutifs

correspond k
la precision sera de
l'ordre de

8 mailles

6 % 2% 0,7 % 0,15 % 0,05 %

pour les valeurs des ordonnees w (ou F) et des courbures
(__T, a). Pour les derivees d'ordre impair, multiplier par
1,5 | 2.

Dans les applications, il est presque toujours possible
d'esttmer tres approximativement la position des lignes
d'inflexion de la surface elastique ou de la fonction Ä'Airy et de
determiner ainsi ä combien de mailles correspond la partie
de la courbe situee entre deux points d'inflexion. Ainsi, dans
notre exemple, on avait 8 mailles pour les lignes encastrees

12) Voir l'ouvrage cit_ _. la note i) page 142. Cette publication
contient -galement d'autres cas de parois minces. Le probl_me du
coin de cadre est trait_ de facon analogue dans l'article intitul_:
Deux probiemes relatifs ä l'etude des portiques _tag_s multiples,
Publ. pr.l. du 6« congr.s de l'A.I.P.C, Stockholm 1960, page 438.

18) Comme indiqufi plus haut, la Variation de la fonction d'Airy,
sur les bords soumis aux contraintes _„, est egale ä Celle du moment
provoqu. par ces «charges» av. Quant aux bords verticaux, ils ne
sont pas sollicit-s et la fonction ä'Airy est constante ainsi que sa
d-riv_e dF/dx, egale ä la tangente initiale au coin.

et 4 pour les lignes articuiees. Comme la surface elastique
presente certainement deux points d'inflexion le long de
l'axe des y, k cause de reDEfflstrement, on peut admettre
4 mailles entre points d'inflexion, dans les deux directions.
L'erreur maximale trouvee etait bien de 0,7 % comme
indique par le critere.

Remarquons pour terminer que la methode aux
differences finies conduiög une precision de beaucoup inferieure.
Les erreurs sur les courbures (moments des plaques,
contraintes des parois) sont de 5 ä 20 fois plus grandes 14).

Quand on utilise la methode du polygone funiculaire, on
pourra donc, si l'on desire obtenir une certaine precision
fixee, employer un röseau beaucoup plus lache que dans la
methode aux differences; on diminue ainsi tres fortement le
travail ä effectuer, ce qui est toujours appreciable, m6me si
l'on dispose d'une calculatrice electronique.

Conclusions

L'analogie du polygone funiculaire permet de resoudre,
sans connaissances mathematiques speciales, des probiemes
bidimensionnels compliques. Pulsque cette methode provient
de la statique appliquee, eile convlent specialement bien ä
l'ingenieur, car eile ne recourt qu'ä des notions qui lui sont
familieres.

Divers procedes d'application sont possibles; nous n'en
avons developpe ici qu'un seul, celui qui conduit ä des Schemas

fixes et, de ce fait, est particulierement facile ä utiliser.
Dans certains cas, d'autres procedes, plus proches de l'origine
statique, seront mieux adaptes.

Nous esperons que notre article, forcement tr6s incom-
plet du fait de son etendue limitee, saura inciter le lecteur ä
approfondir de par lui-m6me l'ensemble du probleme et ä
trouver par lä de nouvelles applications.

14) Cette Variation entre 5 et 20 vient de ce que la methode du
polygone funiculaire converge beaucoup mieux; l'erreur y est en gros
inversement proportionnelle k la quatrifeme puissance du nombre de

mailles, tandis que c'est le _arr_ qui intervient dans la mfithode aux
differences finies.

Adresse de l'auteur: Prof. Dr. Pierre Dubas, Seestrasse 467, Mei-
len/ZH.

Zwei Kirchenentwürfe der Architekten A. und W. Moser, Baden und Zürich DK 726.5

Um Pläne für eine Kirche zu erlangen, erteilte im
vergangenen Winter die katholische Kirchgemeinde Wangen
an der Aare Projektaufträge an sechs Architekten, während

die katholische Kirchgemeinde Heiden AR gleichzeitig
einen Projektwettbewerb mit sechs eingeladenen Teilnehmern

durchführte. An beiden Orten gingen die Architekten
A. & W. Moser, Zürich und Baden, als Sieger hervor. Wir
veröffentlichen deren Entwürfe, begleitet von der
Beurteilung durch die Experten bzw. das Preisgericht, und lassen

eine Würdigung der beiden Entwürfe durch einen jungen

Kollegen folgen.

Aus dem Bericht der Expertenkommission Wangen a. A.
Der Verfasser dieses Projektes verstand es als einziger,

das gegebene Gelände optimal auszunützen. Er hat die
Kirche zurückgeschoben und ihr dadurch einen grosszügig
leicht ansteigenden, schönen Vorhof vorgelagert. Es war Ihm
dadurch möglich, das Pfarrhaus am Eingang des Vorhofes
anzuschliessen. Die seitliche Abschrankung des Vorhofes
verstärkt den Charakter eines eigenen Kirchenbezirks und
trennt dadurch die Anlage von den benachbarten, zufälligen
Gebäullchkeiten. Die Stellung des Turmes bezüglich des
benachbarten Gebäudes ist zu überprüfen. Der Kirchenraum
ist in der liturgischen Anordnung und der räumlichen
Gestaltung ausserordentlich charaktervoll und schön. Zu
bemängeln ist der zu kleine Taufraum. Es ist zu empfehlen,
den Taufraum und die Werktagskapelle zusammenzulegen.
Zu Gunsten einer eindeutigen Lichtführung von Osten sollten

die Fenster der Südwand weggelassen werden.

Besonders hervorzuheben ist die Anordnung der
Empore, unter welcher die Sakristei hegt, die ebenfalls sehr
praktisch angeordnet ist. Der im Untergeschoss angeordnete

Pfarrsaal und seine Nebenräume sind zweckmässig
angeordnet. Die halbrunde Einbuchtung beengt jedoch den
Saal. Dadurch, dass der Klrchenboden über das Gelände
gehoben wird, kommt der Pfarrsaal verhältnismässig wenig
unter das gewachsene Niveau. Der Verfasser macht den
Vorschlag eines amphitheatralischen Aussenraumes, für den
jedoch kein Bedürfnis vorliegt.

Es handelt sich hier um ein ausserordentlich
ideenreiches, sorgfältig durchgestaltetes, formal einheitliches
Projekt, das den gestellten liturgischen und baukünstlerischen
Ansprüchen gerecht wird. — Kirche 5160 m», Pfarrsaal
717 m3, Pfarrhaus 1215 ms, Turm 315 m».

Das Projekt ist mit Abstand das beste unter den
eingereichten. Es bedeutet einen wertvollen Beitrag zur
Weiterentwicklung des heutigen Sakralbaues.

Die Experten: K. Higi, Arch., Prof. A. Roth, Arch.,
W. Studer sen., Arch., Jos. Eggenschwieler, Domherr, W.
Portmann, Pfr., Dr. Schenker, Domherr.

Aus dem Bericht des Preisgerichts Heiden

|2B||8es Projekt stellt die Kirche auf die sehr gut
präsentierende Höhe des bisherigen Kirchplatzes. Der Zugang
zur Kirche führt über eine Treppenanlage zu einem reiz-

igSlen Vorhof und von dort ins Heiligtum. Dieser Vorhof,
als sinnvolle Vorbereitung zum Gottesdienst, ist mit Turm
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