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Tabelle 3
\Dzl 9)22 9.)}‘3 g.n‘tm Bel. gl
3t 2,37830 | —0,96217 —
2 | —0,96217 2,37830 | —0,96217 —
—0,38958
— 1,98872 | —0,96217 —
3 —0,96217 2,37830 | —0,96217 —
) —0,46551
— 1,91279 | —0,96217 —
m —1,92434 2,37830! 51,8915
—0,96798
— 1,41032| 51,8915
Mg
m = 3,623 8,954 18,508 36,794 —
Ausden Flanschbiegungsmomenten 9t = — EJ p - 7" ergeben

sich die Flanschausbiegungen 5 als Seilpolygon, wéhrend nun

die Torsionsanteile t = GJg: ¢’ = GJz-2/h 7' durch Diffe-
rentiation mit den Gleichungen (6) bestimmt werden kon-
nen, wenn man nicht vorzieht, diese durch numerische Lo-
sung der Timoshenko-Gleichung (10a) mit fy’ = g’ = 0 di-
rekt zu losen.

Hitten wir mit Az = /4 = 100 cm, y = 0,151321, gerech-
net, so hiatten wir 9},, = 37,101 My/h, also um 0,839, grosser er-
halten, wihrend mit Az = 7/2 = 200 cm sich aus einer einzi-
gen Gleichung 9, = 39,869 M4k oder um 8,36 % grosser
ergeben hiitte, Wir kénnen daraus schliessen, dass fiir die ge-
wihlte Teilung Az = 50 cm der Fehler von ), kleiner als
0,1 9% sein wird. Diese praktisch mehr als geniigende Ge-
nauigkeit wird dann eingehalten, wenn durch entsprechende
Intervallteilung y < 0,05 gehalten wird.

8. Durch Kombination lassen sich die skizzierten Grund-
lagen erweitern, so dass auch hohere Differentialgleichungen
numerisch geldst und auch Membranen, Platten und Scheiben
berechnet werden konnen. Immer aber muss das Ziel einer
numerischen Methode sein, das gewiinschte Ergebnis in ge-
niigender Genauigkeit mit einer moglichst kleinen Zahl von
Bestimmungsgleichungen zu erhalten; an diesem Grundsatz
andern auch die neuesten Hilfsmittel, die elektronischen Re-
chenmaschinen, nichts.

Calcul numérique des plaques et des parois minces

Par Pierre Dubas, professeur assistant, EPF, Zurich *)

Introduction

Le présent article traitera le calcul numérique des corps
plans minces, c’est-a-dire des corps dont 1’épaisseur est faible
par rapport aux dimensions du feuillet moyen, équidistant des
faces. Selon le mode de sollicitation (fig.1), on parle de
plaques minces fléchies, lorsque les forces extérieures s’exer-
cent normalement aux faces, ou de parois minces, lorsque
les lignes d’action sont situées dans le feuillet moyen et que
la distribution est uniforme sur I'épaisseur ).

Fig. 1.

Parois mince Plaque mince fléchie

Nous nous proposons de montrer, dans les grandes
lignes, comment on peut appliquer a ces problémes a deux
dimensions la méthode du polygone funiculaire. Dans son
article qui précéde, le professeur F.Stiissi, le créateur de
cette méthode, en a exposé les principes; nous les sup-
poserons donc connus.

Théorie générale des plaques et des parois minces

Il n’est certes pas nécessaire de rappeler les hypothéses
simplificatrices et les conditions d’équilibre et de compati-
bilité qui permettent d’établir les équations différentielles

*) Conférence faite le 11 novembre 1960 a 1'occasion de la réunion
du groupe professionnel des ingénieurs S.I. A. des ponts et char-
pentes.

1) 11 s’agit donc d'un probléeme d'élasticité plane; on dit parfois
tranche mince ou disque, ce qui est la traduction littérale du terme
allemand Scheibe.

2) F'. Stilssi: Numerische Methoden der Baustatik, Schweizerische
Bauzeitung, page 2756 du présent numéro.
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régissant les problémes bidimensionnels. Nous nous con-
tenterons ici d’écrire ces équations bien connues 3).

Dans le cas des plaques fléchies isotropes, il s’agit de
I’équation de Lagrange:

04w 04w

tw _ p(4,y)
(1) ozt T2 022 0y?2 + oyt~ D

ol w représente 'ordonnée de la surface élastique, p désigne

E h3
12 (1—»2)
pendant de I’épaisseur h de la plaque et de I'élasticité de la
matiére,

Lorsque la plaque est anisotrope, ou plus spécialement
orthogonalement anisotrope (en abrégé orthotrope), c’est-a-
dire lorsqu’elle présente, par rapport a ses propriétés élas-
tiques, deux directions privilégiées paralléles aux axes de
coordonnées, on obtient I'’équation de Boussinesq:

la charge appliquée et D = est une constante dé-

04w 04w 94w
— + 2D, R + D, vl =p(xy)

Les constantes D,, D,,, D, sont fonctions des rigidités a la
flexion et a la torsion de la plaque orthotrope.

Ces équations différentielles permettent en principe de
déterminer, en tenant compte des conditions au contour dont
nous allons parler, les ordonnées w de la surface élastique.
Les sollicitations intérieures sont alors données par les re-
lations bien connues, reproduites ci-dessous pour les plaques
isotropes:

(2) D.

. 02w 02w
(3a) Moments de flexion: M, = —D (P—m‘l + » —ay—2)
. 02w
(3b) Moment de torsion: M., = —D (1—v») ETY
o (02w 92w
(3c) Efforts tranchants: @, = —D e (—a—x‘)— + TyT)
oM,

(3d) Réactions d’appui: V, = @Q:+

oy

M,, @, V, par permutation de x et y.

3) On consultera par exemple, pour les plaques minces, 8. Timo-
shenko et 8. Woinowsky-Krieger: Theory of Plates and Shells, 2éme
édition, McGraw-Hill, 1959; pour les parois minces, 8. Timoshenko et
J. N. Goodier: Theory of Elasticity, 2éme édition, McGraw-Hill, 1951.
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Les conditions au contour, qui caractérisent et indivi-
dualisent le probléme posé, doivent également étre exprimées
en fonction des ordonnées w. Si 'on considére, pour fixer

les idées, un bord rectiligne paralléle & l'axe des y, d’équa-
tion # = a, on peut distinguer les cas principaux suivants:

bord simplement appuyé

(w):c:a =0
02w

(M), _,=0,soit (%2—)1= . =0, d’aprés 'équation (3a)

puisque w et ses dérivées par rapport a y sont identiquement
nulles tout le long du bord considéré.

bord totalement encastré

(w)I:a =0
ow
="
bord libre
(Mz),_,= Va),_,=0

On peut naturellement envisager d’autres conditions, par
exemple un appui ou un encastrement élastique.

Quant aux problémes de Uélasticité plane (parois min-
ces), ils obéissent a I'équation différentielle suivante, lorsque
la matiére est isotrope:

04F 04F

04F
oxt i 0x20y2

4 —F =0

(4) % T

F est la fonction de tension d'Airy, définie par les relations
suivantes entre ses dérivées et les contraintes de I'état bidi-

mensionnel étudié:

02F o02F 02F

= az TMTT ox oY

(8) aI:TyT; Gy—

Ces relations qui satisfont directement aux conditions d’équi-
libre du parallélipipéde élémentaire, restent donc valables
lorsque la matiére est orthotrope, mais I'équation différen-
tielle se généralise et devient:

o4F o04F 04F
€ B ot t 2By 022 0y2 + By oyt

=i

Quant aux conditions au contour, elles peuvent étre de
deux sortes. On parle de problémes aux tensions lorsque la
répartition des contraintes tout le long du contour est con-
nue (ou imposée). En considérant comme précédemment un
bord paralléle & I’axe des y, on aura alors, d'une part [équa-
tion (5)]:

02F

e donné

pour & = a: o, =

Par une double intégration ou, pour parler statique, a l'aide
d'un polygone funiculaire, on remonte sans difficultés aux
valeurs de la fonction F' tout le long du bord 4).

La condition relative aux cisaillements, d’autre part,
s’exprime par la relation:

our r=4a: — i donné
» =TT T Sray
oF
d'ou W:—f'rxydy'{'c

par une simple intégration le long du bord; la constante C
est fixée par les conditions aux coins du contour.

1) Remarquons ici que le plan de référence de la fonction d'Adiry
peut étre choisi de facon arbitraire; en effet, toute fonction F* de la
forme F* = F + Ax + By + C, o A, B et C sont des constantes quel-
conques, satisfait a 1'équation différentielle et conduit au méme état
de contraintes que la fonction F. Sur deux bords du contour, la ligne
de fermeture du funiculaire peut donc étre choisie de fagon arbi-
traire; il suffit que les deux lignes se coupent, définissant ainsi le
plan de référence.
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Quant aux problémes aux déformations, ils concernent
les connexions ou coactions entre des éléments en contact;
les conditions au contour expriment alors la compatibilité
des déformations des éléments jointifs. Il s’agit donc de pro-
blémes hyperstatiques au plus haut degré. Nous mention-
nerons simplement ici le cas élémentaire d’'une paroi mince
liée, le long de I'un de ses bords paralléle & I'axe des y, & une
nervure supposée indéformable longitudinalement mais sans
rigidité transversale appréciable (perpendiculairement au
bord envisagé). La condition & remplir s’écrit:

£y :f(ay——voz) =0

La comparaison des équations différentielles (1) et (2)
des plaques minces et des équations (4) et (6) des parois
minces montre une analogie frappante. Il en est de méme
pour les conditions au contour; dans le probléme aux ten-
sions, par exemple, les valeurs de la fonction et de sa dérivée
premiére sont imposées le long du contour, ce qui correspond
a une plaque totalement encastrée. On peut donc se repré-
senter la fonction d’Airy comme la surface élastique d’une
plaque fléchie, qui ne serait soumise & laction d’aucune
force extérieure (p = 0), mais dont le pourtour devrait
suivre des déformations imposées. Comme le montrent les
relations (5), les contraintes correspondent aux courbures
de la plaque le long de la fibre perpendiculaire & la direction
de la contrainte considérée. La contrainte de cisaillement se
déduit de la torsion géodésique de la surface élastique.

Résolution des équations différentielles des plaques et des
parois minces par la méthode du polygone funiculaire

Comme nous venons de le rappeler, les problémes de
plaques fléchies ou de parois minces se rameénent a la réso-
lution d’une équation aux dérivées partielles du type:

~

4w odw 04w
1

DI 1
(2) De—g +2 Dy EEETE + D,y 3y

=p(x,Y)

si I'on désigne en général par w la fonction inconnue.

Les coefficients D,, D,,, D, sont constants sur toute la
surface considérée, tandis que la fonction de charge p peut
varier d’une facon quelconque. Il faut de plus tenir compte
des conditions au contour, souvent exprimées par des rela-
tions ne contenant que les ordonnées w (ou F) inconnues et
leurs dérivées premiéres ou secondes.

Des solutions mathématiques simples n’existent que pour
des problémes élémentaires, souvent sans intérét pratique.
Dans la plupart des cas, on doit recourir a des développe-
ments analytiques compliqués, qui ne sont guére du ressort
du praticien. On comprend dés lors l'intérét des méthodes
numeériques, plus accessibles.

Rappelons ici la méthode aux différences finies, intro-
duite par exemple par Marcus dans l'étude des plaques
fléchies. Cette méthode péche malheureusement par son
manque de précision; il semblait donc intéressant d’étendre
aux problémes bidimensionnels, régis par l'équation (2), la
méthode du polygone funiculaire dont le professeur F. Stiissi
montre dans son article précité2) la précision étonnante.
Ceci est d’autant plus indiqué que 1'équation (2) représente
au fond une généralisation de I'équation bien connue de la
poutre fléchie 5) diw/dxt = p/EJ correspondant a un double
funiculaire.

Comment allons-nous résoudre I'équation différentielle (2)
qui nous intéresse? Au lieu de chercher a connaitre les
valeurs de la fonction w (ou F) en chaque point du domaine
considéré, nous nous contenterons de déterminer ces valeurs
en un nombre fini de points; pour ce faire, nous décrirons
le domaine par un réseau rectangulaire. Toutes les mailles,
parallelement a l'axe des x, auront la méme longueur Aux;

5) Chaque terme de l'équation (2) peut d'ailleurs étre considéré
comme une charge p«, P=y, Py, c€ qui permet de résoudre le probléme
en conservant tout au long des calculs l'analogie avec la poutre
fléchie; voir & ce sujet Ch. Dubas: Contribution a 1'étude du voile-
ment des tdles raidies, Publ. no 23 de I'Institut de statique appliquée
a I'EPF, Leemann, Zurich 1948, p. 34.
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dans la direction y, on aura Ay (fig.2). Il est bien évident
que ce réseau convient spécialement aux surfaces rectan-
gulaires, mais on peut également traiter des trapézes ou des

parallélogrammes,

C’est aux nceuds du ré-
seau que l'on va remplir piz (M= [M=1_j drid S
I’équation  différentielle et .
(2). A cet effet, on éli- ;
mine les dérivées partiel- o m,n 4
les en y substituant des Yy 3
relations liant les valeurs n~1
de la fonction inconnue
(w ou F) aux nceuds; n-=2
ces valeurs nodales de- % <AX->
viennent ainsi les incon-
nues du probléme. Comme  Fig. 2.

on peut écrire en chaque

nceud 'équation différentielle transformée, en tenant compte
sur les bords des conditions au contour, on obtiendra autant
d’équations que d’inconnues. Ces équations algébriques sont
linéaires et leur résolution n’offre pas de difficultés majeures,
bien qu'elle soit fastidieuse si le nombre d’inconnues est
élevé 6).

L’élimination des dérivées s’opére naturellement a l'aide
de la relation du polygone funiculaire. On peut utiliser a cet
effet divers procédés; nous n’examinerons ici que le procédé
dit explicite ou formel parce qu'il conduit & des schémas
fixes pour l'établissement des équations linéaires, schémas
semblables en principe a ceux de la méthode aux différences
finies 7).

Nous allons montrer maintenant comment on établit
ces schémas. Donnons d'abord les formules de base utilisées.

Il s’agit bien entendu avant tout de la relation du poly-
gone funiculaire, Dans notre cas, c'est-a-dire pour des
dérivées partielles secondes et quatriémes, la relation (3)
de l'article précité2?) du professeur F. Stissi s’écrit:

relation entre ordonnées w et dérivées secondes

02w
(7) Wp-1— 2Wm 4+ Wiy = Ax Ky ( 322 )

relation entre dérivées secondes et dérivées quatriemes

02w 02w 02w
& ('zaac_2),n_1—2 (W),ﬁ (5), =
04w
= Ax K, (W)
On pourrait bien entendu écrire des relations semblables pour
les dérivées par rapport a y, le long des lignes verticales du
réseau.

Les relations (7) et (8) sont exactes, puisque l'on n'a
fait aucune hypothése sur la forme de la charge nodale K. Si
I'on admet des charges nodales paraboliques, la relation (7)
devient, par analogie avec la relation (5a) de I'article
précité 2):

(9) Wm-1 — 2 Wy + Wiys1 =

Ax? 02w 02w 02w
o 12 [( ox2 )m-l+ 10( 0x2 )m+ ( 0x2 )m+1]

Cette formule est approchée et sa précision dépendra de la
plus ou moins bonne concordance de la courbe réelle des
0%w/dx? avec la parabole déterminée par les trois valeurs
considérées.

6) Dans ce cas, l'utilisation de machines a calculer électroniques
sera intéressante. Remarquons ici en passant que la capacité de ces
machines est malgré tout limitée; la méthode du polygone funiculaire
qui conduit, pour la méme précision, & un nombre d'inconnues bien
inférieur a celui de la méthode aux différences finies, conserve donc
ses avantages.

7) Pour certaines conditions au contour, par exemple le bord libre
d'une plaque fléchie ce procédé n'est pas applicable, parce que les
relations au bord contiennent des dérivées troisidmes des ordonnées
inconnues; 1'élimination s'opére alors directement, a partir du réseau
particulier considéré. Voir & ce sujet P. Dubas: Calcul numérique des
plaques et des parois minces, Publ. no 27 de I'Institut de statique
appliquée a I'EPF, Leemann, Zurich, 1955.
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Pour simplifier l'écriture dans les éliminations, nous

introduisons la notion de charge nodale généralisée K. De la
charge nodale le long d’une ligne, on passe en effet facile-

ment a la charge nodale K d’une surcharge p répartie sur
une surface. Si I'on admet par exemple une distribution para-
bolique dans les deux sens, l'équation (4b) du professeur
F. Stiissi se généralise en (fig.2):

1 L1 L
— A Ax
(10) Em,n () ==L 10| Ky (p) = 221 10 1K, (p) =
2|5 07
w110 1
=A% 14610010 | p
144 14 10 1

Revenons maintenant & I'équation différentielle (2); elle
doit étre bien entendu satisfaite en chaque point du domaine
et en particulier en tous les nceuds du réseau choisi. Rien ne
nous empéche donc de multiplier, en un nceud déterminé,
tous les termes de I'équation (2) par un méme coefficient;
de procéder de méme, en un autre nceud du réseau, avec un
autre coefficient; de sommer enfin les équations, écrites aux
divers nceuds, ainsi multipliées. Si les coefficients choisis
correspondent a ceux donnant les charges nodales générali-

sées K, on pourra donc écrire, sous une forme symbolique
condensée:

— [ 04w odw —
(1) DR (L) + 200K (o) + DK () =E )
Examinons le premier terme de gauche. En explicitant le
symbole comme indiqué dans la formule (10) et en tenant
compte de la relation du polygone funiculaire (8), ce terme
s’écrit:

i
- [ 94w Ay =
(12) K(W) =35 |10 K,,,( )_
1 —2 49
Ay F 02w
+ 10/ =—20.4-10

Quant a la relation (9), rien ne nous empéche de I'écrire
1 fois sur la ligne supérieure et inférieure et 10 fois sur
la ligne médiane. En passant tous les termes a droite on ob-

; 5 N Ay
tient, aprés multiplication par — A3
—1 —10 — 1
A 2
13) 0=-2Y | 10_100_10|2 e
12 Ax 1 10 — 1| o=
Ay +1—2 41
+10 —20 + 10 |w
A | L) — 9 31
Par addition nceud a nceud de (12) et (13) il vient:
— [ 04w
Kl =—=]=
( 8:754)
Ay 2w Ay |T1—2+1
= —— 4 ——|+10 0+ 10 |w
Aa:_l ox2 Axd+1_ 2 4+ 1
Le second terme de I’'équation (11) devient de la méme
facon:
_( 4w )_Ay & ( 4w )_
x2oy2 ) 1 1| "\ oatoy2
Ay |+1—2 +1] 5
= o= |+10—20 + 10| =2
Az |11 g 11| %

En considérant les relations semblables a (9), écrites pour
les dérivées par rapport & y le long des lignes verticales, on
obtient directement:

- 40 1 +1—-2 41
K = i C:
(ﬁx’zﬁy‘l) Ax Ay +? j:z _+_§
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Quant au troisiéme terme, il se transforme comme le premier,
avec simple permutation de z et de y ainsi que des lignes
horizontales et verticales. On peut donc écrire la relation

intermédiaire suivante, aprés multiplication par

AxAy:
. | — 1] a2 +1—2 41
14y 2= | 10| 2 4 Px | 41020 +10|w +

Ax ox Ax I T T |
S bl == ]
SIS Yl [N PR Y ) 7

Ax2 Ay? il —2 1

D, —————— 2w
+A—y2—1—10—lw+

p. |+1 410 +1 _

U l=2 =20 =2 = E (p)

Ay 41 410 +1 Az Ay

Pour éliminer les dérivées partielles du deuxiéme ordre
restantes, il suffit d’écrire la relation intermédiaire (14), elle
aussi valable en chaque point du réseau, un certain nombre
de fois au nceud considéré et dans les points voisins du
réseau.

Pour un nceud intérieur, c’est-a-dire situé au moins a
deux mailles du contour, il s’avere que I’élimination des
dérivées secondes est possible si I'on écrit la relation (14)
selon le schéma méme des charges nodales [formule (10)].
On obtient en effet ainsi des groupes ternaires de dérivées
secondes, de la forme 1—10—1, qui s’éliminent grace a la
relation (9).

Rappelons que ce schéma donne, pour les points intérieurs,
les coefficients des équations linéaires en w remplacant
I'équation différentielle (2). Dans le terme de droite, K (p)
est la charge nodale généralisée, donnée par exemple par la
relation (10) pour une répartition parabolique.

Pour les premiéres lignes du réseau, a 1 maille du bord,
il faut tenir compte des conditions au contour imposées. Nous
n’examinerons ici que des bords paralléles aux axes de co-
ordonnées, avec des conditions au contour de la forme (bord
paralléle a l'axe des v, par exemple):

pour x = a

w donné et donné

a2

. ow .

ou w donné et — donné
x

La condition relative aux ordonnées w sur le contour
est facile a satisfaire: il suffit de multiplier les valeurs
données par les coefficients des schémas, correspondant aux
points sur les bords; on obtient ainsi des termes connus des
équations.
02w
o2
de probléme puisque la relation intermédiaire (14) contient
aussi des dérivées secondes. L’élimination s’opére comme
pour les points intérieurs, mais en écrivant la relation inter-
médiaire (14) sous la forme

Quant a la condition ( ) donmné, elle ne pose guére
r—a

o o + 104 1 le long d’un bord
Sans donner le détail des opérations, nous pouvons donc
L | - 16 P ) P <+ 100 + 10
écrire le schéma général (A). o |y §e S |
et en un coin
Schéma (4) -+ 100 + 10
Indépendant des conditions au contour + 1004+ 1
+1 —4 |+6 |~4 |+1 +1 +8 |—18 |+8 |+1
+20 |—80 [+120 |—80  [+20 +8 +64  |-144 |+64  [+8
Ady\?
,|+102  |-408 |+612 [—408 [+102 c —18 |—144 [+324 |-144 |—
DI(A_.’E ‘w + 2D, 8w
+20 [—80 [+120 |—80  (+20 +8 +64 |-144 (+64  [+8
+1 —4 +6 —4 +1 +1 +8 —-18  [+8 +1
+1 +20 +102 |+20 |+1
—4 —80 |—408 |—80 [—4 +1  [+10 (+1
+D A_x 2_ +6 +120 |+612 1+120 [+6 _  |+10__|+100 |+10 Az 1}
v\4 W= Adxdy K (p)
Y/ |-a —80 |—408 |[-80 |-a +1  |+10 |41
+1 +20  |+102 [+20 I+1
Schéma (B)
z ... 02w0 3
Sur la ligne m — 1, dérivée 522 donnée
-2 +5 —4 +1 +10  |-19 |+8 [+1
—40  |+100 |—80  |+20 +80  |-152 |+64  |+8
Ay\?
—204 |+510 |-—408 |+102 | —180 |+342 [—144 |-18
D, (H . w+2D,,- -w
—40  |+100 |—80  [+20 +80 |—152 (464  [+8
-2 +5 —4 +1 |I+10 1-19 [+8 +1
+10  [+101 |+20 |+1 -1
—40 |—404 |80 |—4 —20 +10 |+1
Adx\2 a2 w0 -
. ||+60__|+606 [+120 |+6 i — 2, ||=102 +100_(+10
+D, (A— w =D,dy T2t ~dxdyK (p)
Yy —40 |-404 |80 |4 —20 +10 |41
+10  |4+101 [4+20 [+1 -1
Schéma (B’)
X L P2wﬂ R
Sur la ligne n + 1, dérivée donnée
ay?

Tourner le schéma (B) de 7/2 et permuter x et y
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Schéma (C)

: oo 0D <
Sur la ligne m — 1, dérivée donnée
-1 |+18 |-9 +2 +16  |—30 |+1z l+2
—220 |+360 |—180 |+40 +128 [—240 |+96 |+16
Ay\?
—1122 (+1836 |—918 |+204 | . ||=288 |+540 [-—216 [—36 .
Dz (A-—x' . w+2 ‘D:ty w
—220 |+360 |—180 |+40 +128 |—240 (+96  |+16
-1 |+18 [-9 +2 +16  |1-30 [+12  |+2
+16  [+162 [+36  |+2 +6
—64 |—648 |-144 (-8 +120 ]+16 +2
A #\* 4y\? ow =
+Du (A ||xoe_ |+972 [+216 (+12 _ -Dz: 3 +612 = dx+ +160 1+20 . 4. A yK(p)
Y —64  [-648 |-144 |-8 z +120 z +16 |42
+16  |+162 [+36 [+2 +6
Schéma (C C') détails, nous nous contenterons de re-
3100 produire ici les schémas$8) obtenus
Sur la ligne m — 1, dérivée 5z donnée (pour les dénominations, voir fig. 2).
3100 En résolvant les équations linéaires,
Sur la ligne n + 1, dérivée w donnée établies a l'aide des schémas repro-
duits ci-dessus, on obtient les valeurs
| I | I I | des ordonnées inconnues w aux di-
—88 +144 |-72 +16 +128 |—240 [+96 +16 vers nceuds du réseau.
2 2 . LT
D (ﬂ) . ||=8er_|+1468 |-729 |+162 +2D . =240 [+450 |-180 |-80 . Pour déterminer les sollicitations
T xy i A1 ue
Az —198 |+324 |-162 |+36 496 |-180 |+72  |4+12 interleurcn’ LM, @, V) dans fes pledies
fléchies, ou les contraintes de l’état
=11  H18 =8 2 +16  1-30 I+12 [+2 d’élasticité plane, on a besoin des dé-
rivées de la fonction w (ou F'), comme
l | | I le montrent les relations (3) et (5),
=0F —eh 1 il e L en particulier des dérivées secondes.
+D dz\? +144 |+1458 |4+324 |+18 w=D 4 Y ? +486 ow’ Ax A cet effet, on utilise de nouveau
v \4 T 7% \dzx ox la relation du polygone funiculaire
Y —72  |-729 |-162 |9 +108 . ) -
= (9), qui donne justement une relation
+16 1+162 1436 I+2 +6 entre les valeurs des ordonnées w en
certains points et celles des dérivées
owd secondes aux mémes points. En écri-
+128

A2\ a5 lrass lsios | |
+D (_) . +48 +486 +108 +6 ——A +
\ay) T oy Y

+16

vant cette relation aux divers points
d’une ligne du réseau choisi et en

6 . AadyK (p)

+2

Schéma (C')

donnée

0
Sur la ligne n + 1, dérivée s

Tourner le schéma (C) de 7/2 et permuter z et y

La condition (%—1:) donné est un peu plus délicate. Il faut
T=a

d’abord établir une relation entre la dérivée premiére dw/ox et
les ordonnées w et leurs dérivées secondes 02w/0x2, seules a
intervenir dans (14). Cette relation se déduit de l’analogie
entre l'effort tranchant et la dérivée premiére du moment
de flexion. Il s’agit donc de la relation (6a) de l'article

précité 2) du professeur F. Stiissi, relation qui devient:

(15) (E_w) A% = Wy — W1 —
m-1

ox
02w 02w 02w
[3’5 < 022 )m-l+ 2 ( 0x? )111_0'5 ( 0x2 >m+l"

Ax?
En écrivant la relation intermédiaire sous la forme

12

+ 16+ 2
-+ 160 + 20
+ 16+ 2

on élimine facilement les dérivées secondes a l'aide de la
formule (9), si 'on prend soin d’ajouter sur chaque ligne la
relation (15) multipliée par un coefficient approprié. Pour
les coins, on procéde de facon analogue. Sans entrer dans les
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tenant compte des conditions aux
bords 9) (c’est-a-dire aux extrémités des lignes considérées),
on obtient autant d’équations linéaires qu'il y a de dérivées
inconnues.

Pour une ligne comportant un nombre de mailles déter-
miné, on établira une fois pour toutes des tableaux permet-
tant de passer, par multiplication et sommation, des ordon-
nées w aux dérivées secondes w'’. Nous donnons a titre
d’exemple les deux tableaux 10) ci-dessous:

Tableau (l4). Quatre mailles, dérivée seconde w"” donnée au bord

Cas symétrique

wr=wixs=1 wz:um:l‘ wy=1 wl”:w;;:l/l?

w =0 partout

wy”=wi,=0

43102041 + 23,510204
+47,020408 } _43,102041

we" | +19,591837
wy" | — 3,918367

—0,10204082
+ 0,02040816

= =

8) Ces schémas sont tirés de l'ouvrage cité a la note 7). Comme
cette publication est épuisée, nous avons pensé utile de reproduire
les schémas in extenso dans le présent article.

9) Ces conditions, pour les cas usuels que nous avons seuls con-
sidérés ici, s'expriment toutes en fonction des inconnues w et des
dérivées secondes; pour dw/dy donné, on tiendra bien entendu compte
de la formule (15).

10) Rappelons que dans la méthode aux différences, la dérivée
seconde en un point s'exprime par (1/A22) (Wm-1 —2Wn + Wn+1),
c'est-d-dire uniquement par l'ordonnée au point considéré et aux
deux points voisins. La différentiation est donc plus facile a effec-
tuer, mais elle est beaucoup moins précise.
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Tableau (lls). Huit mailles, dérivée premiére w’ donnée au bord

Cas symétrique

Schweiz. Bauzeitung

Tourner le schéma (C B') de 7/2 et permuter x et y.

11) Le point 1 désigne le point sur un bord, le point 1* sur

I'autre bord, et ainsi de suite.

+ 79. Jahrgang Heft 17 -
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+ 4,205] + 44,69

Ces tableaux s’appliquent a des
courbes w symétriques par rapport
au milieu de la ligneil), On peut
établir des tableaux analogues pour

Wi=wWix=1|We=Wes=1 |Ws=Wa+=1 | Ws=Wyx=1 w;=1 wi'Ax = le cas antisymétrique par rapport au
=w Az =1 centre. La lettre I désigne la longueur
w1 =w,=0 w=0partout totale de la ligne considérée.
w" | —314,76273 | +408,55756 | —115,44558 | + 24,05638 | — 2,40564 | —240,61394 Exemple numérique
ws" | +109,38136 | —204,27878 | +105,72279 | — 12,02819 | + 1,20282 | + 24,30697 1 Nous pensons utile de donner ici
ws” | — 11,05090 | + 98,23023 | —173,78230 | + 96,22553 | — 9,62255 | — 2,45576 7 un exemple complet. Il s'agit d’un cas
ws”| + 1,12764 | — 10,02349 | + 96,10023 | —182,22709 | + 95,02271 | + 0,25059 de plaque fléchie, ce qui permettra
w;" | — 0,22553 | + 2,00470 | — 19,22005 | + 190,04542 | —172,60454 | — 0,05012 une comparaison avec les résultats
donnés par la méthode analytique.
Les données du probléme ressor-
Schéma (B B’') tent de la figure 3: la plaque, admise
32400 isotrope, est rectangulaire, avec les
Sur la ligne m — 1, dérivée = donnée deux bords étroits encastrés et les
9200 autres simplement appuyés. Avec les
Sur la ligne n 4 1, dérivée = donnée notations de la figure, les conditions
oy? au contour sont donc les suivantes:
. |20 l+s0 l-40  [+10 l+100 |-190 l+80 |+10 (16) w=0 a;_t;fz
Da.' (ﬂ) . ||=202_|+505 |-404 |+101 ..o p . ||=190 [+361 |-152 |-19 i *
4z —40  |+100 |-80  |+20 olliso  |-152 |+ea |48 pour z = * o
-2 +5 -4 +1 +10  |-19 |48 +1
ow
w =0 — =0
oy
]—-20 |—2o2 |—40 -2 |—1o s . b
+D, (ﬂy X80 |4505 14100 |45 ., — D [ 42|01 o2 ud 2
4y —40 |-g0a |-80 |-a —20 0x? Pour écrire le systéme d’équations
o Loy lise | ™ linéaires en w, on utilisera donc le
schéma (A) pour les nceudsintérieurs,
le schéma (B) pour les nceuds sur la
premiére ligne paralléle au bord ap-
I I l | 92 w0 _ puyé, le schéma (C') pour les nceuds
+D,-da?- =10F I-T0FRIS30 1=t X 5 11001410 . Ax 4y K (p) sur la premiére ligne paralléle au
H | oy +10 |41 bord encastré et le schéma (BC')
pour le nceud au coin. Comme les €lé-
Schéma (C B') ments paralléles & l'axe des y sont
30 encastrés, tandis que ceux paralléles
Sur la ligne m — 1, dérivée donnée a l'axe des x sont appuyés, on a
choisi un réseau a 8 mailles dans le
Sur la ligne n -+ 1, dérivée 2O donnée sens y et & 4 mailles dans le sens x.
0y2? On obtient ainsi une précision du
l | | | I | méme ordre dans les deux directions.
—110 14180 |-90 \+20 +160 —300 '+120 |+20 On a donc Ax = a/4 et Ay = b/8 =
D Ay\* | |+isis |—s00 _|+202 w4+ 2D, .|=30a_|ss70 |-228 |-38 = 1,6a/8; les coefficients mu1t1pl.1ar}F
I\ Az zy les termes des schémas valent ainsi:
—220 |[+360 |—-180 |+40 +128 |[-240 |+96 +18 (Ay/Am)2 — (0’2/0,25)2 = 0,64 pour le
-11_ |+18 [-9 +2 +16  1-30  [+12 [+2 premier terme; 2 pour le second et
l I | | ! (Ax/Ay)2 = (0,25/0,2) = 1,5625 pour
—32 |—-324 1-72 |—4 1+60 le troisiéme. Comme D, = D,, = D,
D Ax\* g0 |+s10 |+180 |+10 vw=D ﬂ/)z lioos O w° hj = D, on peut passer ces coefficients
v Ay et eas el s \Ax P un dx constants a. df'mte,- dans le terme de
charge [voir équation (1)]. Pour fa-
+16  1+162 [+36 '+2 +6 ciliter le travail d’établissement des
équations, nous groupons en un seul
les trois termes en w de chaque
D Az |16 |-162 |-36 |-2 o*ud |+160 |+20 AedukK schéma, aprés multiplication par les
T LA “ I ' 212 + |+m zdy K(p) coefficients respectifs que nous ve-
+2 2 ; :
nons de déterminer, ce qui donne,
dans notre cas particulier, les sché-
Schéma (B C') mas spéciaux suivants, que nous distinguerons par un
22400 astérisque *:
Sur la ligne m — 1, dérivée 522 donnée
30 Schéma (A)* Indépendant des conditions au contour
Sur la ligne n + 1, dérivée e donnée

1) 12’7,215‘ + 44,69 ‘ + 4.2025

4228 | — 42 | w7 [ — 482 | +3065
‘ +38,655 | —361,62 [+1995,98 | 361,62 | +38.655 W
(42255 | — 482 |— 8487 | —482 | +22,65

| & 4.2025‘ + 44,69

+ 127,216) + 44,69 | + 4,202
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Schéma (B)* Bord appuyé, paralléle & I'axe des vy

|+ 1230125 + 4469 | + 42025
— 82 | —as2 | +2255
+1957.275 | —361,62 ' +38,655 sw
ke —snas | —as2 | 42255
| + 1230125 + 4469 | + 42025

Schéma (C')* Bord encastré, paralléle a l'axe des x

| | | l
+71,805 | —33:.22 | +4570.83 | —332.22 | +71.805
+32.9775| —'81.41 |—1728,135| —181,41 | +32.9775
4+ 8405 | + 89.38 |+ 25443 | + 89.38 | + 8.405

Schéma (BC')* Coin: bord appuyé paralléle a 'axe des v

bord encastré paralléle & l'axe des «

+71.805

|

“ 44499025 | —332. 2

‘ —1761,1125 | —181.41 | +329775
‘I + 2460:5 | + 8958 | + 8405

La charge p sera admise wuniformément répartie sur
toute la surface. Comme la plaque est symétrique par rap-
port aux 2 axes de coordonnées et qu’elle est symétriquement
chargée, la surface élastique présentera les mémes symétries
et I'on n’a que 8 ordonnées w inconnues, comme cela ressort
de la numérotation adoptée dans la figure 3.

Il est maintenant aisé d’écrire les 8 équations linéaires
qui permettront de déterminer les ordonnées w. On tiendra
bien entendu compte des nceuds intervenant plusieurs fois
dans un méme schéma par raison de symétrie. Pour la pre-
miére équation, par exemple, écrite en @ a 'aide du schéma
(A)*, le coefficient de b vaudra 2-(—361,62), celui de ¢
2. (—848,7), celui de d 4-(—48,2) ete. Pour obtenir une
matrice en grande partie symétrique par rapport a la diago-
nale principale, il faut dés lors multiplier par 2 les équations
écrites en b et ¢, par 4 celle écrite en d etc. Ces coefficients
sont indiqués dans la premiére colonne du systéme d’équa-
tions, reproduit plus loin, tandis que la seconde colonne
désigne le schéma employé et la troisiéme le nceud ol est
écrite I’équation.

Quant a la derniére colonne, elle contient les termes de

charge, donnés ici uniquement par les termes en K des
schémas généraux puisque ordonnées w?, dérivées premiéres
owY/0y et dérivées secondes 92w0/0x2 sont nulles au contour
selon les conditions (16). La charge nodale d’'une surcharge
uniformément répartie sur une surface vaut évidemment

K (p) = p Az Ay, comme cela ressort d’ailleurs également de la
relation (10). Le produit Az Ay K (p) vaut donc p Ax2Ay?
soit 0,0025a4p avec Az = 0,25a et Ay = 0,2a.

Le terme de charge du schéma (A) s'éléve ainsi a:
144 - 0,0025atp = 0,36 at p.

On obtient de méme 0,33 a1p pour (B), 0,54a4p pour (C')
et 0,495a*p pour (BC').

La résolution du systéme se fait aisément, par exemple
grace a l'algorithme de Gauss. Les solutions trouvées sont
indiquées sous le tableau III.

Pour déterminer les moments de flexion, il faut con-
naitre les dérivées secondes [voir équation (3a)]. On utilise
a cet effet le tableau (I,) pour les lignes paralléles a I'axe

2

Pour les dérivées on a recours au tableau (IIg), avec

dy2’
wy = wi+= 0 et wy'= w;+" = 0, tandis que, sur la ligne cen-
trale, we = wy, ws = w,, Wy = w, et W5 = W,.

2 2

On trouve facilement (bayu; )m: Wy — 4 Pg 0,10824
02w pa2

— w5 — — 4

et ( e )a ws 5 0,0300

Si I'on admet un coefficient de Poisson » = 0,3, les moments
de flexion valent done, d’aprés les relations (3):

Point a: M, = pa? (0,05632 + 0,3 - 0,03004) = + 0,06533 pa2
M, = pa? (0,03004 4 0,3 - 0,05632) = + 0,04694 p a2
Bord m: M, = —0,1082 pa?

Rappelons encore que l'ordonnée
Ay maximale vaut wp., = 0,006047

________ menccsrré-g‘ pat/D. Les valeurs données par
e b é Timoshenko dans son ouvrage
4 fE’ précité 3) (page 187) sont de
F e f @
5 + 0,0650 pour (IM,),
4 e d 18 +0,0469 pour (M,),
b o b | —0,1090 pour (M),

A

x

+ 0,00603 pour wyax.

Ces valeurs, que l'on peut consi-
dérer comme exactes, donnent
des différences de

le—————b=8Ay=16a—>
S =
(o] ©
=t

a=4Ax

+ 0,5 %
+01%
—0,7%
et + 0,3 %.

Fig. 3

La précision est donc remarquable, bien que la trame soit
assez lache. En poussant plus loin la différentiation, on dé-
terminerait sans difficultés, & I’aide de relations analogues a
(15), les moments de torsion, efforts tranchants ete.

Autres exemples d’application

L’exemple numérique précédent n’a qu'une valeur didac-
tique, puisque la solution exacte en est connue. Dans la pra-
tique, on utilisera bien entendu la méthode du polygone funi-
culaire dans des cas plus difficiles. Citons le calcul des plate-
lages métalliques des grands ponts modernes, souvent

idéalisés comme dalles orthotropes (fig.4). Par rapport a
notre exemple, l'orthotropie n’apporterait aucune compli-
cation: il suffirait, dans l’établissement des schémas ( )*,
de tenir compte des valeurs de D,, D,,, D,.

des z, avec les conditions aux bords w; = wie=0 et w" = Fig. 4. Détail du platelage du pont-rail de Farbhof, a Zurich
wi+" = 0. Au point @ on obtient ainsi

(02w , 1 pat pa?

(— —wg"— — (4 47,020408 - 4,34510 — 43,102041 - 6,04682) - 103~ — — =~ 0,05632

2z ), az D D
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Tableau Il

Systéme d’équations
Wq wy, W, Wy W, wy Wy wy, T.charge
1X| (A)* a +1995,93 | — 723,24 | —1697,4 — 192,8 + 25443 | + 178,76 0,36
2 X | (B)* b — 723,24 | +3991,86 | — 192,8 —3394,8 -+ 178,76 | + 508,86 C,66
2 X | (A)* (4] —1697,4 — 192,8 +4246,29 | —1267,72 | —1697,4 | — 192,8 + 254,43 | + 178,76 0,72
4 X | (B)* da — 192,8 —3394,8 | —1267,72 | +8492,58 | — 192,8 —3394,8 + 178,76 | + 508,86 1,32
2 X | (A)* e + 254,43 | + 178,76 | —1697,4 — 192,8 -+-3991,86 | —1446,48 | —1697,4 — 1928 0,72
4 % [ (B)* fi + 178,76 | + 508,86 | — 192,8 —3394.8 —1446,48 | +7983,72 | — 192,8 —3394,8 1,32
1X (Cy* + 254,43 | + 178,76 | —1728,13f — 362,82 | +4570,83 | — 664,44 0,54
2 X | (BC')* + 178,76 | + 508,86 | — 362,82 | —3456,27 | — 664,44 | +9141,66 0,99
4 4
Solutions 10-3% 6,04682 | 434510 | 545290 | 3,92390 | 3,76753 | 2,72562 | 1,45735 | 1,069 20 pg
Y
0,375a 0,25a
o (4
3
a X
r_
114 il
0728 0,750 0250
Fig. 5. Fig. 6. Poutre simple, fonction de tension d'Airy
-4po Thp
- —30 - +o,24\ +0,33Y C.74 / [F3.5
5
+044 |, , 1
<
o o |
g . |
/
| I ]
| 1 ]
~ -
o i | |_Jos4 [ |
- @ - = 1= I —
o 12 THITH u m .
-] a | -
- | ] -
- = ] -
— \I ™ —
3 o 5 & Ll [
i i - 2/ H B
| -
1 ]
T { m
-l 1,2
0y i a + +
1 -4.0 4 y {0 208l/ 192 | /+[1 8
= s (Navier +1,125)
Po O'x‘_E — T
'4po “
3, 3a
q 8 4
a/8 o Yg %
IPig. 7. Poutre simple, contraintes ¢, (en fonction de pg) Fig. 8. Poutre simple, contraintes o. et 7 (en fonction de pg)
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Les parois minces sont encore peu étudiées mathéma-
tiguement. Nous donnerons ici un exemple apparemment
simple, celui d’une paroi carrée, sollicitée par des efforts
uniformément répartis sur une partie des cotés (fig.5); il
s'agit donc d’une poutre simple de grande hauteur, poutre
a laquelle la théorie classique de la résistance des matériaux
n’est évidemment plus applicable.

Sans donner de calculs numériques, nous reproduirons 12)
la forme de la fonction d’diry 13) (fig.6) et les contraintes
qu'on peut en déduire (fig.T et 8).

Précision de la méthode

De nombreux calculs comparatifs sur des plaques, sou-
mises & diverses conditions au contour, nous ont permis de
formuler le critére de précision suivant:

Si l'intervalle entre deux points d’inflexion consécutifs

correspond a 2 3 4 6 8 mailles
la précision sera de
lordre de 6% 29% 079% 0159% 0,05 %

pour les valeurs des ordonnées w (ou F') et des courbures
(M, o). Pour les dérivées d’ordre impair, multiplier par
1,5=2.

Dans les applications, il est presque toujours possible
d’estimer trés approximativement la position des lignes d’in-
flexion de la surface élastique ou de la fonction d’Airy et de
déterminer ainsi & combien de mailles correspond la partie
de la courbe située entre deux points d’inflexion. Ainsi, dans
notre exemple, on avait 8 mailles pour les lignes encastrées

12) Voir l'ouvrage cité a la note 7), page 142. Cette publication
contient également d'autres cas de parois minces, Le probléme du
coin de cadre est traité de facon analogue dans l'article intitulé:
Deux problémes relatifs a 1'étude des portiques étagés multiples,
Publ. prél. du 6¢ congrés de I'A.I.P.C., Stockholm 1960, page 438.

13) Comme indiqué plus haut, la variation de la fonction d'diry,
sur les bords soumis aux contraintes ¢,, est égale a celle du moment
provoqué par ces «charges» oy. Quant aux bords verticaux, ils ne
sont pas sollicités et la fonction d'diry est constante ainsi que sa
dérivée oF/dx, égale 4 la tangente initiale au coin.

Zwei Kirchenentwiirfe der Architekten A.

Um Plédne fiir eine Kirche zu erlangen, erteilte im ver-
gangenen Winter die katholische Kirchgemeinde Wangen
an der Aare Projektauftrige an sechs Architekten, wéih-
rend die katholische Kirchgemeinde Heiden AR gleichzeitig
einen Projektwettbewerb mit sechs eingeladenen Teilneh-
mern durchfiihrte. An beiden Orten gingen die Architekten
A. & W. Moser, Ziirich und Baden, als Sieger hervor. Wir
veroffentlichen deren Entwiirfe, begleitet von der Beur-
teilung durch die Experten bzw. das Preisgericht, und las-
sen eine Wiirdigung der beiden Entwiirfe durch einen jun-
gen Kollegen folgen.

Aus dem Bericht der Expertenkommission Wangen a. A.

Der Verfasser dieses Projektes verstand es als einziger,
das gegebene Geldnde optimal auszuniitzen. Er hat die
Kirche zuriickgeschoben und ihr dadurch einen grossziligig
leicht ansteigenden, schonen Vorhof vorgelagert. Es war ihm
dadurch moglich, das Pfarrhaus am Eingang des Vorhofes
anzuschliessen. Die seitliche Abschrankung des Vorhofes
verstdrkt den Charakter eines eigenen Kirchenbezirks und
trennt dadurch die Anlage von den benachbarten, zufdlligen
Gebdulichkeiten. Die Stellung des Turmes beziiglich des be-
nachbarten Gebédudes ist zu tiberpriifen. Der Kirchenraum
ist in der liturgischen Anordnung und der rdumlichen Ge-
staltung ausserordentlich charaktervoll und schoén. Zu be-
méngeln ist der zu kleine Taufraum. Es ist zu empfehlen,
den Taufraum und die Werktagskapelle zusammenzulegen.
Zu Gunsten einer eindeutigen Lichtfiihrung von Osten soll-
ten die Fenster der Slidwand weggelassen werden.
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et 4 pour les lignes articulées. Comme la surface élastique
présente certainement deux points d’'inflexion le long de
l'axe des y, & cause de l'encastrement, on peut admettre
4 mailles entre points d’inflexion, dans les deux directions.
L’erreur maximale trouvée était bien de 0,7 % comme in-
diqué par le critere.

Remarquons pour terminer que la méthode aux diffé-
rences finies conduit & une précision de beaucoup inférieure.
Les erreurs sur les courbures (moments des plaques, con-
traintes des parois) sont de 5 & 20 fois plus grandes 14).

Quand on utilise la méthode du polygone funiculaire, on
pourra donc, si l'on désire obtenir une certaine précision
fixée, employer un réseau beaucoup plus lache que dans la
méthode aux différences; on diminue ainsi trés fortement le
travail a effectuer, ce qui est toujours appréciable, méme si
I'on dispose d’'une calculatrice électronique.

Conclusions

L’analogie du polygone funiculaire permet de résoudre,
sans connaissances mathématiques spéciales, des problémes
bidimensionnels compliqués. Puisque cette méthode provient
de la statique appliquée, elle convient spécialement bien a
I'ingénieur, car elle ne recourt qu’a des notions qui lui sont
familiéres.

Divers procédés d’application sont possibles; nous n’en
avons développé ici qu'un seul, celui qui conduit & des sché-
mas fixes et, de ce fait, est particuliérement facile a utiliser.
Dans certains cas, d'autres procédés, plus proches de 1’origine
statique, seront mieux adaptés.

Nous espérons que notre article, forcément trés incom-
plet du fait de son étendue limitée, saura inciter le lecteur a
approfondir de par lui-méme l’ensemble du probléme et a
trouver par la de nouvelles applications.

14) Cette variation entre 5 et 20 vient de ce que la méthode du
polygone funiculaire converge beaucoup mieux; l'erreur y est en gros
inversement proportionnelle a la quatriéme puissance du nombre de
mailles, tandis que c’est le carré qui intervient dans la méthode aux
différences finies.

Adresse de l'auteur: Prof. Dr. Pierre Dubas, Seestrasse 467, Mei-
len/ZH.
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Besonders hervorzuheben ist die Anordnung der Em-
pore, unter welcher die Sakristei liegt, die ebenfalls sehr
praktisch angeordnet ist. Der im Untergeschoss angeord-
nete Pfarrsaal und seine Nebenrdume sind zweckméssig
angeordnet. Die halbrunde Einbuchtung beengt jedoch den
Saal. Dadurch, dass der Kirchenboden {iiber das Geldnde
gehoben wird, kommt der Pfarrsaal verhdltnisméssig wenig
unter das gewachsene Niveau., Der Verfasser macht den
Vorschlag eines amphitheatralischen Aussenraumes, fiir den
jedoch kein Bedlirfnis vorliegt.

Es handelt sich hier um ein ausserordentlich ideen-
reiches, sorgfiltig durchgestaltetes, formal einheitliches Pro-
jekt, das den gestellten liturgischen und baukiinstlerischen
Anspriichen gerecht wird. — Kirche 5160 m3, Pfarrsaal
717 m3, Pfarrhaus 1215 m3, Turm 315 m3. )

Das Projekt ist mit Abstand das beste unter den ein-
gereichten. Es bedeutet einen wertvollen Beitrag zur Wei-
terentwicklung des heutigen Sakralbaues.

Die Experten: K. Higi, Arch., Prof. A. Roth, Arch,
W. Studer sen., Arch., Jos. Eggenschwieler, Domherr, W.
Portmann, Pfr. Dr. Schenker, Domherr.

Aus dem Bericht des Preisgerichts Heiden

Dieses Projekt stellt die Kirche auf die sehr gut pri-
sentierende Hohe des bisherigen Kirchplalzes. Der Zugang
zur Kirche fiihrt {iber eine Treppenanlage zu einem reiz-
vollen Vorhof und von dort ins Heiligtum. Dieser Vorhof,
als sinnvolle Vorbereitung zum Gottesdienst, ist mit Turm
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