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79. Jahrgang Heft 17 SCHWEIZERISCHE BAUZEITUNB 27. April 1961

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS 8.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P

Numerische Methoden der Baustatik
Von Prof. Dr. Fritz Stüssi, ETH, Zürich ^ DK 624.04:518.12

Wir können die Veröffentlichung dieser Vortragsreihe
nicht beginnen ohne ein Wort der Entschuldigung gegenüber
Prof. Fritz Stüssi, der sie im November 1960 eingeleitet und
uns sein Manuskript schon Mitte Dezember übergeben hatte,
verbunden mit dem Wunsche, der Beitrag seines Kollegen
Dubas möchte im gleichen Heft erscheinen. Die ungebührliche

Verzögerimg der Publikation hat ihren Grund im
Personalmangel unter den für mathematischen Satz befähigten
Schriftsetzern. Nachdem dieser Engpass überwunden ist, freut
es uns, dem Wunsche unseres Freundes Stüssi endlich
entsprechen zu können und dabei die Anerkennung zahlreicher
Kursteilnehmer zum Ausdruck zu bringen für die überlegene
Art, in welcher er damals seinen Vortrag hielt und in der
Diskussion seinen Standpunkt gegen die übermächtig
anstürmenden Vorkämpfer der plastischen Berechnungsmethoden

stahlhart verteidigte. Bei dieser Gelegenheit sei es mir
gestattet, den treffenden Worten noch etwas beizufügen, mit
denen u. a. Prof. Steinhardt im «Stahlbau» 1961, Heft 2, und
im «Bauingenieur» 1961, Heft 1, sowie Dr. C. F. Kollbrunner
in der «Neuen Zürcher Zeitung» 1961, Nr. 19, Stüssis wesentliche

Beiträge zur Entwicklung der Ingenieurwissenschaft
und seine Persönlichkeit im Ganzen kennzeichneten: Fritz
Stüssi vereinigt in sich offene, ehrliche, mannhafte Gradheit,
Härte und unerbittliche Strenge des Urteils mit einer
Herzenswärme und einem Talent zu geistreicher Geselligkeit,
die ihn zu einem köstlichen Kameraden werden lassen.

Prof. Pierre Dubas hat 1948 als Bauingenieur an der
ETH diplomiert und dort auch mit einer ausgezeichneten
Arbeit den Doktorgrad der technischen Wissenschaften
erworben. Bis 1956 in der Stahlbauwerkstätte Döttingen der
AG Conrad Zschokke tätig, wirkte er seit 1957 als Bürochef
in den Ateliers de Construetions Möcaniques de Vevey. Seit
1959 ist er Lehrbeauftragter für Grundlagen des Stahlbaues,
und vor kurzem wurde er Assistenz-Professor an der ETH.

W.J.

15|Ispie Baustatik ist eine angewandte Wissenschaft, denn
sie hat ja die Aufgabe, uns die Mittel und Methoden zur
Bemessung unserer Bauwerke zu liefern. Dies kommt mit aller
Deutlichkeitschon im Titel «ResumS des legons surl'appli-
cation de la mecanique ä l'etablLssement des construetions
et des machines» zum Ausdruck, den Louis Navier 1826
seinem grundlegenden Hauptwerk gegeben hat; hier
vollzieht Navier den Uebergang von der theoretischen Mechanik
zur Baustatik. Eine angewandte Wissenschaft hat aber nur
einen Sinn im Zusammenhang mit ihrem Anwendungsgebiet;
sie muss aufs engste mit diesem Anwendungsgebiet verbunden

sein, dessen Entwicklung und Ausbau auch ihre Entwicklung

bestimmt. Eine Baustatik, die nicht auf diese direkte
Anwendung orientiert wäre, wäre keine Baustatik mehr.

Während die Mechanik als Naturwissenschaft, die die
mechanischen Vorgänge in der Natur in möglichst
allgemeiner und umfassender Form zu beschreiben hat,
weitgehend analytischer Methoden bedarf, ist die Baustatik
eindeutig numerisch orientiert; wir benötigen bei der Bemessung
eines einfachen Balkens beispielsweise die Grösse der grössten

Biegungsmomente MmAX mit genügender Genauigkeit und
in einer genügenden Anzahl von Schnitten; welchen mathe-

i) Vortrag, gehalten am 11. November 1960 in der ETH, anlässlich
der Fachtagung der FGBH über «Neuere Methoden der Baustatik».
Auch alle andern Vorträge dieser Tagung werden hier anschliessend
veröffentlicht.

matischen Charakter diese Grenzwertlinie der Momente
besitzt, ist für die Bemessung bedeutungslos.

Der Unterschied zwischen der (analytischen) Mechanik
und der (numerischen) Baustatik in bezug auf die
Fragestellung sei durch ein einfaches Beispiel charakterisiert: das
elastische Knicken eines zentrisch gedrückten Stabes mit
konstanter Druckkraft P ist durch das Gleichgewicht der
äusseren Ablenkungskräfte mit den inneren elastischen
Widerständen bestimmt:

(E Jv")" + P-r,"

für den Fall konstanter
Steifigkeit EJ und
beidseitig gelenkiger Lagerung

hat Leonhard Euler

1744 die Lösung
dieser Differentialgleichung

mit

0;

; w • sin •

m
"

t

1

—EJ

M
fl-I

n^-w^-E J
p,_. — Bild 1

gefunden. Diese Lösung umfasst für den untersuchten
Sonderfall alle möglichen Knickformen (Bild 1). In der
Baustatik benötigen wir jedoch nur die für die Bemessung
massgebende kleinste Knicklast mit n 1, diese jedoch für alle in
der Ausführungspraxis vorkommenden Anwendungsfälle. Wie
schwierig die analytische Lösung beispielsweise bei beliebig
veränderlicher Steifigkeit ist, ist bekannt; damit wird die
Notwendigkeit numerischer Berechnungsmethoden, die an die
Besonderheiten des konkreten Einzelfalles anpassbar sein
müssen, evident. Selbstverständlich wird kein vernünftiger
Ingenieur auf die Verwendung der fertigen Formel, die uns
die Analysis lieHt, verzichten, wenn die Voraussetzungen der
Lösung in Wirklichkeit erfüllt sind; es haben sowohl
analytische wie numerische Methoden nebeneinander ihre
Existenzberechtigung, und sie sind beide notwendig. Ein guter
Konstrukteur wird im gegebenen Einzelfall jene Methode
einsetzen, die ihn innerhalb der geforderten Genauigkeit am
raschesten zum Ziel führt; die von Ernst Mach aufgestellte
Forderung nach Oekonomie des Denkens gilt auch für die
angewandte Wissenschaft der Baustatik.

Der Vergleich zwischen analytischen und numerischen
Methoden sei an Hand einiger Grundaufgaben (Bild 2) noch
deutlicher veranschaulicht. Die Berechnung des Biegemomentes

M infolge einer verteilten Belastung p und der
Durchbiegung >) des einfachen Balkens sowie des Durchhanges y
eines Seiles sind im Sinne der Analysis durch Differentialbeziehungen

zweiter Ordnung charakterisiert; die gesuchte
Grösse y ergibt sich durch zweimalige Integration von y"
unter Beachtung der Randbedingungen, hier J/a J/b 0.

Eine geschlossene analytische Lösung ist nur dann möglich,
wenn y" eine integrierbare Funktion Ist, was insbesondere die
Forderung der Stetigkeit von y" einschliesst. Der Charakter
der Lösung ist vom Charakter der «Belastungsfunktion» y"
abhängig; ist die Belastung p eines Seiles gleichmässig über
die Spannweite verteilt, so ist die Lösung y eine Parabel,
während sie bei gleichmässiger Belastung über die Selllänge
eine hyperbolische Kurve ist. Wenn wir dagegen eine nume-

Schweiz Bauzeitung * 79. Jahrgang Heft 17 * 27. April 1961 275



EJBalken

Bild 2

y=M, y"=-p

*¦ y

Tabelle 1

X
1

X
dx

l
In x

r dx
J~x~

für Aa; 0,2

1,0 1,0000 0 0 0

0
1,1 0,909 091 0,095 313 0,095 310

1,2 0,833 333 0,182 323 0,182 322 0,182 34

1,3 0,769 231 0,262 366 0,262 364

M
Fl 1,4 0,714 286 0,336 475 0,336 472 0,336 51

1,5 0,666 667 0,405 468 0,405 465
P
H 1,6 0,625 000 0,470 006 0,470 004 0,470 04

1,7 0,588 235 0,530 633 0,530 628

1,8 0,555 556 0,587 790 0,587 787 0,587 83

1,9 0,526 316 0,641 857 0,641 854

2,0 0,500 000 0,693 150 0,693 147 0,693 19

rische Methode kennen, mit der wir eine der Aufgaben lösen
können, so sind mit der gleichen Methode auch die anderen
beiden Aufgaben in gleicher Weise lösbar. Dies kommt ja sehr
schön in der Mohrschen Analogie zum Ausdruck, nach der
wir eine Biegungslinie ij genau gleich wie eine Momentenfläche

__f berechnen können, wenn wir statt der Belastung p
die Belastung MjEJ einführen. Das normalerweise für diese
Berechnung verwendete Mittel, das Seilpolygon, leitet seinen
Namen vom dritten Beispiel des Bildes 2 her, wodurch die
Bedeutung und Fruchtbarkeit der hier vorliegenden Analogie
deutlich zum Ausdruck kommt.

Die heutige Baustatik verfügt über eine Reihe von
numerischen Berechnungsmethoden, deren Leistungsfähigkeit
und Zuverlässigkeit erprobt sind; wir brauchen diese
Methoden hier nicht aufzuzählen. Ich möchte mich im folgenden
auf einige Ueberlegungen und Beispiele zur numerischen
Integration und Differentiation und zur numerischen Lösung
von Differentialgleichungen beschränken. Dabei soll gezeigt
werden, dass auch derartige Aufgaben mit den bekannten
und klassischen Mitteln der Baustatik gelöst werden können,
wenn wir diese in zweckmässiger Formulierung einsetzen.

2. Ein bekanntes Mittel zur
gewöhnlichen numerischen
Integration zwischen zwei Grenzen

x-y und % ist die
Flächenberechnung nach Simpson. Die
Simpsonsche Regel (Thomas
Simpson, 1710 bis 1761) beruht
darauf, dass für ein Doppelfeld
von m —¦ Ibis m + 1 parabolischer

Verlauf der zu integrierenden

Funktion y' angenommen
wird (Bild 3); es ist dann

Um*l

r=—2-x~

Bild 8

1/77+/

Ax

m + 1
m + 1

F \y'dx Ax (j/m-x' + 3/m+i') +
m — 1 J

m — 1

2-2 Aa; / ._ ym-i' + ym+-,'\
~t~

3 \ym 2 )'
(1) 3/m.l _/_.-_+ -3- (2/m-l' + 4 2/m' + _/m+l') •

Die Leichtigkeit der Anwendung und die Leistungsfähigkeit
dieser einfachen Regel sei am Beispiel

I dx In x

Die Simpsonsche Regel hat den Nachteil, dass sie uns die
Integralwerte nur für jeden zweiten Teilpunkt liefert. Dieser
Nachteil kann aber leicht behoben werden, da wir für die
Parabelfläche von Bild 3 auch den Inhalt von m — 1

bis m berechnen können:

I Aa;
dX =-J7r (52/m-l'+ 8j/m'— 2.m + _')

Ax
~12~ (— Vm-ü + 8 2/m-i' + 5 ym')

Nehmen wir den Mittelwert, so wird

(2) ym=ym-i
Ax

~7Ä (— 3/m-2' + 13 ym-x + 13. J/m+l')

Damit wird in unserem Beispiel für x — 1,50

j/lf_= 0,336475 + 0,068992 0,405467.

Ebensogut hätten wir aber analog mit

Ax
Vm= 3/m+l-

rechnen können:

24
(— Vm-x + 13 ym' + 13 j/m+i'— l/m+a')

Vi ; 0,470 006 — 0,064 538 0,405 468

in Tabelle 1 gezeigt.

Von diesem Wert aus finden wir die übrigen Zwischenwerte
mit der Sijiipsonschen Regel nach beiden Seiten. Die Ergebnisse

unterscheiden sich von den genauen Werten In a; erst
in der sechsten Stelle nach dem Komma. Normalerweise ist
der Nachweis einer genügenden Genauigkeit durch eine
Parallelrechnung mit verdoppelten oder halbierten
Feldweiten leicht zu führen. Zum Vergleich sind in der letzten
Kolonne unserer Tabelle auch die mit Aa; 0,2 berechneten
Werte eingetragen; hier zeigen sich Abweichungen gegenüber
den genauen Werten in der fünften Stelle nach dem Komma.

Führen wir die Rechnung weiter bis in x ^ 1, so finden
wir auch noch den zu Ina; 1 zugehörigen Wert von x e,
der Basis des natürlichen Logarithmensystems.

Neben der Simpsonschen Regel bestehen auch andere
Möglichkeiten der Flächenberechnung, wie etwa die Sum-
mation von Knotenlasten oder die Beziehungen, die in Lehr-
und Handbüchern für die Auswertung der Arbeitsgleichung
angegeben werden. Wesentlich ist, dass wir über einfache
numerische Methoden zur Berechnung bestimmter Integrale
verfügen.

Von den angegebenen Beziehungen aus lassen sich auch
einfache Formeln für die numerische Differentiation
aufstellen. Dabei ist jedoch darauf hinzuweisen, dass eine
Differentiation auf die Zuverlässigkeit der Ausgangswerte
empfindlicher ist als die Integration.
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3. Die Konzeption des Seilpolygons geht auf den Franzosen

Varignon (1654 bis 1722) zurück, der damit Kräfte in
einer Ebene zusammensetzte. Eine wesentliche Erweiterung
des Anwendungsbereiches gelang Karl Culmann; durch
Einführung der nach ihm benannten Schlusslinie konnten mit
dem Seilpolygon die Biegungsmomente eines Balkens
zeichnerisch bestimmt werden. Die Uebertragung dieser Konstruktion

auf die Bestimmung der Biegungslinie durch die Analogie

von Otto Mohr haben wir schon erwähnt; weiter zu
erwähnen wäre etwa noch die zeichnerische Lösung des

Knickproblems nach Engesser-Vianello.
Wir brauchen nun

nur die zeichnerische /~P
Konstruktion des
Seilpolygons durch
Aufstellung der
Seilpolygongleichung in

sinliiprache der Rechnung

zu übersetzen,
um eine weitere
Vergrösserung des
Anwendungsbereiches

zu erhalten,
i_pS8lich die numerische

Lösung von
totalen Differentialgleichungen

zweiter
OrdnuSgffS

Wir gehen aus von der Berechnung der Momente in
einem einfachen Balken mit indirekter Lastübertragung
(Bild 4). Diese Berechnung wird normalerweise mit der
bekannten Rekursionsformel

m
Mm £ Qi-AXi

A
durchgeführt. Schreiben wir diese Beziehung für die Momente

Mm und __-m+i an,

Mm— ._fm-p§- Qm-Aa;m,
Mm—- Mm+1= Qm+1-Axm+1,

und beachten wir, dass im Punkt m die Querkraft sich um
den Betrag der Knotenlast Km (p) verkleinert, so erhalten
wir durch Elimination der Querkräfte die Seilpolygongleichung

m-l m+l

Km(P)

:nAx äx

Bild 4

Mm — Mm Mm+i — Mm Qm+t=Km(p)
AXm AXjn+i

oder bei gleichen Feldweiten

— Mm-i+2Mm— Mm+1=Ax-Km(p)

Setzen wir entsprechend der Analogie nach Bild 2 M y,
V — — V", so erhalten wir den allgemeinen Zusammenhang

(3) J.m-1— 2j/m+ J/m+1= Ax-Km(y")

Diese Beziehung ist genau, ohne Rücksicht auf den Verlauf
der Belastungsfunktlon. Sie liefert uns, wenn die Knotenlasten

K(y') bestimmt sind, die Werte y in den
Knotenpunkten, also das «Sehnenpolygon» der wirklichen Funktion

y.
Für die numerische Zuverlässigkeit der Rechnung ist es

nun wichtig, die Grösse der Knotenlasten möglichst zutreffend

zu erfassen; statisch bedeuten diese Knotenlasten die
Auflagerkräfte der sekundären Längsträger in den
Knotenpunkten. Die früher allein übliche «Trapezformel»,

(4a) Km(p)
Ax
-_r-(Pn L+4_>m+Pm.l)

ist bei stetigem Verlauf der Belastungsfunktion p und grober
Feldteilung mit merklichen Fehlern belastet; eine wesentlich
bessere Annäherung gibt die «Parabelformel»,

(4b) Km(p)
Ax
~\2 (Pm-l+10pm+pm + i)

bei der der Belastungsverlauf durch eine Parabel, wie in
Bild 3, angenähert wird. Zeigt die im übrigen stetig ge¬

krümmte Belastungsfunktion p im Knotenpunkt m einen

Knick am, so lässt sich die Knotenlast zu

(4c) Km(p)
Ax
!__"

Aa;2
(Pm-1 + 10 Pm + Pm+1) Jo-'""1

einfach bestimmen (Bild 5).
Verwenden wir nun die Analogie M y, p — y", so

liefern uns die Gleichungen (3) und (4b) die Beziehung

Aa;!!

-jg- (V m-i + 10y"m+y"m+i)

Pm

m-l

Ax Ax

1/rmfp)

Pm*l

m*l

Bild 5

(5a) j/m-i — 2ym + ym+1z

zwischen einer stetigen
Funktion y und ihrer zweiten

Ableitung y", die wir
ebenfalls als stetig voraussetzen.

Diese Beziehung ist
nun, im Gegensatz zu
Gleichung (3), nicht mehr
mathematisch genau, sondern
ihre Genauigkeit hängt von
der Güte der Annäherung
der Knotenlast Km(y")
durch Gleichung (4b) und
damit auch von der Grösse
der Intervallte_lung Aa. ab.

Wir können nun hier leicht einen Vergleich mit der
Differenzenrechnung durchführen; an Stelle der Gleichung (5a)
würden wir beim Rechnen mit endlichen Differenzen die
Beziehung

(5b) ym!ß-2ym+ ym+1=Ax2-y"

erhalten; der Unterschied zwischen der Seilpolygonrechnung
und der Differenzenrechnung liegt in der verschiedenen Güte
der Annäherung der Knotenlast Km(y") an ihren genauen
Wert. Mit der SÄpolygongleichung erreichen wir bei gleicher
Intervallteilung eine wesentlich grössere Genauigkeit als mit
der Differenzenrechnung, oder wir können uns bei gleicher
geforderter Genauigkeit mit bedeutend grösseren Intervallen
Aa; begnügen, weis eine wesentliche Verringerung des
Arbeitsaufwandes bedeutet.

4. In der SeUü|8ygongleichung (3) erscheint die erste
Ableitung der Funktion y' nicht mehr; y' ist eliminiert
und tritt damit an Bedeutung
hinter die Hauptfunktionen y
und y" (gerade Ableitungen)
zurück. Dies ist aber auch bei den
in der Baustatik auftretenden
Anwendungsfällen genau gleich;
bei der Bemessung eines Trägers

tritt die Querkraft an
Bedeutung hinter das Biegungsmo-
ment oder die Neigung der
Biegungslinie hinter die Durchbiegung

zurück. Genau so, wie wir
aber bei einem Balken die Querkraft

aus dem Moment M und
der Belastung p berechnen können, so lässt sich auch die
Nebenfunktion y' aus y und y" berechnen.

Nach Bild 6 ist die Querkraft im Punkt m — 1 als
Neigung der Momentenkurve gegeben durch

m-l m*i

m-l

Bild 6

Qm- Ax + Km-_(P)

oder es ist, nach Ausrechnung der Teilknotenlast in m — 1

für das Feld rechts von m — 1,

(6a) y'm.1-Ax

y
Ax*

Vm-i 12
(3,63/"m.1-|-3,0y"m—0,5y"m+i) •

Diese Beziehung wird für die Aufstellung von Rand- und
Anfangsbedingungen benötigt, wenn bei der Lösung einer
Differentialgleichung der Wert von yA' gegeben oder
vorgeschrieben ist.
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Für den Punkt m finden wir analog

y'm-Ax

y-m—2/m-l

oder auch

y'm-Ax

ym+i—Vm-

der Mittelwert

Aa;"
~12~ (l,5y"m.1+5,0y" ¦0,5y"m+1)

Axz
-~^- (—0,5y"m.i- ¦5,03/"m+1.5_/"m+i)

(6b) ^g-Aa; =_: — (j/m+i- -i) + |g (y" ¦ y"m+i)

besitzfcjlgegenüber den beiden Einzelwerten allgemein eine
deutlich verbesserte Genauigkeit.

5. Damit haben wir die Grundlagen bereitgestellt, die uns
die numerische Lösung der totalen inhomogenen Differentialgleichung

zweiter Ordnung,

(7) y by' + cy + F(x) 0,

erlauben; wir beschränken uns hier aus Raumgründen auf
den etwas vereinfachten Fall b — 0:

(7a) y" + cy + F(x) 0.

Die Lösung dieser Gleichung beruht darauf, dass wir die eine
der beiden Gruppen von Unbekannten, y" oder y, eliminieren,
um ein System von Bestimmungsgleichungen für die andere
Gruppe zu erhalten. Die Möglichkeit der Elimination von y"
liefert uns die Seilpolygongleichung (3); wirhabennurdiezu
lösende Gleichung (7) für Ax-fache Knotenlasten
anzuschreiben,

(7b) Aa.2rm(y") + AxKm(cy) + AxKm(F) | 0,

um durch Einsetzen von

AxKm (j/") ym.x — 2ym + ym+x

und

AxKm (cy)=y (j/m-i +10_/m+2/m+i)
durch Ordnen die Bestimmungsgleichung

(8) — 2/m-_ (1 + y) + ym (2 — lOy) — ym^ (1 + y)
- Ax-Km(F)

zu erhalten; dabei bedeutet

c-Aa;2
r 12

Wir erkennen, dass auch veränderliche Koeffizienten c mit
Ym-ii Ym, Ym+i usw. ohne jede Schwierigkeit berücksichtigt
werden können.

Eine Randbedingung «yA gegeben» ersetzt uns die
Bestimmungsgleichung für den Randpunkt A, während wir für
«2/a' gegeben» aus den Gleichungen (6a) und (7a) die
Bestimmungsgleichung

(8a) _/A(l —3,5yA)—j/i(l + 3,0y_) + 3/2.0,5y2 |
Aa; - KA (F) — yA' • \x

aufstellen können.

6. Als Beispiel einer ersten Anwendungsform sei die
Lösung eines einfachen Anfangswertproblems

(9) y" ± y 0

mit den Anfangswerten j/a, yA' besprochen. Die
Bestimmungsgleichung (8) ist hier in der Form einer Rekursionsformel

(9a) ym+i
10 y

3/m— 2/m-ll±y
zu verwenden; sie liefert uns mit

Y
Aa*
12"

alle folgenden Werte von y, ausgehend von den durch die
Anfangsbedingungen bestimmten Ausgangswerten yA und y\.
Wir kennen die Lösungen:

y" -\- y 0 mit 3/a= 0, yA 1 —>¦ y sin a;

Va=1f 2/a'=0 j/ cosa;
y" — y — 0 mit 2/a=0, yA-=.\ —>¦ y Sinh x

2/a=1i J/a'=0 2/ Cosha;;

unsere einfache Rekursionsformel Gl. (9a) muss je nach dem
Vorzeichen von y sowohl die Kreisfunktionen sina-, cosx wie
auch die Hyperbelfunktionen Sinha;, Cosha; liefern.

Beschränken wir uns auf dieAnfangsbedingungen yA — 1,
yA 0, so können wir die zweite Anfangsbedingung als
Symmetriebedingung formulieren:

ÜI 5y
l±y yh-

In Tabelle 2 sind die Rechnungsergebnisse für
Aa; 0,40, y 0,01333,

ym+1 1,842105 • ym — 2/m-i, 3/i i 0,921053
Vm_1 2,162162 • ym — üi, 2/i 1 1,081081

zusammengestellt (6 Stellen berechnet, Ergebnis auf fünf
Stellen auf- oder abgerundet).

Tabelle 2

X COS X Cosha?

0 1,00000 1,00000

0,4 0,92105 1,08108

0,8 0,69668 1,33747

1,2 0,36230 1,81075

1,6 —0,02947 2,57766

2,0 —0,41659 3,76257

Für x 2,0 würden die genauen Werte nach Hütte cosa;
— 0,41615, Cosha; — 3,76220 betragen. Hätten wir dagegen
mit der Differenzenrechnung [vgl. Gl. (5b), Km (y) Ax-ym~\
gerechnet, so hätten wir für x 2,0 bei gleicher Intervall-
teilung die Werte — 0,42841 bzw. 3,71501, also einen wesentlich

grösseren Fehler bei gleichem Zeitaufwand erhalten.

Es ist doch erstaunlich, wie brav und zuverlässig die
Punkte mit

_Wi 1,842105 • ym — ym.!

sich periodisch bewegen, während sie mit

ym-ym-i
2*IOy

ym*i t-y
yA'i
yk-°

2-10 y
~ym*t - /+j,—ym-ym-t

Bild 7
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ym+1 - 2,162162 • y„ '2/m-l

ebenso brav der Unendlichkeit zustreben (Bild 7).
Beachten wir, dass in der Gleichung

y" — y — 0 mit yA

und damit in der Formel

1, y'A

J/m+l :

2 + 10y
1 —Y

ym — 3/m-l

auch noch die Funkttonsaie* und e-x enthalten sind, so können

wir feststellen, dass unsere numerische Lösung Gl. (9a)
der Differentialgleichung (9) alle jenen Funktionen der Analysis

enthält, die in den Hand- und Taschenbüchern des
Ingenieurs normalerweise tabelliert sind. Es wird nun aber
hoffentlich niemandem einfallen, sich mit Gleichung (9a)
Privattabellen dieser Funktionen für den praktischen Gebrauch
auszurechnen; eine solche Anwendung würde nicht dem Sinn
unserer Ueberlegungen entsprechen.

Diese Ueberlegungen sollen vielmehr eine für die Bedeutung

der numerischen Methoden wesentliche Tatsache
veranschaulichen: die Analysis kann uns nur eine beschränkte
Auswahl von Funktionen zur Lösung unserer Probleme zur
Verfügung stellen, und diese wenigen Funktionen entsprechen

nur den einfachsten Grundfällen. Sind diese einfachsten
Voraussetzungen nicht mehr erfüllt, so sind wir auf mühsame
Reihenentwicklungen angewiesen. Auf was für unnatürliche
Operationen dies flihrenSikann, is£fj etwa aus der
Plattenberechnung bekannt, wo wir gezwungen sind, eine gleich-
massig verteilte Belastung p nach der Fourier-Analyse in
Doppelreihen zu entwickeln.

Da wir aber die vollständige Differentialgleichung (7) für
alle in den Anwendungen vorkommenden Fälle für konstante
oder veränderliche Koeffizienten, unabhängig von ihrem
Vorzeichen, und für jeden beliebigen Verlauf der Belastungsfunktion

in gleicher Weise numerisch lösen können, enthält
diese numerische Lösung nicht nur die uns bekannten
Funktionen der Analysis, sondern auch noch die uns nicht
bekannten oder noch nicht existierenden Funktionen, die uns
die Analysis somit nicht zur Verfügung stellen kann, die
jedoch die Lösung unserer Probleme darstellen und die wir
deshalb im gegebenen Einzelfall benötigen, d. h. ihrem
numerischen Verlauf, wenn auch nicht ihrem mathematischen
Charakter nach, berechnen können müssen. Alle diese
benötigten unbekannten Funktionen stecken in unserer
numerischen Lösung drin; es ist unsere Aufgabe, sie
herauszuholen, wie dies vorstehend für einige der einfachsten Grundfälle

gezeigt wurde.

7. Als Beispiel für ein Randwertproblem sei noch die
Torsion mit Flanschbiegung (Timoshenko-Torsion) eines
Trägers mit symmetrischem I-Querschnitt betrachtet. Dem
äusseren Torsionsmoment T wird teils durch die
Flanschquerkräfte Q, teils durch die inneren Torsionsmomente t
Gleichgewicht gehalten:

£X-h GJd EJ, h-

Die Verteilung von T auf die beiden Anteile wird durch die
Elastizitätsbedingung

1
wmm

bestimmt, oder es ist mit

os 2GJd
Z2 EJm-h*

die Grundgleichung

EJ„-M

(10a) T= G-JA (*—W''"'")
zu lösen. Nun ist jedoch zu beachten, dass das äussere
Torsionsmoment T,

T T0+X-Tx,

bei beidseitiger Festhaltung der Stabquerschnitte statisch
unbestimmt ist, was nur deshalb meist nicht beachtet wird,
weil bei symmetrischenTrägern dasTorsionsmoment T durch
die Querkraftanalogie bestimmbar ist. Es ist deshalb wohl
gerechtfertigt, von der von S. Timoshenko aufgestellten
Torsionsgleichung (10a) durch Differentiation und mit

mä, W. -E Jy\ ¦ EJ-r
h

auf die Bestimmungsgleichung für die Flanschbiegungsmomente

äß überzugehen:

(10b) 3ß"
02

~~W m md 0.

Bei Belastung durch ein konzentriertes äusseres Drehmoment
Ma tritt nun die Besonderheit auf, dass die Kurve der
Flanschbiegungsmomente äft beim Lastenangriffspunkt eine
Unstetigkeit <_-- infolge der konzentrierten Flanschbelastung

* Md
~h~

enthält, diejedoch mit am «ßm (Bild 5) durch Gleichung (4c)
leicht in der Knotenlast für 3JJ bzw. im Belastungsglied der
für diesen Fall angeschriebenen Gleichung (8) berücksichtigt
werden kann; mit

<-2 Ax*
~12~

erhalten wir das System der dreigliedrigen Bestimmungsgleichungen

zu

(10c) — ä»m.i(l-
MimAx

h

•Y) +9ßm(2 + 10y)

(1 + Y).

m» (1 —Y)

Es sei noch ein Zahlenbeispiel (Bild 8) mit

/PI 175cm4, Jd 24,0 cm*, G-= — E,
8

3 • 2 • 24,0
P 8 • 175 • 23,8»

lAx -__ — __- 50 cm, y8

0,181585-10-»,

0,181585 • 10-s
50«

IT : 0,037830,

Aa;
Md
h (1 + y) 51,8915

Md
h

skizziert. Tabelle 3 enthält die Auflösung des Gleichungssystems

für frei drehbare Flanschenden, 2RA 2Ji_t 0, das
für die untersuchte symmetrische Belastung Md in m nur für
den halben Träger anzuschreiben Ist.

Md isjocm

12cm

l-100om

Md

t. -Qfitt-Md

Mh W
,as9lW (aml

Bild 8
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Tabelle 3

9Jh m aj.3 9Km Bei. gl.

1 2,37830 —0,96217 —

2 —0,96217 2,37830
—0,38958

—0,96217 —

— 1,98872 —0,96217 —

3 —0,96217 2,37830
—0,46551

—0,96217 :—¦

— 1,91279 —0,96217 —

m —1,92434 2,37830
—0,96798

51,8915

— 1,41032 51,8915

m 3,623 8,954 18,508 36,794
\ Md

h

AusdenFlanschbiegungsmomenten SIR111:—EJwn" ergeben
sich die Flanschausbiegungen y als Seilpolygon, während nun

die Torsionsanteile t G-Ja • </>' GJd- */h • 17' durch
Differentiation mit den Gleichungen (6) bestimmt werden können,

wenn man nicht vorzieht, diese durch numerische
Lösung der Timoshenko-GlSchung (10a) mit tA' -B' 0
direkt zu lösen.

Hätten wir mit Aa: Z/4 100 cm, y 0,151321, gerechnet,

so hättenwir 2ßm — 37,101 M^/h, also um 0,83% grösser
erhalten, während mit Aa; 2/2 200 cm sich aus einer einzigen

Gleichung 2ßm 39,869 Mdjh oder um 8,36 % grösser
ergeben hätte. Wir können daraus schliessen, dass für die
gewählte Teilung Aa; 50 cm der Fehler von äßm kleiner als
0,1 % sein wird. Diese praktisch mehr als genügende
Genauigkeit wird dann eingehalten, wenn durch entsprechende
Intervallteilung y ^ 0,05 gehalten wird.

8. Durch Kombination lassen sich die skizzierten Grundlagen

erweitern, so dass auch höhere Differentialgleichungen
numerisch gelöst und auch Membranen, Platten und Scheiben
berechnet werden können. Immer aber muss das Ziel einer
numerischen Methode sein, das gewünschte Ergebnis in
genügender Genauigkeit mit einer möglichst kleinen Zahl von
Bestimmungsgleichungen zu erhalten; an diesem Grundsatz
ändern auch die neuesten Hilfsmittel, die elektronischen
Rechenmaschinen, nichts.

Calcul numerique des plaques et des parois minces
Par Pierre Dubas, professeur assistant, EPF, Zürich *) DK 624.073:518.12

Introduction
Le präsent article traitera le calcul numerique des corps

plans minces, c'est-ä-däre des corps dont l'öpalsseur est fälble
par rapport aux dimensions du feuillet moyen, equidistant des
faces. Selon le mode de sollicitation (fig. 1), on parle de

Plaques minces fKchies, lorsque les forces ext&rieures s'exer-
cent normalement aux faces, ou de parois minces, lorsque
les lignes d'action sont situees dans le feuillet moyen et que
la distribution est uniforme sur FSpaisseuri).

/
Parois mince Fig. 1. Plaque mince flechie

Nous nous proposons de montrer, dans les grandes
lignes, comment on peut appliquer ä ces probiemes ä deux
dimensions la methode du polygone funiculaire. Dans son
article qui precSde, le professeur F. Stüssi, le crßateur de
cette methode, en a expose les princlpes; nous les sup-
poserons donc connus.

Theorie generale des plaques et des parois minces

II n'est certes pas necessaire de rappeler les hypotheses
simplificatrices et les conditions d'equilibre et de compati-
bilite qui permettent d'etablir les equations diff.rentielles

*) Conference falte le 11 novembre 1960 ä. l'occasion de la reunion
du groupe professionnel des ingenieurs S. 1. A. des ponts et char-
pentes.

x) II s'agit donc d'un Probleme d'elasticit<5 plane; on dit parfois
tranche mince ou dlsque, ce qui est la traduction litt, rale du terrae
allemand Scheibe.

2) F. stüssi: Numerische Methoden der Baustatik, Schweizerische
Bauzeitung, page 275 du pr.sent numero.

regissant les probiemes bidimensionnels. Nous nous content

erons Ici d'ecrire ces equations bien connues3).
Dans le cas des plaques fl&chies isotropes, il s'agit de

l'equation de Lagrange:

(1)
34tc

+ 2-
d*w

dx*dy* +
d*w p(x,y)
3j/* D

oü w represente l'ordonnße de la surface elastique, p designe
_3ÄS

la Charge appliquöe et D est une constante de-
12(1 — 1,2)

pendant de l'epaisseur h de la plaque et de l'elastieite de la
matiere.

Lorsque la plaque est anisotrope, ou plus specialement
orthogonalement anisotrope (en abrtge' orthotrope), c'est-ä-
dire lorsqu'elle presente, par rapport ä ses propriStös 61as-

tiques, deux directions privilßgiSes paralleles aux axes de
coordonnees, on obtient l'equation de Boussinesq:

(2) D,
3*u>

"äse*" + 2DX
34w

dx*dy*
3*1«

Les constantes Dx, Dxy, Dv sont fonctions des rigidites ä la
flexion et ä la torsion de la plaque orthotrope.

Ces equations differentielles permettent en principe de

determlner, en tenant compte des conditions au contour dont
nous allons parier, les ordonnees w de la surface elastique.
Les sollicitations interieures sont alors donnees par les re-
lations bien connues, reproduites ci-dessous pour les plaques
Isotropes:

(3a) Moments de flexion: M,

(3b) Moment de torsion: Mx

(3c) Efforts tranchants: Qr

•»«3*tt> d*w
+ '3a;»

¦ D (1—I-)

dy*
i*W

dx dy

— D

(3d) Reactions d'appui: Vx Qx +

3

dx

dMxy
dy

d*w
dx*

I

dy*)
d*%o

M„ Qy> Vy Par permutation de a; et y.

3) On consultera par exemple, pour les plaques minces, S. Timo-
shenko et 8. Woinowsky-Krieger: Theory of Plates and Shells, 2eme
edition, McGraw-Hill, 1969; pour les parois minces, B. Tbnoshenko et
J. N. Goodier: Theory of Elasticity, 2eme edition, McGraw-Hill, 1951.
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