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79. Jahrgang Heft 17

SCHWEIZERISCHE BAUZEITUNG

27. April 1961

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.1.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENGSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P.

Numerische Methoden der Baustatik
Von Prof. Dr. Fritz Stiissi, ETH, Ziirich 1)

Wir konnen die Verdffentlichung dieser Vortragsreihe
nicht beginnen ohne ein Wort der Entschuldigung gegeniiber
Prof. Fritz Stiissi, der sie im November 1960 eingeleitet und
uns sein Manuskript schon Mitte Dezember iibergeben hatte,
verbunden mit dem Wunsche, der Beitrag seines Kollegen
Dubas mochte im gleichen Heft erscheinen. Die ungebtihr-
liche Verzogerung der Publikation hat ihren Grund im Per-
sonalmangel unter den fiir mathematischen Satz befdhigten
Schriftsetzern. Nachdem dieser Engpass liberwunden ist, freut
es uns, dem Wunsche unseres Freundes Stiissi endlich ent-
sprechen zu konnen und dabei die Anerkennung zahlreicher
Kursteilnehmer zum Ausdruck zu bringen fiir die liberlegene
Art, in welcher er damals seinen Vortrag hielt und in der
Diskussion seinen Standpunkt gegen die iiberméchtig an-
stiirmenden Vorkdmpfer der plastischen Berechnungsmetho-
den stahlhart verteidigte. Bei dieser Gelegenheit sei es mir
gestattet, den treffenden Worten noch etwas beizufiigen, mit
denen u. a. Prof. Steinhardt im «Stahlbau» 1961, Heft 2, und
im «Bauingenieur» 1961, Heft 1, sowie Dr.C. F. Kollbrunner
in der «Neuen Ziircher Zeitung» 1961, Nr. 19, Stiissis wesent-
liche Beitrige zur Entwicklung der Ingenieurwissenschaft
und seine Personlichkeit im Ganzen kennzeichneten: Fritz
Stiissi vereinigt in sich offene, ehrliche, mannhafte Gradheit,
Hirte und unerbittliche Strenge des Urteils mit einer Her-
zenswirme und einem Talent zu geistreicher Geselligkeit,
die ihn zu einem kostlichen Kameraden werden lassen.

Prof. Pierre Dubas hat 1948 als Bauingenieur an der
ETH diplomiert und dort auch mit einer ausgezeichneten
Arbeit den Doktorgrad der technischen Wissenschaften er-
worben. Bis 1956 in der Stahlbauwerkstédtte Dottingen der
AG Conrad Zschokke tétig, wirkte er seit 1957 als Biirochef
in den Ateliers de Constructions Mécaniques de Vevey. Seit
1959 ist er Lehrbeauftragter fiir Grundlagen des Stahlbaues,
und vor kurzem wurde er Assistenz-Professor an der ETH.

W.J.

1. Die Baustatik ist eine angewandte Wissenschaft, denn
sie hat ja die Aufgabe, uns die Mittel und Methoden zur Be-
messung unserer Bauwerke zu liefern. Dies kommt mit aller
Deutlichkeit schon im Titel <Résumé des lecons ... sur 'appli-
cation de la mécanique a l'établissement des constructions
et des machines» zum Ausdruck, den Louis Navier 1826
seinem grundlegenden Hauptwerk gegeben hat; hier voll-
zieht Navier den Uebergang von der theoretischen Mechanik
zur Baustatik., Eine angewandte Wissenschaft hat aber nur
einen Sinn im Zusammenhang mit ihrem Anwendungsgebiet;
sie muss aufs engste mit diesem Anwendungsgebiet verbun-
den sein, dessen Entwicklung und Ausbau auch ihre Entwick-
lung hestimmt. Eine Baustatik, die nicht auf diese direkte An-
wendung orientiert wére, wire keine Baustatik mehr.

Wihrend die Mechanik als Naturwissenschaft, die die
mechanischen Vorgédnge in der Natur in moglichst allge-
meiner und umfassender Form zu beschreiben hat, weit-
gehend analytischer Methoden bedarf, ist die Baustatik ein-
deutig numerisch orientiert; wir benotigen bei der Bemessung
eines einfachen Balkens beispielsweise die Grosse der gross-
ten Biegungsmomente M,,,, mit geniigender Genauigkeit und
in einer geniigenden Anzahl von Schnitten; welchen mathe-

1) Vortrag, gehalten am 11. November 1960 in der ETH, anlisslich
der Fachtagung der FGBH {iber «Neuere Methoden der Baustatiks.
Auch alle andern Vortridge dieser Tagung werden hier anschliessend
verdlfentlicht.
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matischen Charakter diese Grenzwertlinie der Momente be-
sitzt, ist flir die Bemessung bedeutungslos.

Der Unterschied zwischen der (analytischen) Mechanik
und der (numerischen) Baustatik in bezug auf die Frage-
stellung sei durch ein einfaches Beispiel charakterisiert: das
elastische Knicken eines zentrisch gedriickten Stabes mit
konstanter Druckkraft P ist durch das Gleichgewicht der dus-
seren Ablenkungskrifte mit den inneren elastischen Wider-
stdnden bestimmt:

(BJy")" 4 Pey"=0;

fiir den Fall konstanter P
Steifigkeit EJ undbeid-
seitig gelenkiger Lage- T ~— |
rung hat Leonhard Bu- | | U,
ler 1744 die Ldsung I
dieser Differentialglei- |, ‘
chung mit !
nTax ~H I
n = 7o SIN i é
zu P T n=1 u.sw.
kr
2.2,
p— iEPLJ Bild 1

gefunden. Diese Losung umfasst fiir den untersuchten Son-
derfall alle moglichen Knickformen (Bild 1). In der Bau-
statik bendtigen wir jedoch nur die flir die Bemessung mass-
gebende kleinste Knicklast mit n = 1, diese jedoch fiir alle in
der Ausfiihrungspraxis vorkommenden Anwendungsfélle. Wie
schwierig die analytische Losung beispielsweise bei beliebig
verdnderlicher Steifigkeit ist, ist bekannt; damit wird die
Notwendigkeit numerischer Berechnungsmethoden, die an die
Besonderheiten des konkreten Einzelfalles anpassbar sein
miissen, evident. Selbstverstindlich wird kein verniinftiger
Ingenieur auf die Verwendung der fertigen Formel, die uns
die Analysis liefert, verzichten, wenn die Voraussetzungen der
Losung in Wirklichkeit erfiillt sind; es haben sowohl ana-
lytische wie numerische Methoden nebeneinander ihre Exi-
stenzberechtigung, und sie sind beide notwendig. Ein guter
Konstrukteur wird im gegebenen Einzelfall jene Methode
einsetzen, die ihn innerhalb der geforderten Genauigkeit am
raschesten zum Ziel fiihrt; die von Ernst Mach aufgestellte
Forderung nach Oekonomie des Denkens gilt auch fiir die
angewandte Wissenschaft der Baustatik.

Der Vergleich zwischen analytischen und numerischen
Methoden sei an Hand einiger Grundaufgaben (Bild 2) noch
deutlicher veranschaulicht. Die Berechnung des Biegemo-
mentes M infolge einer verteilten Belastung p und der Durch-
biegung 7 des einfachen Balkens sowie des Durchhanges y
eines Seiles sind im Sinne der Analysis durch Differential-
beziehungen zweiter Ordnung charakterisiert; die gesuchte
Grosse y ergibt sich durch zweimalige Integration von y”
unter Beachtung der Randbedingungen, hier y, = yg = 0.
Eine geschlossene analytische Losung ist nur dann moglich,
wenn y” eine integrierbare Funktion ist, was insbesondere die
Forderung der Stetigkeit von y” einschliesst. Der Charakter
der Losung ist vom Charakter der «Belastungsfunktion» y”
abhingig; ist die Belastung p eines Seiles gleichméssig liber
die Spannweite verteilt, so ist die Losung y eine Parabel,
wihrend sie bei gleichméssiger Belastung tiber die Seillinge
eine hyperbolische Kurve ist, Wenn wir dagegen eine nume-
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rische Methode kennen, mit der wir eine der Aufgaben l&sen
konnen, so sind mit der gleichen Methode auch die anderen
beiden Aufgaben in gleicher Weise 16sbar. Dies kommt ja sehr
schon in der Mohrschen Analogie zum Ausdruck, nach der
wir eine Biegungslinie n genau gleich wie eine Momenten-
flaiche M berechnen konnen, wenn wir statt der Belastung p
die Belastung M/EJ einfiihren. Das normalerweise fiir diese
Berechnung verwendete Mittel, das Seilpolygon, leitet seinen
Namen vom dritten Beispiel des Bildes 2 her, wodurch die
Bedeutung und Fruchtbarkeit der hier vorliegenden Analogie
deutlich zum Ausdruck kommt.

Die heutige Baustatik verfiigt liber eine Reihe von nu-
merischen Berechnungsmethoden, deren Leistungsfihigkeit
und Zuverldssigkeit erprobt sind; wir brauchen diese Me-
thoden hier nicht aufzuzéhlen. Ich méchte mich im folgenden
auf einige Ueberlegungen und Beispiele zur numerischen In-
tegration und Differentiation und zur numerischen Lésung
von Differentialgleichungen beschridnken. Dabei soll gezeigt
werden, dass auch derartige Aufgaben mit den bekannten
und klassischen Mitteln der Baustatik geldst werden kénnen,
wenn wir diese in zweckméssiger Formulierung einsetzen.

2. Ein bekanntes Mittel zur
gewohnlichen numerischen In-
tegration zwischen zwei Gren-
zen zy und z, ist die Fldchen-
berechnung nach Simpson. Die
Simpsonsche Regel (Thomas
Simpson, 1710 bis 1761) beruht
darauf, dass fiir ein Doppelfeld
von m —1 bis m 4 1 parabo-
lischer Verlauf der zu integrie-
renden Funktion ¥y’ angenom-
men wird (Bild 3); es ist dann

m 4 1

m+1

F ny’dw:Ax (Ym-1"+ Ymst') +
m—1

m—1
2-2A2 .1 !
+ = ( m’— Ym-1 'fz_ym+1 )’
Ax ’ ’ ’
(1) Ym+1=Ym-1+ 3 (Ym-1"+ 4 Ym" + Ym+1') -

Die Leichtigkeit der Anwendung und die Leistungsfidhig-
keit dieser einfachen Regel sei am Beispiel

z
1
ffdm:lnm
X
1

in Tabelle 1 gezeigt.
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Tabelle 1

1 - dx 0
’ = '[T ne fir Axw= 0,2

1,0 1,0000 0 0 0

1,1 0,909 091 0,095 313 0,095 310

1,2 0,833 333 0,182 323 0,182 322 0,182 34
1,3 0,769 231 0,262 366 0,262 364

1,4 0,714 286 0,336 475 0,336 472 0,336 51
15 0,666 667 0,405 468 0,405 465

1,6 0,625 000 0,470 006 0,470 004 0,470 04
1,7 0,588 235 0,530 633 0,530 628

1,8 0,555 556 0,587 790 0,587 787 0,587 83
1,9 0,526 316 0,641 857 0,641 854

2,0 0,500 000 0,693 150 0,693 147 0,693 19

Die Simpsonsche Regel hat den Nachteil, dass sie uns die
Integralwerte nur fiir jeden zweiten Teilpunkt liefert. Dieser
Nachteil kann aber leicht behoben werden, da wir fiir die
Parabelfliche von Bild 3 auch den Inhalt von m—1
bis m berechnen kénnen:

m
Ax
fy’dx = q12 BGYm-1"+8Yn'—Ym+1') =

m—1
Ax

= 19 (—Ym-2'+8Ym-1"+ 5 yn') -

Nehmen wir den Mittelwert, so wird

Az
(2) Ym = Ym-1+ 24 (—Ym-2' + 13 Ym-1"+ 13Yn/— Ym+1") -

Damit wird in unserem Beispiel fiir = 1,50
Y,.; = 0,336475 - 0,068992 — 0,405467.

Ebensogut hidtten wir aber analog mit

Ax 1 ,
Ym=Ym+1— 94 (— Ym-1"+ 18 Yn' + 13 Yms1' — Ym+2")

rechnen konnen:
Y, ;= 0,470 006 — 0,064 538 — 0,405 468 .

Von diesem Wert aus finden wir die librigen Zwischenwerte
mit der Simpsonschen Regel nach beiden Seiten. Die Ergeb-
nisse unterscheiden sich von den genauen Werten In a erst
in der sechsten Stelle nach dem Komma. Normalerweise ist
der Nachweis einer geniigenden Genauigkeit durch eine
Parallelrechnung mit verdoppelten oder halbierten Feld-
weiten leicht zu fiihren. Zum Vergleich sind in der letzten
Kolonne unserer Tabelle auch die mit Az = 0,2 berechneten
Werte eingetragen; hier zeigen sich Abweichungen gegeniliber
den genauen Werten in der fiinften Stelle nach dem Komma.

Fiihren wir die Rechnung weiter bis In @ = 1, so finden
wir auch noch den zu Ina = 1 zugehorigen Wert von & = e,
der Basis des natiirlichen Logarithmensystems.

Neben der Simpsonschen Regel bestehen auch andere
Moglichkeiten der Fldchenberechnung, wie etwa die Sum-
mation von Knotenlasten oder die Beziehungen, die in Lehr-
und Handbiichern fiir die Auswertung der Arbeitsgleichung
angegeben werden. Wesentlich ist, dass wir iliber einfache
numerische Methoden zur Berechnung bestimmter Integrale
verfiigen.

Von den angegebenen Beziehungen aus lassen sich auch
einfache Formeln fiir die numerische Differentiation auf-
stellen. Dabei ist jedoch darauf hinzuweisen, dass eine Diffe-
rentiation auf die Zuverlissigkeit der Ausgangswerte emp-
findlicher ist als die Integration.
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3. Die Konzeption des Seilpolygons geht auf den Fran-
zosen Varignon (1654 bis 1722) zuriick, der damit Krifte in
einer Ebene zusammensetzte. Eine wesentliche Erweiterung
des Anwendungsbereiches gelang Karl Culmann; durch Ein-
filhrung der nach ihm benannten Schlusslinie konnten mit
dem Seilpolygon die Biegungsmomente eines Balkens zeich-
nerisch bestimmt werden. Die Uebertragung dieser Konstruk-
tion auf die Bestimmung der Biegungslinie durch die Ana-
logie von Otto Mohr haben wir schon erwahnt; weiter zu
erwdhnen wire etwa noch die zeichnerische Ldsung des
Knickproblems nach Engesser-Vianello.

Wir brauchen nun
nur die zeichnerische

um eine weitere
Vergrosserung  des
Anwendungsherei-
ches zu erhalten,
nadmlich die nume-
rische Losung von
totalen Differential-
gleichungen zweiter
Ordnung.

Wir gehen aus von der Berechnung der Momente in
einem einfachen Balken mit indirekter Lastiibertragung
(Bild 4). Diese Berechnung wird normalerweise mit der be-
kannten Rekursionsformel

P

Konstruktion  des mmwm

Seilpolygons durch T T

Aufstellung der Seil- = :

polygongleichung in | "’"I m ”"‘"| |

die Sprache derRech- | | Kmip) | !

nung zu ibersetzen, : kﬂz_i_x_,;,“_ ‘Zx_,;,:,“j l}
|

Bild 4

m
M, = L Qi Ax;
A

durchgefiihrt. Schreiben wir diese Beziehung fiir die Momente
M, und M, .1 an,

My — My 1= Q@m A%,
Mpy— Myi1= @Qm+1-AZma1,

und beachten wir, dass im Punkt m die Querkraft sich um
den Betrag der Knotenlast K,, (p) verkleinert, so erhalten
wir durch Elimination der Querkrifte die Seilpolygonglei-
chung

M,,, = Mm -1
Jati

Mm +U Mm
Aznu—l

=Qn— @Q@ui1= Kn (p)

oder bei gleichen Feldweiten
— M1 +2M,,,— My 1= Ax- Ky, (p) .

Setzen wir entsprechend der Analogie nach Bild 2 M =y,
p = —uy”, so erhalten wir den allgemeinen Zusammenhang

(3) ym~142ym+ynml:’—\x'Km(y”)

Diese Beziehung ist genau, ohne Riicksicht auf den Verlauf
der Belastungsfunktion. Sie liefert uns, wenn die Knoten-
lasten K(y”) bestimmt sind, die Werte y in den Knoten-
punkten, also das «Sehnenpolygon» der wirklichen Funk-
tion y.

Fiir die numerische Zuverldssigkeit der Rechnung ist es
nun wichtig, die Grosse der Knotenlasten mdglichst zutref-
fend zu erfassen; statisch bedeuten diese Knotenlasten die
Auflagerkrifte der sekundédren Léngstridger in den Knoten-
punkten. Die friiher allein iibliche «Trapezformel,

Ax
(4a) Km(;']): 767'(pm-1+4pm+Pm+1),

ist bei stetigem Verlauf der Belastungsfunktion p und grober
Feldteilung mit merklichen Fehlern belastet; eine wesentlich
bessere Annidherung gibt die «Parabelformely,

Ax
(4b) K, (p) :*1"2 (pm-1+10pm+pm+l) ,

bei der der Belastungsverlauf durch eine Parabel, wie in
Bild 3, angendhert wird. Zeigt die im {ibrigen stetig ge-
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kriimmte Belastungsfunktion p im Knotenpunkt m einen
Knick a,,, so ldsst sich die Knotenlast zu

Ax Ax?

K (p) = =5 (Pm-1+ 10 Pm + Pm+1) — 12 T

(4¢) 12

einfach bestimmen (Bild 5).
Verwenden wir nun die Analogie M =y, p = —Y", SO
liefern uns die Gleichungen (3) und (4b) die Beziehung

Ax2
(53-) Ym-1— 2 Ym + Ym+1=— —127 (y”m-l + 10 y”m + y”m+1)

zwischen einer  stetigen
Funktion y und ihrer zwei-
ten Ableitung y”, die wir
ebenfalls als stetig voraus- 4
setzen. Diese Beziehung ist
nun, im Gegensatz zu Glei-
chung (3), nicht mehr ma-
thematisch genau, sondern m-11 m
ihre Genauigkeit hidngt von
der Giite der Ann#dherung | dx 4x |
der Kno.tenlast K. (y") Y A (p)
durch Gleichung (4b) und
damit auch von der Grosse
der Intervallteilung Az ab.

Wir kénnen nun hier leicht einen Vergleich mit der Diffe-
renzenrechnung durchfiihren; an Stelle der Gleichung (5a)
wiirden wir beim Rechnen mit endlichen Differenzen die Be-
ziehung

Bild 5

(5b) Ym-1—2Ym+ Ym+1= Ax2-y"”

erhalten: der Unterschied zwischen der Seilpolygonrechnung
und der Differenzenrechnung liegt in der verschiedenen Giite
der Anndherung der Knotenlast K, (y”) an ihren genauen
Wert. Mit der Seilpolygongleichung erreichen wir bei gleicher
Intervallteilung eine wesentlich gréssere Genauigkeit als mit
der Differenzenrechnung, oder wir konnen uns bei gleicher
geforderter Genauigkeit mit bedeutend grdsseren Intervallen
Az begniigen, was eine wesentliche Verringerung des Ar-
beitsaufwandes bedeutet.

4. In der Seilpolygongleichung (3) erscheint die erste
Ableitung der Funktion y’ nicht mehr; y' ist eliminiert
und tritt damit an Bedeutung
hinter die Hauptfunktionen y
und y” (gerade Ableitungen) zu-
riick. Dies ist aber auch bei den
in der Baustatik auftretenden
Anwendungsfillen genau gleich;
bei der Bemessung eines Tré-
gers tritt die Querkraft an Be-
deutung hinter das Biegungsmo-
ment oder die Neigung der Bie-
gungslinie hinter die Durchbie- ~
gung zuriick. Genau so, wie wir
aber bei einem Balken die Quer-
kraft aus dem Moment M und
der Belastung p berechnen konnen, so ldsst sich auch die
Nebenfunktion y' aus y und y" berechnen.

Nach Bild 6 ist die Querkraft im Punkt m —1 als Nei-
gung der Momentenkurve gegeben durch

m+!

Bild 6

. Mm—'Mm-l
Ax

+ K}, (D),

oder es ist, nach Ausrechnung der Teilknotenlast in m —1
flir das Feld rechts von m —1,

(63.) y'm-l'Ax:

Ax? " ” "
=Ym—Ym-1— 12 (3,53/ m»l+3y0y ...~0,5y m+!) .

Diese Beziehung wird fiir die Aufstellung von Rand- und An-
fangsbedingungen bendtigt, wenn bei der Losung einer Diffe-
rentialgleichung der Wert von y, gegeben oder vorge-
schrieben ist.

277




Fiir den Punkt m finden wir analog

Y'm Ay =
Ax2 ” " ”
=Ym— Ym-1 + 12 (1,5Y"m-1+50y"m—0,5 Y'm+1)

oder auch
y’m Axr =

Ax?2
=Ym+1— Ym— q2 (—0,5y" -1+ 5,0 Y'm+1,5Y"ms1) ;

der Mittelwert

1 Ax2
(Gb) ylm'Am = ‘g (y1n+1 = ym-l) + ﬁ (y"m—l_ y"m+1)

besitzt gegeniiber den beiden Einzelwerten allgemein eine
deutlich verbesserte Genauigkeit.

5. Damit haben wir die Grundlagen bereitgestellt, die uns
die numerische Losung der totalen inhomogenen Differential-
gleichung zweiter Ordnung,

() ¥ +by +cy+F(z) =0,

erlauben; wir beschridnken uns hier aus Raumgriinden auf
den etwas vereinfachten Fall b = 0:

(Ta) y" +cy+ F(x) =0.

Die Losung dieser Gleichung beruht darauf, dass wir die eine
der beiden Gruppen von Unbekannten, y” oder y, eliminieren,
um ein System von Bestimmungsgleichungen fiir die andere
Gruppe zu erhalten. Die Méglichkeit der Elimination von y"
liefert uns die Seilpolygongleichung (3); wir haben nur die zu
losende Gleichung (7) fiir Az-fache Knotenlasten anzu-
schreiben,

(Tb) AxK, (y") + Az K,, (cy) + Az K, (R) =0,

um durch Einsetzen von

Aa"-Km (y") = Ym-1— Zym I Yms1

und

Az K, (c Y) = Y (Ym-1+ 10 Y+ Ym+1)
durch Ordnen die Bestimmungsgleichung

(8) —"ym-l(l‘l"y) +y,,L(2~10Y)*?!n,A1(1+Y) =
= Ax-K,,(F)

zu erhalten; dabei bedeutet

__ C-Ax2
==

Wir erkennen, dass auch verdnderliche Koeffizienten ¢ mit
Ym-1, Ym» Ym+1 USW. ohne jede Schwierigkeit beriicksichtigt
werden konnen.

Eine Randbedingung «y, gegeben» ersetzt uns die Be-
stimmungsgleichung fiir den Randpunkt A, wihrend wir fiir
«y,' gegeben» aus den Gleichungen (6a) und (7a) die Be-
stimmungsgleichung

(82) YA (1—3857,s) —y1(1+3,0y,) + Y2.0,5y2 =
Az - K, (F) —y, - Az
aufstellen koénnen.

6. Als Beispiel einer ersten Anwendungsform sei die Lo-
sung eines einfachen Anfangswertproblems

9) Yy ty=0

mit den Anfangswerten y,, Ys' besprochen. Die Bestim-
mungsgleichung (8) ist hier in der Form einer Rekursions-
formel

210
Ymi1= = 1 "Ym—Ym-1

(98) 1*+y

zu verwenden; sie liefert uns mit
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Ax2

12

alle folgenden Werte von y, ausgehend von den durch die An-
fangsbedingungen bestimmten Ausgangswerten y, und v;.
Wir kennen die Losungen:

Y'"+y=0 mit yp=0, y2’ =1 —» y=sina
Y= 15 iyat—=10 Yy =cCcosax

Y"—y =0 mit yp»=0, yA’=1 —» y—=Sinhg
ya=1, ya'=0 y = Coshux ;

unsere einfache Rekursionsformel Gl. (9a) muss je nach dem
Vorzeichen von y sowohl die Kreisfunktionen sinz, cosz wie
auch die Hyperbelfunktionen Sinhz, Cosha liefern.

Beschrénken wir uns auf die Anfangsbedingungen y, = 1,
Ya" = 0, so kénnen wir die zweite Anfangsbedingung als Sym-
metriebedingung formulieren:

L F oY,

1= 1+y Ya -

In Tabelle 2 sind die Rechnungsergebnisse fiir

Ax = 0,40, y = 0,01333,
Yme1 = 1,842105 * Yy, — Y1, y1 = 0,921053
Yms1 — 21162162 Ym— Ym-1, Y1 = 1,081081

zusammengestellt (6 Stellen berechnet, Ergebnis auf fiinf
Stellen auf- oder abgerundet).

Tabelle 2
x cos & Coshx
0 1,00000 1,00000
0,4 0,92105 1,08108
0,8 0,69668 1,33747
1,2 0,36230 1,81075
1,6 —0,02947 257766
2,0 —0,41659 3,76257

Fir z = 2,0 wiirden die genauen Werte nach Hiitte cosaz =
—0,41615, Coshx = 3,76220 bhetragen. Hitten wir dagegen
mit der Differenzenrechnung [vgl. Gl. (5b), K,, (y) = Az-y,,]
gerechnet, so hétten wir fiir « = 2,0 bei gleicher Intervall-
teilung die Werte — 0,42841 bzw. 3,71501, also einen wesent-
lich grésseren Fehler bei gleichem Zeitaufwand erhalten.

Es ist doch erstaunlich, wie brav und zuverlissig die
Punkte mit

Yms1 = 1,842105 - m — Ym-1

sich periodisch bewegen, widhrend sie mit

2+10y
*,T‘.‘/m"ym-r

=]

2-10y
Ymat = +—},'ym ~Ym-1

Bild 7
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Yms1 = 2,162162 * Yy — Yma

ebenso brav der Unendlichkeit zustreben (Bild 7).
Beachten wir, dass in der Gleichung

y'—y=0mit y, =1, y, ==+1
und damit in der Formel

2410y

1__Y Ym — Ym-1

Ym+1 —
auch noch die Funktionen e* und e-* enthalten sind, so kon-
nen wir feststellen, dass unsere numerische Losung Gl. (9a)
der Differentialgleichung (9) alle jenen Funktionen der Ana-
lysis enthélt, die in den Hand- und Taschenbiichern des In-
genieurs normalerweise tabelliert sind. Es wird nun aber
hoffentlich niemandem einfallen, sich mit Gleichung (9a) Pri-
vattabellen dieser Funktionen fiir den praktischen Gebrauch
auszurechnen; eine solche Anwendung wiirde nicht dem Sinn
unserer Ueberlegungen entsprechen.

Diese Ueberlegungen sollen vielmehr eine fiir die Bedeu-
tung der numerischen Methoden wesentliche Tatsache ver-
anschaulichen: die Analysis kann uns nur eine beschrinkte
Auswahl von Funktionen zur Ldsung unserer Probleme zur
Verfligung stellen, und diese wenigen Funktionen entspre-
chen nur den einfachsten Grundfillen. Sind diese einfachsten
Voraussetzungen nicht mehr erfiillt, so sind wir auf miihsame
Reihenentwicklungen angewiesen. Auf was filir unnatiirliche
Operationen dies fiihren kann, ist etwa aus der Platten-
berechnung bekannt, wo wir gezwungen sind, eine gleich-
méssig verteilte Belastung p nach der Fourier-Analyse in
Doppelreihen zu entwickeln.

Da wir aber die vollstédndige Differentialgleichung (7) fiir
alle in den Anwendungen vorkommenden Fiélle flir konstante
oder verdnderliche Koeffizienten, unabhingig von ihrem
Vorzeichen, und fiir jeden beliebigen Verlauf der Belastungs-
funktion in gleicher Weise numerisch 16sen konnen, enthélt
diese numerische Losung nicht nur die uns bekannten Funk-
tionen der Analysis, sondern auch noch die uns nicht be-
kannten oder noch nicht existierenden Funktionen, die uns
die Analysis somit nicht zur Verfligung stellen kann, die je-
doch die Losung unserer Probleme darstellen und die wir
deshalb im gegebenen Einzelfall benétigen, d. h. ihrem nume-
rischen Verlauf, wenn auch nicht ihrem mathematischen
Charakter nach, berechnen konnen miissen. Alle diese be-
notigten unbekannten Funktionen stecken in unserer nu-
merischen Losung drin; es ist unsere Aufgabe, sie heraus-
zuholen, wie dies vorstehend fiir einige der einfachsten Grund-
fille gezeigt wurde.

7. Als Beispiel fiir ein Randwertproblem sei noch die
Torsion mit Flanschbiegung (Timoshenko-Torsion) eines
Tragers mit symmetrischem I-Querschnitt betrachtet. Dem
dusseren Torsionsmoment 7 wird teils durch die Flansch-
querkridfte ), teils durch die inneren Torsionsmomente ¢
Gleichgewicht gehalten:

T4 O -h=GTs g — Bdp - b g™

Die Verteilung von T auf die beiden Anteile wird durch die
Elastizitdtsbedingung

. 'h
77—’1’?

bestimmt, oder es ist mit

a2 2GJg _ 4GJy

127 EJp h?  EJ,h?

die Grundgleichung

12
(10a) T = G-J',.( '—F"’"“)

zu lésen. Nun ist jedoch zu beachten, dass das dussere Tor-

sionsmoment 7,

T=T)+ X" Ty,
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bei beidseitiger Festhaltung der Stabquerschnitte statisch
unbestimmt ist, was nur deshalb meist nicht beachtet wird,
weil bei symmetrischen Tragern das Torsionsmoment 7' durch
die Querkraftanalogie bestimmbar ist. Es ist deshalb wohl
gerechtfertigt, von der von S. Timoshenko aufgestellten Tor-
sionsgleichung (10a) durch Differentiation und mit

h
T"=—mq, M=—EJp 7" =—EJp 5 ¥
auf die Bestimmungsgleichung fiir die Flanschbiegungs-
momente 9)} liberzugehen:
my

(10p) M — & g4+ M=o

; 2 o
Bei Belastung durch ein konzentriertes dusseres Drehmoment
M, tritt nun die Besonderheit auf, dass die Kurve der
Flanschbiegungsmomente 9} beim Lastenangriffspunkt eine
Unstetigkeit «,, infolge der konzentrierten Flanschbelastung

Mtl
= h

enthélt, diejedoch mit «,,, = W, (Bild5) durch Gleichung (4c)
leicht in der Knotenlast fiir 9} bzw. im Belastungsglied der
fiir diesen Fall angeschriebenen Gleichung (8) beriicksichtigt
werden kann; mit

__ a2 ) Ax?2
212

erhalten wir das System der dreigliedrigen Bestimmungs-
gleichungen zu

(IOC) —9)2”1-1(1—}’) + 9)2171 (2 + 10Y) — 9}}711«‘1 (1—Y) =

M"
:Ax.—’;l#~(1+y).

Es sei noch ein Zahlenbeispiel (Bild 8) mit

Jp =175 cm4, J;=24,0cm4, G = %E,

a? 3-2-24,0
e e 18] -10-3
12 8175 - 23,82 GisIaD S

2
Az = é =50cm, y = 0,181585 - 10-3- % =0,037830,

M d
h

Az - # 1+ vy) = 51,8915

skizziert. Tabelle 3 enthdlt die Auflosung des Gleichungs-
systems fiir frei drehbare Flanschenden, 9ix = Mp = 0, das
flir die untersuchte symmetrische Belastung M,; in m nur fiir
den halben Tridger anzuschreiben ist.

A My }25,acm
] ] Teseen
e ) ¥
2 ; 12cm —ﬁ’E
e e e U L=400cm ,_A_Mm,,____,‘
!
« £ ‘
\\—t,,=o,2w~Md d
% 1
/|
77/ "/T :
M,
1989 # term) ‘
Bild 8
279




Tabelle 3
\Dzl 9)22 9.)}‘3 g.n‘tm Bel. gl
3t 2,37830 | —0,96217 —
2 | —0,96217 2,37830 | —0,96217 —
—0,38958
— 1,98872 | —0,96217 —
3 —0,96217 2,37830 | —0,96217 —
) —0,46551
— 1,91279 | —0,96217 —
m —1,92434 2,37830! 51,8915
—0,96798
— 1,41032| 51,8915
Mg
m = 3,623 8,954 18,508 36,794 —
Ausden Flanschbiegungsmomenten 9t = — EJ p - 7" ergeben

sich die Flanschausbiegungen 5 als Seilpolygon, wéhrend nun

die Torsionsanteile t = GJg: ¢’ = GJz-2/h 7' durch Diffe-
rentiation mit den Gleichungen (6) bestimmt werden kon-
nen, wenn man nicht vorzieht, diese durch numerische Lo-
sung der Timoshenko-Gleichung (10a) mit fy’ = g’ = 0 di-
rekt zu losen.

Hitten wir mit Az = /4 = 100 cm, y = 0,151321, gerech-
net, so hiatten wir 9},, = 37,101 My/h, also um 0,839, grosser er-
halten, wihrend mit Az = 7/2 = 200 cm sich aus einer einzi-
gen Gleichung 9, = 39,869 M4k oder um 8,36 % grosser
ergeben hiitte, Wir kénnen daraus schliessen, dass fiir die ge-
wihlte Teilung Az = 50 cm der Fehler von ), kleiner als
0,1 9% sein wird. Diese praktisch mehr als geniigende Ge-
nauigkeit wird dann eingehalten, wenn durch entsprechende
Intervallteilung y < 0,05 gehalten wird.

8. Durch Kombination lassen sich die skizzierten Grund-
lagen erweitern, so dass auch hohere Differentialgleichungen
numerisch geldst und auch Membranen, Platten und Scheiben
berechnet werden konnen. Immer aber muss das Ziel einer
numerischen Methode sein, das gewiinschte Ergebnis in ge-
niigender Genauigkeit mit einer moglichst kleinen Zahl von
Bestimmungsgleichungen zu erhalten; an diesem Grundsatz
andern auch die neuesten Hilfsmittel, die elektronischen Re-
chenmaschinen, nichts.

Calcul numérique des plaques et des parois minces

Par Pierre Dubas, professeur assistant, EPF, Zurich *)

Introduction

Le présent article traitera le calcul numérique des corps
plans minces, c’est-a-dire des corps dont 1’épaisseur est faible
par rapport aux dimensions du feuillet moyen, équidistant des
faces. Selon le mode de sollicitation (fig.1), on parle de
plaques minces fléchies, lorsque les forces extérieures s’exer-
cent normalement aux faces, ou de parois minces, lorsque
les lignes d’action sont situées dans le feuillet moyen et que
la distribution est uniforme sur I'épaisseur ).

Fig. 1.

Parois mince Plaque mince fléchie

Nous nous proposons de montrer, dans les grandes
lignes, comment on peut appliquer a ces problémes a deux
dimensions la méthode du polygone funiculaire. Dans son
article qui précéde, le professeur F.Stiissi, le créateur de
cette méthode, en a exposé les principes; nous les sup-
poserons donc connus.

Théorie générale des plaques et des parois minces

Il n’est certes pas nécessaire de rappeler les hypothéses
simplificatrices et les conditions d’équilibre et de compati-
bilité qui permettent d’établir les équations différentielles

*) Conférence faite le 11 novembre 1960 a 1'occasion de la réunion
du groupe professionnel des ingénieurs S.I. A. des ponts et char-
pentes.

1) 11 s’agit donc d'un probléeme d'élasticité plane; on dit parfois
tranche mince ou disque, ce qui est la traduction littérale du terme
allemand Scheibe.

2) F'. Stilssi: Numerische Methoden der Baustatik, Schweizerische
Bauzeitung, page 2756 du présent numéro.
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régissant les problémes bidimensionnels. Nous nous con-
tenterons ici d’écrire ces équations bien connues 3).

Dans le cas des plaques fléchies isotropes, il s’agit de
I’équation de Lagrange:

04w 04w

tw _ p(4,y)
(1) ozt T2 022 0y?2 + oyt~ D

ol w représente 'ordonnée de la surface élastique, p désigne

E h3
12 (1—»2)
pendant de I’épaisseur h de la plaque et de I'élasticité de la
matiére,

Lorsque la plaque est anisotrope, ou plus spécialement
orthogonalement anisotrope (en abrégé orthotrope), c’est-a-
dire lorsqu’elle présente, par rapport a ses propriétés élas-
tiques, deux directions privilégiées paralléles aux axes de
coordonnées, on obtient I'’équation de Boussinesq:

la charge appliquée et D = est une constante dé-

04w 04w 94w
— + 2D, R + D, vl =p(xy)

Les constantes D,, D,,, D, sont fonctions des rigidités a la
flexion et a la torsion de la plaque orthotrope.

Ces équations différentielles permettent en principe de
déterminer, en tenant compte des conditions au contour dont
nous allons parler, les ordonnées w de la surface élastique.
Les sollicitations intérieures sont alors données par les re-
lations bien connues, reproduites ci-dessous pour les plaques
isotropes:

(2) D.

. 02w 02w
(3a) Moments de flexion: M, = —D (P—m‘l + » —ay—2)
. 02w
(3b) Moment de torsion: M., = —D (1—v») ETY
o (02w 92w
(3c) Efforts tranchants: @, = —D e (—a—x‘)— + TyT)
oM,

(3d) Réactions d’appui: V, = @Q:+

oy

M,, @, V, par permutation de x et y.

3) On consultera par exemple, pour les plaques minces, 8. Timo-
shenko et 8. Woinowsky-Krieger: Theory of Plates and Shells, 2éme
édition, McGraw-Hill, 1959; pour les parois minces, 8. Timoshenko et
J. N. Goodier: Theory of Elasticity, 2éme édition, McGraw-Hill, 1951.
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