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Die Grundlagen der dreidimensionalen Photoelastizität
Antrittsvorlesung, gehalten am 18. Juni 1960 an der Eidg. Techn. Hochschule in Zürich

Von Walter Schumann, Laboratorium für Photoelastizität der Eidg. Technischen Hochschule, Zürich DK 620.171.5

Die Photoelastizität umfasst eine Reihe experimenteller
Verfahren zur Bestimmung der Tragfähigkeit von Bau- oder
Maschinenteilen, die durch irgendwelche Kräfte beansprucht
sind. Um zunächst ihre Bedeutung für das Ingenieurwesen
zu zeigen, seien zur Einführung einige elementare Tatsachen
aus der Statik kurz erwähnt.

Die Tragfähigkeit einer Konstruktion hängt bekanntlich
einerseits von der Festigkeit des verwendeten Materials,
anderseits von der Grösse und der Verteilung der inneren
Spannungen ab, welche durch die von aussen wirkenden
Kräfte entstehen. Diese Spannungen, die in Form von Druck,
Zug oder Schub auftreten können, sind dabei definiert als
diejenigen Kräfte pro Flächeneinheit, die im Innern von
benachbarten Teilchen infolge des Zusammenhangs des
Materials aufeinander ausgeübt werden. Fordert man etwa wie
üblich, das nirgends eine bleibende Veränderung infolge
plastischen Fliessens eintritt, so müssen in jedem Punkt die
Spannungen, beziehungsweise gewisse Kombinationen von
ihnen, unterhalb eines bestimmten kritischen Wertes bleiben.
Der Ingenieur muss also den gesamten elastischen Spannungszustand

ermitteln, wozu ihm eine Anzahl rechnerischer
Methoden zur Verfügung stehen, die entweder auf der gewöhnlichen

Festigkeitslehre oder auf der Elastizitätstheorie
beruhen.

Die Festigkeitslehre ist relativ leicht zu handhaben, darf
aber genau genommen nur auf Systeme von dünnen, höchstens

schwach gekrümmten Stäben angewandt werden, wie
sie zum Beispiel in Fachwerken auftreten, und bei denen
also zwei Dimensionen klein sind gegenüber der dritten. Der
einfache Aufbau der Festigkeitslehre rührt von diesen
Voraussetzungen her; denn an Stelle der im allgemeinen Fall
notwendigen Betrachtung des Gleichgewichtes und der
Verformung jedes einzelnen Elementes genügt es, jeden
Querschnitt als Ganzes zu untersuchen und mit den globalen
Grössen wie. Momenten, Quer- und Normalkräften zu
operieren. Dieses Vorgehen sowie der nachher zu vollziehende
Uebergang zu den Spannungen am einzelnen Element wird
durch die vereinfachende Hypothese von BernouZli-Navier
über den linearen Verlauf der Formänderungen in jedem
Querschnitt ermöglicht, weshalb man mit einem ganz
einfachen System von Gleichungen auskommt. Wegen dieses
Vorteils wird die im Grunde genommen eindimensionale
Theorie auch gelegentlich dort verwendet, wo die Voraussetzungen

der Dimensionsverhältnisse nur teilweise erfüllt sind,
dann allerdings mit dem Nachteil einer mehr oder weniger
schlechten Annäherung. Für kleine Tragwerke, bei denen
der Materialaufwand eine sekundäre, der Zeitaufwand
dagegen eine primäre Rolle spielt, wo es also gleichgültig ist,
wenn die Tragfähigkeit etwas unterschätzt wird, mag man
sich damit begnügen. Handelt es sich aber um grosse
Bauwerke von ausgedehnter Spannweite oder um Leichtkonstruktionen,

wie sie etwa bei Flugzeugen vorkommen, bei denen
jedes überflüssige Gewicht eine entsprechende Herabsetzung
des Aktionsradius zur Folge hat, wird man der genauen
Spannungsbestimmung besondere Aufmerksamkeit schenken.

In solchen Fällen ist dann neben den allgemeinen wichtigen

Methoden der Baustatik die Elastizitätstheorie am
Platz, die an keine einschränkenden Voraussetzungen bezüglich

Dimensionsverhältnissen gebunden ist. Dieser Theorie

liegt aber ein viel komplizierteres System von Beziehungen
zu Grunde als bei der Festigkeitslehre, nämlich eine Anzahl
partieller Differentialgleichungen mit entsprechenden
Randbedingungen, die durch die Form der betreffenden Teile und
die Lage der äusseren Kräfte gegeben werden. Strenge
Lösungen in Form mathematisch geschlossener Ausdrücke sind
jedoch für solche Randwertprobleme nur in ganz wenigen
Fällen gefunden worden.

Um nun doch allgemeinere Probleme lösen zu können,
wie sie in der Praxis vorkommen, wurden einerseits
systematisch numerische, nicht an spezielle Beispiele gebundene
Methoden im Rahmen der angewandten Mathematik
entwickelt, bei denen die modernen Rechenautomaten wegen der
praktisch beliebig erreichbaren Genauigkeit unter gleichzeitiger

Zeitersparnis mit Erfolg verwendet werden können,
anderseits sind Verfahren aufgestellt worden, bei denen die
Spannungen mit einem Experiment an einem verkleinerten
Modell gemessen werden. Ein wichtiger Vorteil von Experimenten

gegenüber dem Aufsuchen von exakten Lösungen —
Aehnliches gilt übrigens auch für allgemeine numerische
Verfahren —¦ liegt darin, dass die Schwierigkeiten für alle
Aufgaben mit geringen Unterschieden die selben sind, wenn wir
von der Frage der Modellherstellung absehen. Hat man daher
einmal die Anfangsschwierigkeiten einer Messmethode
überwunden, so kann grundsätzlich jeder Fall erfasst werden, wie
kompliziert auch immer die Berandung sein mag.

Neben dieser Aufgabe dient aber die experimentelle
Spannungsbestimmung auch noch dazu, Anregungen für
neue Theorien ausserhalb des elastischen Bereiches zu
geben und bestehende Theorien in allen möglichen Fällen zu
überprüfen, da diese ja stets nur eine mehr oder weniger
gute Annäherung an die Wirklichkeit darstellen.

Für diese experimentelle Spannungsanalyse gibt es nun
eine ganze Anzahl verschiedener Methoden, je nach den dabei

verwendeten physikalischen Effekten. Im Grunde genommen

handelt es sich dabei um Messverfahren, die in erster
Linie die Formänderungen — also Dehnungen und Schiebungen

—¦ oder Verschiebungen liefern, sei es mit mechanischen,
optischen oder elektrischen Mitteln. Bei einem elastischen
Körper — mit welchem Typus wir uns von jetzt an
ausschliesslich befassen wollen — hängen aber die Formänderungen

linear mit den Spannungen durch das verallgemeinerte
Hookesche Gesetz zusammen, so dass sich auch eine entsprechende

Abhängigkeit zwischen den Messgrössen und den
Spannungen ergibt.

Bevor von gemessenen Spannungen in einem Modell auf
die gesuchten Spannungen in der Hauptausführung geschlossen

werden darf, muss man sich überlegen, ob mit genügender
Genauigkeit eine Aehnlichkeit zwischen dem kleinen und

dem grossen Zustand vorhanden ist, die diese Uebertragung
ermöglicht. Wir würden zunächst eigentlich vermuten, die
Spammngszustände im Modell und in der Hauptausführung
seien wesentlich verschieden voneinander, da ja im allgemeinen

das Modell nicht aus dem gleichen Material hergestellt
werden kann wie die wirkliche Ausführung. Es kann aber
gezeigt werden, dass unter der Voraussetzung linearer Elastizität,

kleiner Verformungen und bei homogenem, isotropem
Werkstoff die Unterschiede der beiden Zustände geringfügig
sind, da das einzige hiefür massgebende Aehnlichkeltsgesetz
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Bild 1. Schema des Strahlenganges für einen ebenen spannungsoptischen

Versuch

annähernd erfüllt ist. Bei den in der Praxis oft auftretenden
Fällen von inhomogenen Bauwerken, wie etwa im grossen
bei einer Staumauer, die sich zum Beispiel auf einen Fels
von niedrigerem Elastizitätsmodul abstützt, oder im kleinen
bei armiertem Beton, müssen selbstverständlich die gleichen
Elastizitätsverhältniss'e im Modell reproduziert werden, soll
auch dann noch die mechanische Aehnlichkeit bestehen.

Nach dieser Einleitung über die Modellversuche wollen
wir uns jetzt ausschliesslich mit denjenigen Messmethoden
befassen, bei denen durchsichtige Modelle mit polarisiertem
Licht durchstrahlt werden. Diese Methoden reiht man unter
den Begriffen Spannungsoptik oder Photoelastizität ein, da
es sich hierbei um die Ausnützung eines Effektes zwischen
optischen Grössen und Spannungen handelt. Bild 1 zeigt am
Beispiel eines dünnen Balkens, den wir uns aus einem
homogenen, isotropen und durchsichtigen Stoff hergestellt denken,
wie der spannungsoptische Effekt entsteht. Der scheibenförmige

Balken sei durch Kräfte am schmalen Rand
belastet, die sämtlich in der Mittelebene der Scheibe wirken sollen.

Dann liegen auch alle massgebenden inneren Spannungen
parallel zu dieser Ebene; es handelt sich daher um den
Spezialfall eines ebenen Spannungszustandes. Die
Beanspruchung in jedem Punkt eines solchen Zustandes wird
bekanntlich durch die zwei Hauptspannungen tri, »a und deren
Richtungen charakterisiert, die senkrecht aufeinander stehen.
Diese beiden Grössen beschreiben zusammen mit dem Winkel
a, den etwa ox mit einer festen Richtung bildet, den Zustand
vollständig, weil aus ihnen alle übrigen Spannungen im
betreffenden Punkt für anders orientierte Flächenelemente
berechnet werden können, so dass also der Spannungszustand
durch drei Grössen gegeben wird. Anschaulich versteht man
übrigens die Bedeutung von 01, 02 sehr leicht, wenn man
beachtet, dass sie dem Betrag und der Richtung nach die
extremale Beanspruchung geben, denn die absolut grössere
von beiden ist die maximale Spannung an dieserBitelle.
Ausserdem kommen beide in der Fliessbedingung vor, die ja für
die Festigkeit massgebend ist.

Stellen wir uns jetzt weiter vor, ein monochromatischer
und polarisierter Lichtstrahl durchquere die Scheibe senkrecht

an der Stelle, wo wir die Spannungen messen wollen.
Monochromatisches oder einfarbiges Licht erhält man etwa
aus Quecksilberlicht, indem man dieses ein Farbfilter
passieren lässt, das vom gesamten Spektrum nur die ge-

Lichtquelle wünschte Farbe, zum Beispiel grün, durchgehen
lässt, während der Rest vernichtet wird. Das
Licht werde ferner durch ein entsprechendes Filter

polarisiert, das wir hier Polarisator nennen,
und das von allen transversalen Lichtschwingungen

nur eine, für eine bevorzugte Richtimg,
durchtreten lässt, wogegen der übrige Teil
absorbiert wird. Wäre nun das Modell unbelastet,
so würde das so präparierte Licht

unverändert durch die Scheibe hindurchgehen und von einem zweiten,

nach dem Modell aufgestellten Polarisationsfilter,
genannt Analysator, gelöscht, wenn dessen bevorzugte Richtung

senki^ht zu derjenigen des Polarisators steht. Ein
Beobachter, der vom Analysator her gegen das Modell schaut,
würde dann überhaupt kein Licht sehen. Durch die Belastung
wird aber der ursprünglich isotrope Stoff im allgemeinen
anisotrop, weil infolge der Verschiedenheit der beiden
Hauptspannungen eine Bevorzugung gewisser Richtungen entsteht.
Das Material wird zu einer Art künstlichem Kristall,
demgegenüber sich polarisiertes Licht ganz anders als bei einem
isotropen Körper verhält. Der Fundamentalsatz der Kristall-
optik besagt nämlich, dass das auftreffende Licht in zwei
Komponenten zerlegt wird, die längs den Hauptrichtungen
schwingen — das sind hier die Richtungen von <ri und w2 —
und die hauptsächlich den Kristall mit verschiedenen
Geschwindigkeiten durchqueren. Die Folge davon ist eine
Versetzung der Knoten der beiden Schwingungskomponenten
nach dem Modell gegeneinander um eine Grösse S, die man
als relative Phasenverschiebung bezeichnet. Dieses Phänomen
heisst Doppelbrechung, ein Begriff, der von Experimenten
mit schief einfallendem Licht herrührt, weil dort die beiden
Komponenten infolge der Brechung nicht nur verschiedene
Geschwindigkeiten, sondern auch noch verschiedene
Strahlrichtungen besitzen, so dass ein Gegenstand schräg durch
einen Kristall beobachtet doppelt erscheint. Im vorliegenden
Fall des senkrechten Durchlaufens wird die Doppelbrechung
nur durch eine Aufhellung nach dem Analysator sichtbar,
da das Licht nach dem Modell nicht mehr linear polarisiert
ist, und somit auch nicht vom Analysator gelöscht werden
kann.

Die künstliche Doppelbrechung bei belasteten, ursprünglich
isotropen Körpern wurde von D. Brewster im Jahre 1816

entdeckt, womit der Grundstein zur Spannungsoptik gelegt
worden war *). Allerdings dauerte es noch fast hundert Jahre,
bis dieses Verhalten mit Erfolg praktisch ausgenützt werden
konnte, denn zuerst handelte es sich nur um die Feststellung
eines optischen Effektes qualitativer Art als Folge der
Belastung, während doch für die Spannungsoptik die quantitative

Umkehrung, also die praktische Ausnützung des
optischen Effektes zur Ermittlung der unbekannten inneren
Spannungen massgebend ist. Für uns, die wir heute gewöhnt
sind, stets sofort die praktische Seite eines physikalischen
Phänomens zu suchen, scheint es daher schwer verständlich,
dass es noch so lange gedauert hat, bis die eigentliche Entwicklung

der Photoelastizität einsetzte. Man darf aber nicht
vergessen, dass das industrielle Zeitalter nur etwa 50 bis 100
Jahre vor 1816 begonnen hatte, und in den Laboratorien
noch mehr der Wunsch nach naturwissenschaftlicher
Erkenntnis als das Bedürfnis für technische Anwendungen wach
war. Ausserdem findet man häufig vor der eigentlichen Blütezeit

einer Disziplin eine längere Periode der Pionierarbeit,
wie sie tatsächlich auch auf dem Gebiete der Photoelastizität
zu finden ist. Bevor nämlich A. Mesnager um 1900 in einer
fundamentalen Schrift die vollständige Bestimmung eines
ebenen Spannungszustandes gab, stellte F. E. Neumann schon
1841 eine allgemeine Theorie auf, welche die Abhängigkeit
der optisch messbaren Grössen von den Formänderungen
auf phänomenalogische Art erklärte. Elf Jahre später
veröffentlichte O. Maxwell eine entsprechende spannungsoptische

Theorie. Die ersten systematischen Messungen und
quantitativen Untersuchungen verdanken wir aber G. Wertheim,

der 1854 zahlreiche Versuche publizierte, und mit dessen

Namen wir heute noch das Grundgesetz der Spannungs-

*) Allgemeine Literatur über die Photoelastizität findet der
Leser am Ende dieses Aufsatzes.
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optik verknüpfen. Dieses Gesetz lässt sich anschaulich sehr
leicht aufstellen, wenn man beachtet, dass doch offenbar
der optische Effekt um so grösser sein muss, je ausgeprägter

die Anisotropie des Materials ist, das heisst je grösser
der Unterschied zwischen den beiden Hauptspannungen
«ri und <72 ausfällt. Der einfachste Zusammenhang zwischen
der relativen Phasenverschiebung und der Differenz der
Hauptspannungen ist aber der lineare, und daher dürfen
wir etwa schreiben

(1) ce (<ri — o%),

wo vor der Klammer als Faktor die Dicke e des Modells
steht, da natürlich der Effekt um so grösser ist, je dicker
die Scheibe gewählt wird. Schliesslich kommt noch eine

Konstante c vor, die von dem gewählten Material und der

Wellenlänge des Lichtes abhängt, und die man jeweils an
einem Eichstab,,in dem die Spannungen bekannt sind,
ermittelt.

Fragen wir uns jetzt, wie der spannungsoptische Effekt
auf zweckmässige und einfache Weise zur Bestimmung der
Hauptspannungsrichtungen und -differenzen im gesamten
Modell, und nicht nur an einem Punkt desselben, ausgenützt
werden kann. Die Aufhellung nach dem Analysator deutet,
wie wir vorher gesehen haben, auf die Anwesenheit von
Spannungen, genauer von Spannungsdifferenzen, hin. Nun
liegen aber umgekehrt nicht unbedingt keine Spannungen
vor, wenn Dunkelheit herrscht. Das Licht kann nämlich
auch dann gelöscht werden, wenn zum Beispiel zufälligerweise

die Hauptrichtungen mit den ausgezeichneten
Richtungen von Polarisator und Analysator zusammenfallen,
denn dann bleibt nach dem Modell nur eine der beiden
Komponenten des aufgeteilten Lichtstrahles übrig, und das
Licht ist somit auch nach der Scheibe linear polarisiert (Bild 1,

unten). Es kann aber weiter auch noch Dunkelheit eintreten,
wenn zufälligerweise die relative Phasenverschiebung ein ganzes

Vielfaches der Wellenlänge des Lichtes beträgt, weil dann
die Knoten der beiden Schwingungskomponenten zusammenfallen,

so dass diese wieder zu linear polarisiertem Licht
zusammengesetzt gedacht werden können. Ein Spezialfall
tritt übrigens auf, wenn die beiden Hauptspannungen gleich
gross sind. Zusammenfassend kann also gesagt werden, dass
die Dunkelheit ein Kriterium entweder für das Eintreten
gewisser Hauptspannungsrichtungen oder für das Eintreten
ganzzahliger Phasenverschiebungen pro Wellenlänge und
damit bestimmter Werte der Hauptspannungsdifferenzen ist.

Stellen wir uns jetzt vor, das gesamte Modell werde
flächenhaft mit monochromatischem und polarisiertem
Licht durchstrahlt, und man erzeuge mit einer Kamera ein
Bild des Modells jenseits des Analysators, wie es schematisch

in Bild 1 angedeutet worden ist, so werden auf diesem
Bild je nach Eintreten der vorher erwähnten Fälle helle
und dunkle Stellen erscheinen, die wegen der Kontinuität
in Form von Streifen auftreten. Das Feld dieser Streifen
liefert uns zwei Sorten von Linien minimaler Lichtintensität
(Dunkelheit), erstens solche, auf denen die
Hauptspannungsrichtungen parallel und senkrecht zur ausgezeichneten
Richtung des Polarisators sind, sie heissen Linien gleicher
Neigung oder Isoklinen, und zweitens solche, die einen Ort
konstanter Hauptspannungsdifferenz darstellen, sie heissen
Farbgleichen oder Isochromaten. Der Begriff «Farbgleiche»
rührt davon her, dass die Streifen bei Verwendung von weissem,

also mehrfarbigem Dicht infolge der Dispersion in den
Komplementärfarben des Spektrums erscheinen. Bild 2a
zeigt das Feld der Isochromaten und eilte traversierende
Isokline für den Fall des Balkens nach Bild 1.

Es bestehen nun eine Reihe optischer und photographischer

Kunstgriffe, mit Hilfe derer Isoklinen und Isochromaten
getrennt und besser als in Bild 2a dargestellt werden können.
Zum Beispiel erhält man bei niedriger Belastung eines
Modells aus einem Stoff mit kleiner optischer
Doppelbrechung nur die Isoklinen allein, weil dann in keinem
Punkt eine Phasenverschiebung erzeugt wird, die grösser als
eine Wellenlänge ist, so dass gar keine Isochromate
vorkommt (Bild 2b). Solche Isoklinenaufnahmen hat man zur
Vollständigkeit für alle möglichen Polarisatorrichtungen
auszuführen, um das gesamte Feld der Hauptspannungs-

m fs

Bild2. Biegebalken mit zentrischer Einzellast: a) Isochromaten

und Isokline, b) Isokline allein, c) Isochromaten allein

richtungen zu erhalten. Schliesslich gewinnt man das Feld
der Isochromaten allein aus einem stark doppelbrechenden
Modell, aber unter Verwendung von zirkulär polarisiertem
Licht, bei dem der Lichtvektor auf einer Schraubenfläche

um den Strahl herumdreht. Wie Bild 2c zeigt, erzeugt dieses

Licht genau das gleiche Isochromatenbild wie linear
polarisiertes, nur dass gar keine Isokline darin vorkommt,
weil keine Richtung ausgezeichnet ist. Dies kann auch
tatsächlich durch eine genauere optische Betrachtung bewiesen

werden.
Die Aufnahmen veranschaulichen übrigens deutlich, was

für ein zweckmässiges Mittel die flächenweise Erfassung des

Spannungszustandes mit Hilfe einer Photographie darstellt,
denn man erhält schon vor einer genaueren Auswertung
eine Uebersicht des Zustandes. Zum Beispiel erscheinen in
Bild 2 deutlich Spannungskonzentrationen an den Stellen,

wo die äusseren Kräfte wirken, weil in ihrer Umgebung
eine Häufung von Isochromaten hoher Ordnung stattfindet.
Allerdings darf nicht vergessen werden, dass alle diese Bilder

nur Spannungsdifferenzen und Hauptrichtungen, nicht
aber die Hauptspannungen selbst geben, so dass also für
die drei gesuchten Grössen nur zwei Informationen vortie-

gen. Diese Tatsache hat auch schon seit Beginn dieses
Jahrhunderts Anlass zum Aufsuchen von ergänzenden
Messmethoden gegeben, welche die fehlende dritte Information zur
Trennung der beiden Hauptspannungen liefern sollen. Heute
sind so zahlreiche Verfahren hierfür bekannt, dass ein ebener

Spannungszustand eines homogenen isotropen Körpers praktisch

kein Problem mehr darstellt.
Immer mehr aber meldete sich aus der Praxis der

Wunsch, die Spezialisierung auf zweidimensionale Zustände

fallen lassen zu können, aber erst mit A. G. Solakian (1935)

und G. Oppel (1936) wurden die Grundlagen zur dreidimensionalen

oder räumlichen Spannungsoptik durch Entdecken
des Erstarrungsverfahrens gegeben. Es ist leicht zu verstehen,

warum die Photoelastizität so lange auf ebene Zustände
beschränkt blieb. Würde man nämlich für ein dreidimensionales

Modell die selbe optische Anordnung wie vorher wählen,

so würde jeder Lichtstrahl eine endliche Strecke im
Innern des Modells durchlaufen, in deren Punkten im
allgemeinen ganz verschiedene Spannungen vorliegen. Man
erhielte alsdann einen resultierenden optischen Effekt als
Summe aller Phasenverschiebungen in den einzelnen Stellen,

der keinen RÜckschluss auf die Spannungsdifferenzen in
jedem Punkt erlauben würde. Da sich nicht nur die Beträge
der Spannungen, sondern auch deren Richtungen von Punkt
zu Punkt verändern, so dreht sich sogar die Polarisationsebene

jedes Lichtstrahles, so dass in Wirklichkeit sehr
komplizierte spannungsoptische Gesetze im Globalen
vorliegen, die heute noch ein teilweise ungelöstes Problem der
theoretischen Untersuchungen im Rahmen der Lichtausbreitung

in anisotropen, heterogenen Zuständen darstellen. Im
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Bild 3. Zerlegung einer zentrisch belasteten, am Rand
drehbar gelagerten Kreisplatte nach dem Erstarrungsversuch

Bild 4.

gonalen
Herstellung eines hexa
Schnittes

Spezialfall des ebenen Spannungszustandes tritt dieses
Problem nicht auf, da der Lichtstrahl nur auf einer kurzen
Strecke mit konstanten Spannungen die Scheibe durchquert.

Um dreidimensionale Zustände erfassen zu können,
musste daher neben anderen Möglichkeiten ein Verfahren
gefunden werden, mit Hilfe dessen jede Stelle im Innern,
wo Spannungen gemessen werden sollen, vom Rest des Körpers

getrennt werden kann. Nun gibt es heute Kunststoffe,
die erlauben, einen durch äussere Lasten verformten, aus
ihnen hergestellten Körper zum Erstarren zu bringen, so
dass nach Wegnahme dieser Lasten der Körper In ebene
Scheiben zersägt werden kann, ohne dass die Verformungen
in den Teilstücken verschwinden. Jede Scheibe kann auf
diese Weise mit den vorher skizzierten Methoden der ebenen
Spannungsoptik untersucht werden, wobei sich das Wert-
heimsche Gesetz auf die sekundären Hauptspannungen in
der SGhnittebene anwenden lässt. Das Festhalten der
Verformungen und der damit verknüpften Doppelbrechungseigenschaften

kann auf verschiedene Weise geschehen,
am einfachsten durch Erwärmung und nachfolgende
Abkühlung des Modells unter Belastung. Oberhalb der
sogenannten Erweichungstemperatur (etwa 80 °C bei Aral-
dit) wird der Stoff nämlich viel elastischer als bei
Zimmertemperatur und daher zu grossen Verformungen fähig, die
bei der Abkühlung erstarren und nicht zurückgehen, auch
wenn die Lasten nachher weggenommen werden. Anschaulich

lässt sich dieses Phänomen mit einem Zweistoffsystem
in der Art eines- Schwammes erklären, in dessen Innern ein
Stoff liegt, der oberhalb der Erweichungstemperatur flüssig,

bei Zimmertemperatur aber fest ist. Bei der erhöhten
Temperatur trägt der Schwamm allein die Lasten, während
nach Abkühlung die erstarrte Flüssigkeit ein Zurückgehen
des elastisch verformten: Schwammes-verhindert. Der
Vollständigkeit halber muss allerdings erwähnt werden, dass
dieses Bild nicht genau, der Wirklichkeit entspricht. In
Wahrheit besteht ein Kunstharz nicht aus zwei Stoffen,
sondern aus fadenförmigen Makromolekülen, die einerseits
durch stabile Bindungen, anderseits durch Bindungen
verknüpft sind, die nur bei Zimmertemperatur, nicht aber oberhalb

der Erweichungstemperatur wirksam bleiben.
Um jetzt zu verstehen, wie man in einem konkreten

Fall vorgeht, wollen wir den in Bild 3 skizzierten Spezialfall
einer am Rand drehbar gelagerten, dicken Kreisplatte

betrachten, die durch eine zentrische Kraft P belastet ist.

Bild 6. Isochromaten eines Meridianschnittes der Kreisplatte von Bild

Wäre diese Platte dünn verglichen
sbz' &i nüt ihrem Radius, so könnte man den

fi^f\~^''' Spannungszustand mit der Kirchhoff-
schen Theorie der Biegung dünner
Platten leicht berechnen. Im
vorliegenden Fall darf aber diese Theorie
nicht angewandt werden, denn es
handelt sich um einen allgemeineren
räumlichen Zustand, wenn auch nicht
um den allgemeinsten dreidimensionalen

Fall, da sowohl der Körper als
auch die angebrachten Kräfte rota-
tionssymmetrisch sind.

Der Spannungszustand wird in
jedem Punkt durch vier Grössen
beschrieben, durch die drei Normalspannungen

in drei Richtungen, hier
zweckmässig in radialer, tangentialer
und vertikaler Richtung, und eine in

der Meridianebene gelegene Schubspannung. Es mussten also
vier Informationen aus optlschenMessungen gewonnenwerden.
Bei dem vorher beschriebenen Erstarrungsverfahren wird man
hier natürlich zweckmässig die Meridianebenen als Schnittebenen

wählen und kann daher zunächst dem Körper einen
Meridianschnitt entnehmen, dessen Verformungszustand wegen

der Rotationssymmetrie alles enthält, was zur Bestimmung

des Verformungszustandes des ganzen Körpers
erforderlich ist. Dieser Meridianschnitt liefert bei senkrechter
Durchleuchtung zwei Informationen, da wie vorher bei der
ebenen Spannungsoptik ein Isochromatenfeld (Bild 5) und
eine Reihe Isoklinen erzeugt werden können. Bild 5
zeigt übrigens deutlich den Einfluss der zentrischen Last
durch eine Häufung der Isochromaten in der Umgebung
ihres Angriffspunktes, so wie wir es schon im ebenen Fall
festgestellt haben. In einem gewissen Sinn darf dieser Fall
Übrigens als räumliches Analogon zum einfachen Balken
von vorher aufgefasst werden; der Vergleich beider Bilder
verdeutlicht den Unterschied zwischen ebener und räumlicher

Singularität. Schliesslich sei noch auf die relativ grossen

Verformungen hingewiesen, die unter Umständen einen
störenden Einfluss im Rahmen des Erstarrungsverfahrens
bilden können, und die vom hochelastischen Zustand oberhalb
der Erweichungstemperatur herrühren. Natürlich wird man
danach trachten, diese Verformungen möglichst klein zu
halten, etwa durch Anbringen entsprechend kleiner Lasten,
was natürlich mit einem geringen optischen Effekt erkauft
werden muss.

Die Isochromaten- und Isoklinenbilder des Meridianschnittes

genügen nun aber nicht zur vollständigen Bestimmung

des Spannungszustandes, da vier Informationen
gebraucht werden. Zwar enthält der Meridianschnitt — wie
schon erwähnt — alles Nötige für den Verformungszustand,
der Lichtdurchgang wurde aber zu speziell gewählt. Es
muss eben jede Stelle im Innern eines dreidimensionalen
Modells in verschiedenen Richtungen durchleuchtet werden,
um die maximale Anzahl von Informationen zu bekommen,
und dies kann bei den herausgesägten Schnitten entweder
nach D. O. Drucker (1940) durch schief einfallendes Licht,
oder mit einem in jüngster Zeit viel verwendeten verfeinerten
Unterteilungsprozess erreicht werden. Das letztgenannte
Verfahren möge hier noch besonders erwähnt sein, da es
verhältnismässig einfach zu handhaben ist. Im vorliegenden Fall
besteht es darin, dass der Meridianschnitt weiter in prisma¬

tische Stäbchen zerlegt wird, die zunächst wie vorher

in tangentialer, dazu aber noch in radialer
Richtung mit polarisiertem Licht durchstrahlt werden

können. Auf diese Weise erhält man die beiden
in den Bildern 6 b und 6 c gezeigten Isochromaten-
felder. Aus Bild 6 a geht übrigens hervor, dass die
Zerlegung keine Störung des eingeprägten Verfor-
mungszustandes bewirkt hat. Selbstverständlich
muss beim Zersägen dafür gesorgt werden, dass die
Temperatur infolge der Reibung der Sägezähne
nicht über die Erweichungstemperatur steigt.

Im allgemeinen, nicht rotationssymmetrischen
Fall, bei dem der Spannungszustand in jedem Punkt
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durch sechs Grössen, drei Normalspannungen und drei
Schubspannungen, charakterisiert wird, genügt auch eine solche
Unterteilung nicht, um alle möglichen Informationen zu gewinnen.
Mankann aber jedes derprismatischen StäbchendurchAbschrägen

zweier gegenüberliegender Kanten in ein hexagonales
Prisma verwandeln, das in drei verschiedenen Richtungen
durchleuchtet werden kann (Bild 4), so dass man im ganzen,
da es für jede Richtung Isochromaten und Isoklinen gibt, sechs
Informationen erhält. Es scheint also, als ob damit der
gesamte Spannungszustand ermittelt werden könnte; in
Wirklichkeit sind aber diese sechs Informationen —¦ und übrigens
auch irgendwelche sechs anderen, mit anderer Zerlegung
erhaltenen ¦— nicht linear unabhängig voneinander.
Vielmehr kann bewiesen werden, dass höchstens fünf
voneinander unabhängige Grössen gemessen werden können, wie
wir sehen werden. Es liegt also eine gewisse Unbestimmtheit
vor. Anschaulich versteht man dies sehr leicht, wenn man
sieh etwa vorstellt, dass solche Lasten angebracht werden,
die in irgend einem Punkt einen isotropen Spannungszustand
erzeugen, wie er zum Beispiel bei einer reibungslosen
Flüssigkeit vorkommt, und für den alle Normalspannungen
gleich einem Wert oo sind, während überhaupt keine
Schubspannungen auftreten. Eine Photographie würde in diesem
Punkt für jede beliebige Zerlegung stets die Isochromate Null,
also keinen optischen Effekt liefern, weü wegen der Gleichheit

der Normalspannungen keine Differenzen vorliegen. Da
aber oo vollkommen beliebig sein kann, so ist der Spannungszustand

in diesem Punkt unbestimmbar. Es stellt sich daher
jetzt die grundsätzliche Frage, ob überhaupt mit optischen
Messungen allein ein räumlicher Zustand vollständig ermittelt
werden kann, und welches die allgemeinsten räumlichen
spannungsoptischen Beziehungen sind.

Hierzu möge man sich, dem Gedankengang F. E. Neumanns
folgend, vergegenwärtigen, dass der spannungsoptische
Effekt in erster Linie von den Formänderungen und nur indirekt

durch Vermittlung dieser von den Spannungen herrührt.
Wir müssen daher die allgemeinsten Beziehungen zwischen
den optischen Grössen, das sind Phasenverschiebungen oder
Lichtgeschwindigkeitsänderungen infoige der Belastung, und
den Formänderungen einerseits, sowie die Gleichungen
zwischen den letztgenannten und den Spannungen anderseits
aufstellen. Alle diese Grössen seien in irgend einem carte-
sischen Koordinatensystem (sei, x%, x$) durch entsprechende
Komponenten dargestellt. Wir bezeichnen die drei
Normalspannungen mit au, «722, 0-33 und die sechs paarweise gleichen
Schubspannungen mit 0-12 »21, ^23 (732, 0-31 g eis. Die
Gesamtheit der oy nennt man bekanntlich den Spannungstensor,

wobei das Wort Tensor im allgemeinen für ein
System von Grössen gebraucht wird, die sich bei Koordinatenänderungen

in einer bestimmten Weise transformieren, wie
das insbesondere für die Spannungen der Fall ist. Wir wählen

für das folgende diese abstrakte, kurze Darstellung mit
veränderlichen Indizes i, j, weil dann die Grundgleichungen
in besonders durchsichtiger und am leichtesten diskutierbarer

Form erscheinen. Analog zu den Spannungen können
die Formänderungen, das heisst die drei Dehnungen und die
drei Schiebungen, durch den sogenannten Verzerrungstensor
e,j angeschrieben werden, und schliesslich kann man auch die
messbaren optischen Grössen durch einen Tensor irtj
charakterisieren. Das letztere will besagen, dass jede optische
Messung, sei es mit polarisiertem Licht wie vorher, oder
zum Beispiel mit Interferenzerscheinungen, in Funktion der
sechs voneinander unabhängigen Komponenten wy (es gilt
wie bei den Spannungen irt] ir^) ausgedrückt werden kann.
Die iTij sind die Koeffizienten in der quadratischen
Gleichung, welche die optische Indikatrix von A.Fresnel definiert,
an der die Geschwindigkeiten aller möglichen, in beliebiger

Richtung laufenden Lichtstrahlen abgelesen werden
können. Fallen die Axen des cartesischen Koordinatensystems
mit den Hauptrichtungen zusammen, so erlauben die w« eine
anschauliche Erklärung, denn iru, Wm und ir-.w bedeuten dann
die Quadrate der Lichtgeschwindigkeiten der in diesen
speziellen Richtungen schwingenden polarisierten Lichtstrahlen,
während die gemischten Komponenten verschwinden.

Die dehnungsoptischen Grundgleichungen drücken sich
so durch eine lineare Beziehung zwischen den Tensoren wjj

S

£"¦!¦¦¦¦
Bild 6. Isochromaten eines Meridianschnittes; a) vor einer
verfeinerten Unterteilung, b) nach der Zerlegung tangential
durchleuchtet, c) Stäbchen radial durchstrahlt

und ey aus; genauer gesagt müssen die Verzerrungen linear
vom Unterschied -ir^ — i;28,j der beiden optischen Tensoren
des verformten und des unverformten Zustandes abhängen.
Hierbei bedeutet v die Lichtgeschwindigkeit im unverformten
Material und 8,-j den Einheitstensor, dessen Komponenten 1
oder 0 sind, je nachdem i j oder i =£ j ist, und der daher die
Isotropie des unverformten Zustandes beschreibt. Man kann
nun weiter zeigen, dass die allgemeinste lineare Beziehung
zwischen den Tensoren ir^— «a8y und sq im Fall eines
isotropen Materials nur zwei optische Materialkonstanten C\

'tS

•*

Bild 7. Reaktormodell, Westinghouse Research Laboratories, Pitts-
burgh, USA, Aufnahmen der Bilder 7 bis 10 von Dr. Leven und Dr.
Sampson freundlicherweise überlassen
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Bild 8. Zerlegung des Reaktormodells (Leven und Sampson)

und C2 enthalten kann und dass sie von der folgenden Form
sein muss:
(2) IT« ¦v*8i< Oi Hi + 02 e S{.

wo e die erste Invariante en + «22 + £33 des Verzerrungstensors

bedeutet.
Analog zu dieser Beziehung gelten im elastischen

Bereich lineare Gleichungen zwischen Spannungen und
Verzerrungen, nämlich das schon erwähnte verallgemeinerte
Boolesche Gesetz, das sich in dieser abgekürzten Schreibweise

durch die Gleichung

zen zwischen -ttu, •7722 und tt»s gemessen
werdenkönnen, niemals aber diese selbst.
Setzt man jetzt i — j, schreibt die beiden

Gleichungen (2) und (3) für
verschiedene Indizes an und subtrahiert
korrespondierende Gleichungen, so
entstehen sowohl links als auch rechts
Differenzen von Tensorkomponenten.
Daraus folgt aber, dass mit polarisiertem

Licht auch nur Differenzen der
Normalspannungen, nicht aber diese
selbst bestimmt werden können, womit

JftL i die vorherige Vermutung bewiesen ist.
Allerdings sind damit nicht alle

Möglichkeiten erschöpft, denn mit
Interferenzerscheinungen oder Brechen

Lä ungsindizesmessungen kann man
nicht nur Differenzen von
Lichtgeschwindigkeitsquadraten, sondern auch
diese selbst ermitteln. Diese Verfahren
lassen sich gewissermassen unter eine
Art höherer Photoelastizität einordnen,
da sie schwierig und nur mit besonderen

Mitteln möglich sind. Man würde
erwarten, dass mit ihnen vermöge (2)
und (3) der Spannungszustand

vollständig bestimmt werden könnte. Im Fall des Erstarrungsverfahrens

scheitert das aber unter anderem an der
Volumbeständigkeit der Kunstharze bei erhöhter Temperatur, wenn
diese belastet werden. Zum Beispiel erzeugt ein isotroper
Spannungszustand überhaupt keine Formänderung, so dass
sich hier auch kein Schluss von Formänderungen auf die
gesuchte Spannung o-0 ausführen lässt. Die Volumbeständig-

(3) 2G [eil + T=—-Si']
angeben lässt, worin G der Schubmodul und v die Poissonsche
Zahl sind, die beide zusammen das elastische Verhalten des
Stoffes charakterisieren.

Erinnern wir uns jetzt daran, dass Isochromaten und
Isoklinenbilder nur relative Phasenverschiebungen, oder also
Differenzen von Lichtgeschwindigkeiten bzw. von deren
Quadraten einerseits und Hauptrichtungen anderseits liefern,
so schliessen wir, dass mit solchen Aufnahmen nur Differen-
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Bild 9. Isochromaten der Horizontalschnitte aus Bild 8 (Leven und Bild 10. Isochromaten der Vertikalschnitte aus Bild 8 {Leven und
Sampson) Sampson)
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Bild 11. Modell
eines Blockes
des Donaukraftwerkes

Jochenstein

Die Aufnahmen
11 bis 13 sind von
Dr. Kufner,
Technische
Hochschule
Münch.,
freundlicherweise

überlassen
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Bild 13. Isochromaten in einer Parallelebene zur Symmetrieebene
{Kufner)

Bild 12. Isochromaten der Symmetrieebene des Modells von Bild 11

(.Kufner)

keit der Kunstharze bedeutet eben, dass die Poissonsche
Zahl v gleich 0,5 ist, oder jedenfalls in der Nähe dieses

Wertes, liegt, so dass die Gleichung (3) unbestimmt wird.
Diese Bemerkung zeigt übrigens, dass auch keine mechanische

Messung die fehlende optische Messung zu ersetzen
vermag.

Obwohl also hier eine prinzipielle UnVollständigkeit der
Spannungsoptik vorliegt, wird sie zum Glück in praktischen
Fällen nur selten eine Rolle spielen, da meistens die
Spannungen bloss an der Oberfläche eines Bauteils gewünscht
werden, weil erfahrungsgemäss auch dort die grössten
Spannungen auftreten. An der Oberfläche sind aber schon zum
vorneherein drei Spannungskomponenten bekannt, weshalb
die optischen Messungen durchaus genügen.

Falls aber doch auch im Innern die Spannungen
gewünscht werden, so kann man mit zusätzlicher numerischer
Integration vom Rand her Ins Innere vordringen. Das
wichtigste von M. M. Frocht und seinen Mitarbeitern seit 1952
ausgebaute Verfahren beruht auf der Verwendung der
Gleichgewichtsbedingungen

(4)
dXi

und erfordert daher die Bildung von Differentialquotienten
aus empirischen Funktionen, die durch Messwerte gegeben
werden. Dieser Prozess stellt bekanntlich in bezug auf die
Verschlechterung der Genauigkeit ein heikles Verfahren dar,
so dass die ursprünglichen optischen Messungen in diesem
Fall besonders genau ausgeführt werden müssen, was man
heute auch Immer mehr durch Verwendung von photoelektrischen

Mitteln zu tun bestrebt ist.
Zusammenfassend darf immerhin gesagt werden, dass

die wichtigste Methode der räumlichen Spannungsoptik, das
Erstarrungsverfahren, ohne besondere Schwierigkeit die
Spannungen vollständig an der Oberfläche und fünf Informationen

im Innern gibt, das heisst zwei Normalspannungsdifferenzen

und drei Schubspannungen. Unter Verwendung
besonders exakter Methoden und mit einem Integrationsverfahren

kann auch im Innern eines homogenen, isotropen, oder
mindestens stückweise homogenen, isotropen Körpers der
Spannungszustand vollständig gefunden werden, wodurch die
fragliche Kontrolle der Festigkeit gesichert ist.

Nach diesen prinzipiellen Betrachtungen soll noch zum
Schluss gezeigt werden, dass das Erstarrungsverfahren
tatsächlich auf praktische Probleme angewandt worden ist.
Bild 7 zeigt das Modell eines Reaktors, der unter Innendruck
stand, und dessen Spannungszustand in der Schale bestimmt
werden sollte. Diese Aufgabe wurde an verschiedenen
Laboratorien behandelt; die vorliegende Aufnahme stammt aus
einer von M. M.Leven und R. C. Sampson in denWestinghouse
Research Laboratories, Pittsburgh, USA durchgeführten
Versuchsreihe. BUd 8 gibt das zerlegte Modell mit vertikalen
und horizontalen Schnitten, während die dazugehörenden
Isochromaten in den Bildern 9 und 10 dargestellt sind. Diese
Bilder veranschaulichen deutlich den verwickelten und daher
durch Rechnung schwierig zu erfassenden Verlauf der
Spannungen. Schliesslich sei noch auf eine in München von
M.Kufner ausgeführte Untersuchung hingewiesen, wo es sich
um den Spannungszustand in der Saugrohrdecke eines
Blockes des Donaukraftwerkes Jochenstein handelte
(Bild 11). Die Bilder 12 und 13 geben dabei die Isochromaten
für die Symmetrieebene und einen dazu parallel gelegten
Schnitt. Diese Beispiele mögen zeigen, dass selbst schwierige
Aufgaben mit der Photoelastizität behandelt werden können.
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