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Die Büros der Gesellschaft sind auf das Erdgeschoss
und fünf Obergeschosse verteilt, wobei im Erdgeschoss in
erster Linie den Abteilungen mit starkem Publikumsverkehr
untergebracht sind. Im 6. Obergeschoss liegen die Büros der
Direktion, die dazugehörenden Sekretariate und die Sitzungszimmer.

Die Kantine mit etwa 250 Sitzplätzen, die Küchenanlage
mit einer Leistungsfähigkeit von 400 bis 500 Mahlzeiten und
ein Einstellraum für rd. 30 Personenwagen wurden ins 1.
Untergeschoss verlegt. Das 2. Untergeschoss enthält Heizung,
Kühlanlage, Trafo- und elektrische Verteilanlage,
Tankanlage für Heizöl und Archive.

Das ganze Gebäude ist voll klimatisiert, wobei die
zentrale Luftaufbereitung im 7. Obergeschoss erfolgt. Durch

Kanäle wird die Luft in Stockwerkszentralen geleitet und
dort, entsprechend den Regelzonen, nachbehandelt, um dann
durch Kanäle in den Korridordecken den einzelnen Räumen
zugeführt zu werden. Der Austritt in die Büros geschieht
durch die perforierten Deckenplatten aus Stahlblech, die
gleichzeitig als Schallschluckplatten ausgebildet sind. Durch
Oeffnungen in der Gangwand wird die verbrauchte Luft in
Kanälen zu den Stockwerkzentralen zurückgeleitet, um dort
entweder wieder aufbereitet oder als Abluft ins Freie ausgeblasen

zu werden. Die gesamte elektrische Installation, 220 V
und Schwachstrom, bzw. Telephon ist so ausgelegt, dass sie
der Umstellung der Raumtrennwände mit Leichtigkeit angepasst

werden kann.

Adresse des Verfassers:,Suter & Suter, St. Alban-Vorstadt 19. Basel.

Das Bestimmen von Näherungsbrüchen mit Hilfe der Curta-Rechenmaschine
Von Dr. H. Schilt, Biel

DK 68L14

Es sei die Zahl q und die Toleranz t > 0 gegeben. Man
sucht «Brüche Z/N derart, dass

t< (-4) < + t

und Z und N ganze positive Zahlen sind. Wir multiplizieren
die Ungleicfeng mit N und erhalten:

— Nt < (Nq — Z) < Nt
Die Zahl Nq — Z v ist ein echter Dezimalbruch, es ist peri
Auf-, bzw. Abrundungsbetrag der Zahl Nq; die Rundungsmethode

sei so gewählt, dass — 0,5 ^ v < + 0,5 ist. Ein
Bruch Z/N ist dann innerhalb der Toleranz (ein tolerierter

Bruch), wenn sein Rundungsbetrag v zwischen —Nt und
+ Nt liegt. Es gilt nun, auf möglichst rationelle Weise alle
tolerierten Brüche zu finden, deren Nenner nicht zu gross
sind.

Um die Methode zu erklären, benutzen wir eine
geometrische Darstellung. Wir tragen auf der Abszisse die Nenner

JV undHpngs der Ordinate den Rundungsbetrag v auf.
Zu jedem Näherungsbruch Z/N gehört in dieser Darstellung
ein Punkt Qu mit den Koordinaten x N und y v. Die
Punkte QN bilden ein Gitter innerhalb des Streifens
— 0,5 £ y < 0,5 (vgl. Bild 1).

B-+W«

m

^£S 6020

V~-N

Bild 1.

Wir denken uns nun die Radienvektoren vom Punkte 0
—>

zu den Punkten Qy gezogen und nennen diese Vektoren sN.
Bildet man die Fläche A des Parallelogrammes, das durch

—> —>
die Vektoren s#i und syz gebildet wird, so findet man:

A N±v2 — N%Vi (.NiN2q — N1.Z2) —
— (.N2Ni.q — JVüZi) NiZz — NzZ-L

Da Nk und Zk ganze Zahlen sind, muss A auch eine ganze
Zahl sein.

Wenn A 0 ist, so sind die beiden Brüche gleichwertig,

der eine ist bloss der erweiterte Bruch des andern; sjft ist
—y —»¦ —>

parallel zu s»2, oder s»2 csN1 (c ganzzahlig).
Wenn A ± 1 ist, dann ist das Parallelogramm eine

Elementarzetle, es hat dann weder im Innern noch auf den
Seiten, sondern nur in den Ecken Gitterpunkte. Offensichtlich

gibt es viele Möglichkeiten, aus dem Gitter Elemen-
tarzellen auszuwählen.

Bekanntlich kann man jeden Vektor des Gitters als
Linearkombination

—>• —y
SN CiSyi + C2Sff2

>¦ >¦
zweier geeignet gewählter Vektoren sm. und s#2 mit ganz¬

zahligen C\ und c-2 darstellen.
Von Vektoren, die diese Eigenschaft

haben, sagt man, sie
bilden eine Basis; dazu ist
notwendig und hinreichend, dass
diese Vektoren eine Elementarzelle

des Gitters aufspannen.
Die Eigenschaft des Vek-

E

tors sn, eine Linearkombination
—>¦ —>¦

der Vektoren sm. und s»a za
sein, bedeutet, dass man jeden
Näherungsbruch Z/N als
Kombination von zwei geeignet
gewählten Brüchen Z^jNi und
Z.zjN-2 finden kann:

Z_ _ cxZx + caZ3
N ~~ aNt + CitN*

Hinreichende und notwendige
Bedingung, dass man so alle
Brüche erhält, ist:

jViZs — NaZi=±l
Die Toleranzgrenzen v

— Nt und v + Nt bedeuten
in unserer Darstellung Geraden,

die von 0 ausgehen und
symmetrisch zur Abszissenaxe
liegen. Die Gitterpunkte, die

—iV
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tolerierten Brüchen entsprechen, liegen innerhalb des Winkelraumes,

den diese Geraden einschliessen. Die Aufgabe,
Näherungsbrüche innerhalb einer bestimmten Toleranz zu suchen,

besteht nun in zwei Teilen, nämlich erstens im möglichst ra- '

tionellen Aufsuchen einer geeigneten Basis für die tolerierten
Brüche, und zweitens im Bestimmen aller tolerierten Brüche

mit Hilfe dieser Basis.
ajagfur Lösung des ersten Teiles dient folgender Satz: Sind

Z-lJNx und Z2/W2 gekürzte Brüche, deren v verschiedene
Vorzeichen haben, dann gehört zum Bruch (Zi + Za)/(Wi + N2)
ein v, dessen absoluter Betrag kleiner ist als der grössere
der Beträge v% bzw. «2. Zum Beweis werde angenommen,
dass Vi a>0 und v-2 —b<0 sei. Es ist also:

Ntq — Zi Nsq- Z» — b

ZumBruch (Zig§Z2)/(.Wi + N^) gehöre der Rundungsbetrag
v. Es ist:

v (iVi + #2) q — (Z1 + Z2) =a — b

Da o und b positive Zahlen sind, ist |o — b\ kleiner als die

grössere der beiden Zahlen a und b.

Durch mehrmaliges Anwenden dieses Satzes kann man
aus den Näherungsbrüchen M/jVi und Z2/JV2 wieder zwei
Brüche Zg/Ns und Z4/N4, finden, deren zugehörige Rundungsbeträge

vs und V4 verschiedenes Vorzeichen haben und
absolut kleiner sind als der kleinere von v± und v%.

—y
Geometrisch sagt dieser Satz folgendes aus: Wenn Sju
—y

und Sjf2 die Radienvektoren zu den Brüchen ZijNx und Z2/Na

sind, so gehört zum Bruch (Zi + Z2)/(JVi + JV2) der Vektor
-> —y —>• —>¦
s# Sgl + sW2- Da der eine der Vektoren (sjra) nach unten

—>¦ ->•
und der andere (syi) nach oben gerichtet ist, nimmt s%- eine

Zwischenrichtung ein. Reiht man den Vektor mit dem ab-
—y

solut kleinern v (es sei sm) c mal an den andern, so beschreibt
man Gitterpunkte auf einer Gittergeraden, die in der Richtung

sm quer zur Abszissenaxe liegt und diese notwendigerweise

schneiden muss. Zum letzten Gitterpunkt dieser
Geraden vor dem Ueberschreiten der Abszissenaxe gehöre der

—y —y
Vektor sjra und zum ersten Punkt auf der andern Seite «#4.

Falls einer dieser Punkte auf die Axe fällt, stellt der
zugehörige Bruch den exakten Wert von q dar. Da auf dem Diffe-

—y —y —>¦
renzvektor 8^4 — s^s und dem Vektor s#a nur je am Anfang
und an der Spitze Gitterpunkte liegen können, bilden diese

beiden Vektoren eine Basis. Wir können mit diesen Vek-
—y —>•

toren gleich vorgehen wie mit den Vektoren s»i und Sjf2

und weitere Basen suchen, deren absolute Rundungsbeträge
kleiner sind als die der vorhergehenden. So gelangen wir
schliesslich zu einem Nenner M, der zu einem ersten
tolerierten Bruch gehört. Es bilden dann der zuletzt benutzte

-y —y
Vektor s& und der zum Nenner M gehörende Vektor sjf eine
geeignete Basis zum Aufsuchen aller tolerierten Brüche.
Damit kommen wir zum zweiten Teil unserer Aufgabe.

-y —y —y
Unter den Radien-Vektoren s csr + gs^ mit positiv

ganzzahligem gund ganzzahligem (positivem oder negativem)
c gibt es solche, deren Endpunkte im Winkelraum zwischen
den Geraden v —Nt und v + Nt liegen; diesen

Vektoren entsprechen tolerierte Brüche. Wenn zu sr der Bruch
>

X/K und zu 8m der Bruch YjM gehört, findet man daher die
tolerierten Brüche unter den Kombinationen:

z
N

cX + gY
cK gM

Unter diesen Brüchen sind nur diejenigen zu kontrollieren,
für die c und g teilerfremd sind, denn die andern sind nur
erweiterte Brüche von schon gefundenen. Zum rationellen
Aufsuchen macht man sich eine Tabelle, deren Kolonnen mit
den bestimmten Werten für c (z. B. c — 2, — 1, 0, 1, 2,

3...) überschrieben sind, während die Zeilen zu den Werten

g 1, 2, 3... gehören. In Jedem Feld dieser Tabelle ist

der Bruch mit den bestimmten c und g einzutragen; man
wird von vorneherein alle Felder durchstreichen, für die c

und g gemeinsame Faktoren aufweisen (z. B. c 4, g — 2,

usw.).
Durch Vergleich mit Nt kann man ausserdem in diese

Tabelle die Grenzen der tolerierten gegenüber den nicht
tolerierten und auch die Grenze zwischen den Brüchen, die
Meiner als q, und jenen, die grösser als q sind, einzeichnen.

(Vgl. die Tabellen zu den Beispielen.)
Die Theorie lässt sich leicht auf das Rechnen mit einer

«Curta»-Rechenmaschine übertragen, die bekanntlich eine

bequeme laufende Beobachtung der jeweils auftretenden
Zahlenbilder ermöglicht; in unserem Falle sind es die Zahlen

N, Nq und Nt, die laufend beobachtet werden müssen.

Man Itellt vorne im Einstellwerk (EW) die Zahl q und
hinten t ein, wobei die korrespondierenden Stellen von q und

t sowohl im EW als auch im Resultatwerk (RW) festgelegt
werden, solange der Rundwagen sich in Position 1 befindet.
Dreht man die Kurbel derart, dass im Umdrehungswerk
(UW) der Nenner N erscheint, so kann man im RW vorne
Nq Z + v und hinten Nt ablesen; zu beachten ist dabei,
dass negative v in der Zehnerergänzung erscheinen und dass
dann der Zähler Z durch Aufrunden zu bilden ist. Durch
Beobachten des Resultatwerkes können wir den Wechsel des

Vorzeichens von v erfassen (Uebergang der Dezimalen von
,0.. auf ,9.. oder umgekehrt); ferner können wir erkennen,
ob —Nt<v< + Nt ist (Vergleich der Kommastellen von
Nq mit Nt).

Um diese Methode zu erläutern, wählen wir zwei
Beispiele. Das erste haben wir sehr einfach eingerichtet, damit
man es auch graphisch vollkommen überblicken kann. Da
das Einstellwerk nur einmal eingestellt werden muss, schreiben

wir es nicht in die Kolonnen, ausserdem machen wir
keine besondere Kolonne für die Nenner, da diese im UW
erscheinen.

1. Beispiel, mit «Curta» Med. I lösbar:
q 0,218; t 0,002. Das EW wird folgende Einstellung
erhalten: ,218 00,002 nachher entstehen in den beiden Werken
nacheinander die Bilder der Tabelle 1 (vgl. auch Bild 1).

Tabelle 1

UW RW
000000, 000,000 00,000

N Nq Nt Z v
1 0,218 0,002 0 ,218
2 0,436 4 0 436
3 0,654 6 1 654
4 0,872 8 1 872
5 1,090 10 1 090
9 1,962 18 2 962

14 3,052 28 3 052
23 5,014 46 5 014

Bei der Bestimmung des Nennersprunges beachte man
folgendes: Falls in der Kolonne «Vorzeichenwechsel von v»
ein «Nein» steht, verwende man den eben benutzten Nennersprung

nochmals; steht dort jedoch «ja», so benutze man den
vorletzten Nenner als neuen Nennersprung.

Unsere Methode zum rationellen Aufsuchen des ersten
tolerierten Näherungsbruches hängt mit der Entwicklung
der Zahl q in einen Kettenbruch zusammen1). Alle
Näherungsbrüche In unserer Darstellung, die unmittelbar vor
einem Vorzeichenwechsel von v erscheinen, sind identisch mit
den Näherungsbrüchen des Kettenbruches von q. In unserem
Beispiel sind es die Brüche ^4, i/e, 9/8, B/sa • • • Ferner sind
die Teilnenner des Kettenbruches gleich der Anzahl der
Schritte mit gleichem Nennersprung. In unserem Beispiel
haben wir viermal den Sprung 1, je einmal den Sprung 4
und 5 und zweimal den Sprung 9 benutzt; der Kettenbruch

i) Ueber Kettenbrüche vgl. etwa Hardy-Wright: Einführung in
die Zahlenlheorie, übersetzt von H. Ruoff. S. 149 ff., München, Verlag
R. Oldenbourg.

NennerNeuer

wechsel von sprung Nenner

V
nein 1

1 + 1 2
nem 1

2 + 1 3
nem 1

3 + 1 4
nein 1 4 + 1 r>

ja 4 5 + 4 9
ja 5

9 + 5 14
ja 9 14 + 9 23

nein 9
23 + 9 32
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Tabelle 2

— 1 + 1 +2 +3 +4
3/14 5/23

X

X

X

7/32

12/55

9/41 11/50 13/59

X 8/37

13/60

18/83

x 16/73 X 20/91

11/51 17/78

22/101

19/87 X 23/105 25/114

1 >< X 26/119 X 30/137

kann man die lästige Kontrolle vermeiden. In
unserem Beispiel erkennen wir, dass ^s und 5/2s keine
aufeinanderfolgenden Näherungsbrüche für den
Kettenbruch sind, dagegen sind 2/B und B/23 zwei
solche. Unter den Brüchen:

X

14/65

Brüche kleiner als q

Z
~N~

2c + 5g
9 c + 23 g

Brüche grösser als q

von q lautet daher:

1
Q

4+jl
1 + 1

Der letzte Näherungsbruch (B/23) liegt schon innerhalb
der Toleranz, da v 0,014 < 0,046 Nt ist. Die beiden
letzten Näherungsbrüche 3/i4 und 5/2a bilden eine Basis;
man. erkennt das aus der Tatsache, dass 5-14 — 3 • 23 1
ist. Auch 2/9 und 6/23 würden eine Basis bilden, denn 5-9 —
— 2-23 — 1; dagegen bilden x/b und B/23 keine Basis, denn
es ist 5-5 —1-23 2. Theoretisch ist es belanglos, welche
von den beiden Basen man benützt, praktisch wird man zu
B/28 einen Bruch wählen, der einen möglichst kleinen Nenner
hat, also ki diesem Falle 2/9.

Wenn man beachtet, dass aufeinanderfolgende
Näherungsbrüche eines Kettenbruches immer eine Basis bilden,

Tabelle 3

UW RW
00000000, OOOO.OOO'OOO'OOOOO'

Vorzeichenwechsel

von

Nennersprung Neuer

Nenner

N Nq — Z + v Nt Z V

1 0,577 351 15 1 nein 1

1*
2
2
5
7
7

19
26
26
71
97
97

1+ 1 2
2
3
5

1,154 702
1,732 053
2,886 755

30
45
75

1

2

3

ja
ja

nein
2+ 1

3 + 2

5+2

3
5
7

7 4,041457 105 4 ja 7 + 5 12
12
19

6,928212
10,969 669

180
285

7

11

ja
nein 12+7

19+7
19
26

26
45

15,011126
25,980 795

390
677

15
26

ja
ja

26 + 19
45 + 26

45
71

71 40,991 921 1065 41 71 + 26 97
97

168
56,003 047
96,994 968

1455
2520

56
97

ja
ja

97 + 71
168 + 97

168
265

265 152,998 015 3975 153

Tabelle 4

findet man nun alle tolerierten Näherungsbrüche,
wobei man mit der «Curta» leicht bestimmen kann,
wo die Grenzen liegen. Wir haben die Ergebnisse in
Tabelle 2 zusammengestellt.

Tabelle 2 kann man beliebig fortsetzen. Da man eine
Basis zu Grunde gelegt hat, ist man auch sicher, dass man
auf diese Weise alle Näherungsbrüche innerhalb der
bestimmten Toleranz erhalten kann. Welchen von den vielen
tolerierten Näherungsbrüchen man nun für das bestimmte
Problem benutzen will, hängt von den Umständen ab. Handelt

es sich beispielsweise um die Bestimmung von Zähnezahlen

bei Zahnrädern, wird man denjenigen Näherungsbrüchen

den Vorzug geben, deren Zähler und Nenner
gebräuchlichen Zähnezahlen entsprechen oder sich in solche
bequem faktorisieren lassen.

Die Beziehungen der Tabelle 2 zu Bild 1 dürften dem
Leser leicht fallen und ihm die im theoretischen Teil
dargelegten Gesetzmässigkeiten klären helfen.

Als 2. Beispiel wählen wir q 0,577351 mit einer Toleranz

t 0,000015. Hier ist zur Bestimmung der Näherungsbrüche

«Curta» Modell II notwendig. Wir setzen ins Einstellwerk:

,577'351"00015". In der Tabelle lassen wir die Kolonne
mit den v aus, da v unmittelbar in den Dezimalstellen aus
Nq erkennbar ist.

Aus unserer Tabelle können wir wieder leicht die
Näherungsbrüche des Kettenbruches von q ablesen, diese lauten:I li 3/5- 4/7, "/lO. 15/26, *
bruchentwicklung heisst:

1 + 1

2+J__
1 + 1

Der Bruch 15S/26s ist innerhalb der Toleranz; um ihn zu
einer Basis zu ergänzen, können wir entweder 9T/i68 oder
56/o7 nehmen. Wir wählen den zuletzt genannten und füllen
Tabelle 4 aus; die dazu notwendigen Rechnungen und
Kontrollen können wir wieder mit der gleichen Einstellung im
EW besorgen.

— 4 —3 • 2 —1 10

X

347
"6ÖT

X

250
"433"

153
265

X

X

X

X

Ol

CO

O

CO

CO

CO

265
459

X

571

989

321
"60T

474
821

X

780

377
653

X
810362

"627"

515
892

668
1157

821
1422

X

683

1183

X

989
1713

586
1015

739
1280

892
1645

X

X

X

X

1101

698

1209

851
1474

1004
1739

1157

1403

X
403
"698"

556
"963"

709
1228

907
1571

X

1213

X

1116

1019

1765

X

877

1519

1851 1933

1269597 653

1181
933
1616 x1084 1907 2004 2101 2198

Brüche grösser als q Brüche kleiner als q

*) Zählt als neuer Schritt, weil In der gleichen Zelle ein «Ja» steht. Vgl. dazu den Kettenbruch.

490 Schweiz. Bauzeitung • 78. Jahrgang Heft 29 • 21. Juli 1960



Man kann sich fragen, welche Vorteile
das beschriebene Verfahren gegenüber dem
üblichen Kettenbruchverfahren aufweist. Zu-
nächst ist zu bemerken, dass die Näherungsbrüche

eines langen Kettenbruches unbequem
zu berechnen sind. Ausserdem ist auch die
Berechnung der Teilnenner mit Hilfe des
euklidischen Teilverfahrens nicht bequem, da
die verschiedenen Divisionen im allgemeinen
immer andere Divisoren haben, so dass man
die Rechenmaschine immer neu einstellen
muss; demgegenüber kommt man beim oben
beschriebenen Verfahren mit einer einzigen
Einstellung aus.

Dennoch gibt es Fälle, wo unser Verfahren

unbequem ist, nämlich dann, wenn die
Teilnenner des Kettenbruches grössere Zahlen

sind. In diesen Fällen und oft auch zur
Kontrolle ist es nützlich, das euklidische
Teilverfahren zu verwenden. Es sei q die
gegebene Zahl; davon spalten wir den
ganzzahligen Teil A0 ab, q — A0 r0, und bilden
«i S l/r0. Der ganzzahlige Teil davon sei A%,

also ist »i—Ai r-ijr0 der neue Rest. Mit
ihm bilden wir 02 — r0jrx. Davon ist wieder
der ganzzahlige Teil A2 abzuspalten, a% — A2

r2/ri und 03 ri/r2 zu bilden usw; der
Kettenbruch von q lautet dann:

1

q A0 +

Tabelle 5

BS + 1

A2 + 1

Dazu gehören die Näherungsbrüche

Zo \m
-No -A°
1 1 AxAo + 1

-nT~-Ao + 1lT AT
Z2 _ A2Zt + Z0

N2 AiN1 + N0
Z3 AaZ2 + Zx

Programm für Curta I
EW H UW

,00000000

ro

m

r-i

RW

000,000 ,000000..

-Ai <—n
+ yr-L + ro

—yr0
000,000 i
A2 < r2
+ -gäfifiapig

—>¦ M

000,000 4
A3 < r3

Beispiel: q — 3,14159265

Curta I
HEW

,00000000
14159265

00885145

00882090

UW RW

000,000 ,00000000.
1

7 < 00885145

+ 15044410

— 14159265

000,000 i
15 < 00882090

+ 01767235

— 00885145

000,000 X
1 00003055

3,14159265

Zi
NX

Z/N
A0

A0 +
1

"AT

Z2 I MZx + A0
N2

"

A2Nx + 1

Z3 A3Z2 + Zx

g3= ASN2 + Nx
usw.

v — Nq — Z

»•0

— rt

+ rs

r3

A0=3 r0 ,14159265

Z/N Nq — Z

3 + 0,14159265

3 + * - 22
3 + T-"7"

— 0,00885145

15-22 + 3
_

333
+ 0,0088209015-7 + 1 106

333 + 22
106 + 7

355

Tl3" — 0,00003055

15

Nx AaN2 + Nx

Wie oben setzen wir Nq—Z v und erhalten:

«o n>; vx — m v2 + r2; v3 — rs

Das euklidische Teilverfahren kann man für die
Rechenmaschine «Curta» programmieren [vgl. dazu Tabelle 5 und
die Ausführungen in SBZ 76. Jahrg., Heft 21 (24. Mai 1958),
S. 319 ff].

Der Leser möge selber versuchen, die Beispiele nach
beiden Methoden zu rechnen; er wird leicht feststellen, dass
sie sich gut ergänzen, da wo die eine bequem ist, gibt die
andere eine umständliche Rechnung und umgekehrt.

Die Kombinationen zum Bestimmen der tolerierten
Näherungsbrüche kann man auch mit Hilfe der Kettenbrüche

darstellen. Es sei Zu/Nu der erste tolerierte
Näherungsbruch, wozu der Teilnenner AM gehöre. ZkjNr sei der
unmittelbar vorangehende Näherungsbruch mit dem
Teilnenner AK. Es sind dann die oben bestimmten Kombinationen:

g'Zg + of§gf
gNu + cNK

A0 + 1

Ai +1
A2 + I

+ Atr + 1

Daraus ist ebenfalls ersichtlich, dass so die tolerierten
Brüche auf die rationellste Weise erhalten werden.

Adresse des Verfassers: Dr. H. Schilt, Höheweg 6. Biel.

Mitteilungen
Die erste Gasturbinenlokomotive Russlands. Die von den

Kolomna Lokomotivwerken erstellte Einheit stellt die eine
Hälfte einer Doppellokomotive von 7000 PS dar, mit welcher
Züge von 3000 t auf ebener Strecke mit einer maximalen
Geschwindigkeit von 100 km/h befördert werden sollen. Die
einzelne Einheit wiegt 140 t, ist rd. 20 m lang und ruht auf
zwei dreiachsigen Triebdrehgestellen, deren Räder 1050

Millimeter Durchmesser aufweisen. Die Gasturbine arbeitet
nach dem offenen Verfahren ohne Wärmeaustauscher und
leistet bei 15° C und 760 mm Hg 3500 PS bei 8500 U/mln. Die
höchste Gastemperatur bei Turbineneintritt beträgt 727° C,
der Brennstoffverbrauch bei Vollast 327 g/PSeh, was beim
verwendeten Schweröl einem thermischen Wirkungsgrad von
20,8 % entspricht. Der zwölfstufige Axialkompressor arbeitet
mit einem Luftdurchsatz von 23,6 kg/s. Es bestehen sechs

ringförmig angeordnete Verbrennungskammern. Die an sie
anschliessende Turbine ist vierstufig. Sie treibt über ein
Reduktionsgetriebe zwei Haupt- und einen Hilfsgenerator an.
Jeder Hauptgenerator versorgt zwei parallelgeschaltete
Traktionsmotoren von je 340 kW bei 545 V, 670 A und 705

U/min. Eine Beschreibung des neuartigen Fahrzeugs findet
man in «The Railway Gazette» vom 10. Juni 1960, S. 683.

Zusammenarbeit Gardy/Feller. Die beiden führenden
Fabrikations-Firmen Gardy S. A., Genf, und Feller AG., Horgen,

sind übereingekommen, auf dem gesamten Gebiete der
Apparate für elektrische Hausinstallationen enger zusammen

zu arbeiten und eine Rationalisierung der Fabrikation
durch Aufteilung der Fabrikationsprogramme vorzunehmen.
Die Firma Gardy S. A. konzentriert In Zukunft ihre Kräfte
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