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ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.U. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHESMOCHSCHULE G.E.P.

Spannungen in Zylinderschalen endlicher Länge

Von E. Eberle, dipi. Ing., Winterthur

DK 539.4.012.2:621.642.3

Analogie mit dem Träger auf elastischer Bettung
Infolge der gesteigerten Anforderungen an die Werkstoffe

wird die Kenntnis der Spannungen in den Bauteilen
immer bedeutungsvoller. Das Wer behandelte Problem der
Spannungen in Zylinderschalen stellt sich häufig und in
mannigfacher Weise auf den verschiedensten Gebieten der
Technik. Insbesondere erlaubt die Analogie mit dem Träger
auf elastischer Bettung eine Anwendung im Bauwesen. Es
wurde besonderer Wert auf die Untersuchung verhältnismässig

kurzer Zylinder bzw. Träger gelegt, bei denen sich
die Randeinflüsse über die ganze Länge der Schale bemerkbar

machen. Wie gezeigt wird, ist damit keine Beschränkung

auf einen engen Anwendungsbereich verbunden, da
sich die Ergebnisse, dank einer typischen Eigenschaft von
Schalen, leicht auf beliebig lange Zylinder übertragen lassen.
Ein Beispiel am Schluss zeigt die Anwendung der Kurven.

1. Einleitung
Das Problem der Spannungen und Deformationen von

zylindrischen Schalen unter radial wirkenden Belastungen
ist mathematisch gleichbedeutend mit dem Problem des

Balkens auf elastischer Bettung. Gerade dieses wurde sehr
früh durch die Erfordernisse des Bauwesens aufgeworfen
(Eisenbahnoberbau, Fundamentierungen usw.). Deshalb sind
auch die meisten Arbeiten auf diesem Gebiet zu finden [1],
[2], [3], [4], [5] i). Grundsätzlich können alle komplizierten

Belastungs- und Lagerungsfälle aus drei Grundfällen
durch Superposition gebildet werden. Um den Umfang auf
das Wesentliche zu beschränken, soll hier nur auf diese drei
Grundfälle eingegangen werden. Eine vollständige Behandlung

aller Fälle findet sich in [9]. Die graphische Darstellung

des Spannungsverlaufes soll es erlauben, sich schnell
ein Bild über den Einfluss von Einspannung, Zylinderlänge
usw. machen zu können (siehe auch das Beispiel am
Schluss).

2. Theorie

21. Zylinder (Bild 1)
Ein Zylinder von konstanter Wandstärke h, dessen mittlerer

Radius a betrage, ist durch eine Flächenlast p über die

ganze Länge Z belastet. Die Belastung p kann vom Innendruck

oder von der Fliehkraft infolge Rotation des Zylinders
herrühren. Das Verhältnis der Wanddicke h zum Radius a
sei klein; dadurch wird der Einfluss der Schubspannungen
auf die Deformationen vernachlässigbar. Ferner sei

angenommen, dass sämtliche Belastungen kreissymmetrisch
wirken und dass in axialer Richtung keine Kräfte auftreten.
Von besonderem Interesse sind die Längs-Biegespannungen
und die Tangentialspannungen, während die Quer-Biege-
spannungen, die Schubspannungen und besonders die Radiâl-

spannungen in ihrer Bedeutung zurücktreten.
Die Differentialgleichung des Problems sei als bekannt

vorausgesetzt; man findet deren Ableitungen in [7] und [8].
Mit den am Schluss des Aufsatzes zusammengestellten Be-

pspäinungen lautet sie:

wobei die Abkllngungszahl X kennzeichnend ist für die

Schnelligkeit, mit der die Wirkung einer Störung abklingt.

i) Die Zahlen in eckigen Klammern beziehen sich auf das

Literaturverzeichnis am Schluss des Aufsatzes.

Dabei ist

(2a) X 3(1 —
0S\2m

Den Ausdruck I* nennt man die Biegesteifigkeit einer
Schale bzw. Platte.

(2b) /*
fes

12 (1 — ?2)

Die Lösung der Differentialgleichung kann nach Einführung
der Beziehungen

(3a) n X l
(3b) n y/a.

(3c) £ x/l
in folgender Form dimensionslos geschrieben werden:

p a
(4a) v v

+ B coshn £ sin n £

ijji -^=- -rr—\- A coshw£ cosra£
E h
C sinhn£ cosw£ + D sinhw£ sinni

Die partikuläre Lösung vp stellt die Dehnung des Zylinders
durch die Belastung p dar, während die Lösung der homogenen

Differential-Gleichung % mit den Integrationskonstanten

A, B, C, D die Randeinflüsse wiedergibt.

(5a) lï=j§-;!
(5b) ijh A coshw£ cosm|

+ C sinh n £ cos n £

Mit den Koeffizienten

(6)

B cosh n £ sati £ +
D sinh n £ sin n £

cosh n £ cos n £

ß cosh m £ sin n £

y sinh n £ cos n £

8 sinhw£sinn£

lassen sich die Formeln" stark vereinfachen. So lässt sich die

allgemeine Lösung in folgender Form darstellen:

(4b) ii Vt + Aa + Bß + Cy + DS

I

SULZER
91940

Bild 1. Schematische Darstellung des Problems
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Zur Bestimmung der Integrationskonstanten aus den
Randbedingungen ist es notwendig, die Beziehungen zu kennen,
durch welche die Randmomente und Randkräfte mit den
Auslenkungen und deren Ableitungen zusammenhängen.

(7) Längs-Biegemoment M :

d£2

(8) Querkraft Q

EI'

dM
dx is

EI*

dAy
dx"*

dsv

Z2 d£?

d3l)

Der Aufbau der Formeln lässt die Aehnlichkeit mit der
allgemein bekannten Biegetheorie des Balkens leicht erkennen.
Es ist nur das Trägheitsmoment 7 durch die Biegesteifigkeit

I* zu ersetzen. Der Unterschied ist eine Folge der
unterdrückten Querdehnung in Umfangsrichtung bei der
Schale. Dies führt zum Aufbau einer Querbiegespannung

(9) <T(, vai,

in Umfangsrichtung und schliesslich zu einer Versteifung,
die im Verhältnis

(10) -Ç= *
I 1 — v£

zum Ausdruck kommt.
Abschliessend zu diesem Kapitel seien noch die Formeln

angegeben, die die Abhängigkeit der Spannungen von den
Deformationen und deren Ableitungen wiedergeben:

(IIa) Tangentialspannung <rt Eii

(IIb) Längs-Biegespannung at

äA-q

(9) Querbiegespannung äi, vn

h h

QM
h*

6 M* dP-q

(11c) Schubspannung t
d^v

dp
d*v

22. Träger auf elastischer Bettung (Bild 2)

Unter Annahme einer ideal elastischen Bettung gilt die
Beziehung p C y mit C als Bettungsziffer. Eine einfache
Ableitung auf die hier verzichtet werden kann, führt zur
Differentialgleichung

(1) d*y
dx* CEI y

p
EI

Die äussere Belastung p kann natürlich beliebig geartet
sein, doch soll sie hier als konstant vorausgesetzt werden,
was selbstverständlich an den prinzipiellen Erwägungen
nichts ändert. Die Analogie zur Differentialgleichung des

Zylinders ist sofort erkennbar. Aus den im Abschnitt 21
erwähnten Gründen tritt an die Stelle der Biegesteifigkeit 7*
der Schale das Trägheitsmoment 7 des Balkens

(2b) 7»

(2b) 7:

h»

12 (1 — e2)

"Ï2"

immer für eine Breite von 1 cm gerechnet!
Aus dieser Analogie kann wechselseitig Nutzen gezogen

werden, indem Formeln, Kurven usw., die für das eine
Problem aufgestellt worden sind, sich mit entsprechenden Ab¬

änderungen auch für das andere verwenden lassen. Die
Bettungsziffer C gibt die elastischen Eigenschaften des Grundes

wieder, und der Bettungsdruck p übt auf den Balken
denselben Einfluss aus, wie die Tangentialspannungen auf
einen Längsstreifen des Zylinders. Diese Ueberlegung führt
zur Einführung eines ideellen, äquivalenten Zylinders mit
der Wandstärke h und dem Radius 5. fieser Ersatzzylinder
hat die selben elastischen Eigenschaften wie ein Balken
von der Höhe h, der auf einem Grund mit der Bettungsziffer

C aufliegt.
Um dem fehlenden Einfluss der Querdehnung beim

Träger auf elastischer Bettung gerecht zu werden, ist beim
Ersatzzylinder die QuerdehnungszahMi' 0 anzunehmen.
Unter diesen Annahmen wird der Radius des äquivalenten
Ersatzzylinders

a — ]/CEh

und mit der Abklingungszahl

X *|/(4CE7) i
ergibt sich

(Ï)
dx* "

V

El
Damit ist vollkommene Analogie hergestellt, und der Träger
auf elastischer Bettung kann ersetzt werden durch einen
gleichwertigen Zylinder unter Beachtung von v 0. Damit
im Einklang steht auch, dass beim elastisch gestützten
Balken keine Quer-Biegespannungen auftreten.

3. Ergebnisse
Da die Differentialgleichung linear ist, kann vom

Superpositionsprinzip Gebrauch gemacht werden. Ferner erweist
es sich als nützlich, die Deformationen und deren Ableitungen

dimensionslos darzustellen. Folgende spezielle
Belastungsfälle werden als Grundfälle benützt:

I. Der linke Rand erfährt eine radiale Dehnung vom
Betrage -q0* 1, während am rechten Rand im 0 erzwungen

wird (p 0).

Randbedingungen:
linker Rand io * — i; 9>o 0

rechter Rand vi 0; Vl | 0

II. Der inke Rand erfährt eine Neigung gegenüber der
Axrichtung vom Betrsige 90* i)o, während am rechten
Rand 771 0

Randbedingu

erzwun

ngen:

gen wird (p -- 0).

linker Rand 90*
WÊdy\ - a

ï \dx)x üoÜÜ
di)

"ST «o ; Vo B 0

rechter Rand i?i 0; cp! 0

III. Der Zylinder wird auf seiner ganzen Länge durch
eine Flächenlast p* E ¦ h/a belastet, während an beiden
Rändern 7) 0 erzwungen wird.

Randbedingungen :

linker Rand 7)0 0; <po 0

rechter Rand 1)1 0; 91 0

In Tabelle 1 sind die Integrationskonstanten A*, B*,
C*, D* für diese Grunaralle zusammengestellt. Mit deren
Hilfe werden folgende Spanniffil^koemSenten gebildet:

h x

Bild 2. Trager auf elastischer Bettung

Ta bei e 1

Fall Diagramm
Integratlonskonslanten

Sì Si A' B* C* D*

1 2 ¦'i'. cosh» sinh» + coswsßmj
— B* sinh2» + sin*m

1 sinh2» -— sin2$ïjE sinh2» — sin2»

TT 3 4 0
sinh2«.

1—-B*
costim sinh» — cos» sin»

sinh2»— sin2» sinh2» — sin2»

III 5 6 — 1
coshn — cos m

sinhn + sin» B* sinh» — sin»
sinh» -f- sin»
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Fall I Fall I Fall IH

¦no*-i t)i °
<p0 =0 <p, =o

7)0=0
<Po n0

71,=0
Ti -0

•ni-o
<p,=0

2,5 \ %<:
4,U
6,0-

^^^5 ^ ),5 t 1

jX^\
¦^

^z\\ 1,4
ft, 2

1,0
0,8

^\

0,5

^X
¦\\N\ 0,8

1,8
2,5
4,0

;6,o

-V
\\ V^ //\\ \%i /A/A /\ \ A\m

n

\ \
\ >

\ w
V \\\\ 0,5 i-^=-

sb

\//
u << i

A*r
Am// i

Ü> -6,0 -n

^\
-4,0p
2,5

/, A.X^ 1,8
1,4^"1,21
1 0\ 0,8

2

//

s,

0,2

0,8 n

% 1,0
1,2
1,4
1,8

?,5
\yà

r— I'Vyi—"*

I 6,0 \£ 0,5

fi,(l
AT4,0X

2,5.
1,8n

b

0
è 0,5

n 0,8
1,0
1,2'
1,4

my*A
A)

6,0

4,00.5
2.5
1,8

1,4

1.2

0,5

Bild 3. Diagramme der Spannungskoeffizenten, oben 8t, unten St für die drei Grundfälle in Funktion der Verh&ltnlszahl £ xß

Spannung

(12a) für Tangentialspannungen Tabelle 2

St Vp* + A* a + B* ß + C* y + D* S

(12b) für Biegespannungen
Si, — A*8 + B*y — C*ß + D*a a

mit vp* 0 für Grundfall I und II und vP* 1 für Grund- (13a) Tangentialspannung at voES, -^ESt V -^-St
fall III. Diese Koeffizienten sind in den Diagrammen 1 bis
6 (Bild 3) in Funktion von y und £ dargestellt. In Tabelle 2 (13b) Biegespannung ab
sind die Formeln für die Spannungen zusammengestellt,
wobei

Grundfall
II III

»o h

î/nzr i —c2

Unter Beachtung der Beziehungen
dy a dv v dSt

(14a) ^W=:T-S£ =K'-dT Und

Î&ÊÊÊ dM dM r, dSh
{lih)Q ATx =T-df K*Aîr
können auch auf graphischem Wege Neigung und Querkraft

gefunden werden. Die Ausdrücke für die Koeffizienten
K,f und Kg sind in Tabelle 3 angegeben.

Schweiz. Bauzeitung • 77. Jahrgang Hefl 31 • 30. Juli 1959

Tabelle 3

Koeffizient
Grundfall

II III
a

(15a) K9 — -y-ijo
To

»
a p a
T~W~h

(15b) KQ 2»2Q*i)o 2»2<?*^1
»o
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Im Maschinenbau tritt häufig das Problem auf, die
Spannungen in rotierenden Trommeln zu bestimmen. In
diesem Falle ist an die Stelle von p • a/h die Spannung des
frei rotierenden Ringes <r„ pw2 zu setzen.

4. Zusammenfassung
Bei der Betrachtung der Diagramme fällt auf, dass eine

Störung in einer dimensionslosen Entfernung von »£ 3

vom Störort (absolute Entfernung x 3/X) praktisch
abgeklungen ist. Damit erhält die Bezeichnung von X als Ab-
klingungszahl ihren Sinn. Es hat also keinen Sinn, die
Diagramme für grössere Werte als » 6 zu bestimmen. (Jeder
Rand wirkt ja praktisch nur bis zu einer Entfernung von
»£ — 3). Damit ist auch die eingangs erwähnte Behauptung
bewiesen, dass mit den vorhandenen Kurven beliebig lange
Zylinder und Träger berechnet werden können.

5. Beispiel
Um den Gebrauch der Kurven zu zeigen, sei folgendes

Beispiel durchgerechnet: Ein einseitig vollkommen starr
gelagerter Zylinder aus Stahl sei am anderen Ende frei und
rotiere mit 3000 U/min. Für Stahl sind die Stoffwerte:

v 0,3

p 8 • IO-6 kg s2/cm*
E 2,1 • 106 kg/cm2

Die Abmessungen des Zylinders sind

h 4 cm a — 41 cm

Hieraus ergeben sich

1
X —a
n X l
»o X a

u 128,6 m/s
au pu2

25 cm

"—ffl'=«
2,5

4,1

1,286 • 10« cm/s
1320 kg/cm2

In Bild 4 ist dargestellt, wie der gesuchte Fall X durch
Superposition der Fälle I, n und III gebildet wird.

Den Formeln (7) und (8) entnimmt man

M : M*

Q Q'

d^n
Sp" mit M* z

a und
d2i)

d£2

d3y

W mit Q*z=>'• und
dsv
dÇ?

2»2Sj,

dSb
— 2»2-

di
Es ergeben sich folgende Bestimmungsgleichungen für die
Unbekannten i)o und <po:

Mx0 MlU0 + MI0 + M„o
2 »2 M* i^- SbIll + vo Shl +

Qxo — ©nio + 6io + Quo

<P0

»0
0

o o ^* / °u dünn dSbi tpo dSbu \=2n2Q br^c" + V0Aïr + -ss—sr)= °

Vo

D

90

»0

Di

eu Du
E~ D

— Smit
dSm

dl,

mit

Soll

"S£

und die Unbekannten selbst zu

"u Di
-=—=§= und
E D

&bl Sbll

dSn dSm
~dj S|

Sil SbIll

dSbi dSbui
di d£

Den Diagrammen 1, 3 und 5 von Bild 3 können nun die
entsprechenden Spannungskoeffizienten £„ und die Werte
von d Si/d £ entnommen werden, wobei bei der Neigung
d St/d £ auf den Massstab der Darstellung geachtet werden
muss. Leider bedingt die Verkleinerung der Diagramme,
dass die gesuchten Werte nur ungenau abgelesen werden
können, weshalb neben den Werten aus den Diagrammen
in Klammern die genau berechneten Zahlen stehen.

aus Diagramm 1

aus Diagramm 3

aus Diagramm 5

—1,0 (—1,020)
1

Sn '¦

dSii
~S£~ 0,2

S,,n — 1,02 (—1,037)

+ + 5,0 (+5,050)

+
1,02_dSii

di 0,4

SHii + 0,8 + 0,820)

dSuu 0,8

2,55 (+ 2,549)

di 0,15
— 5,33 (— 5,214)

Setzt man diese Werte (auf 2 Stellen genau) in die
entsprechenden Formeln ein, so erhäSman

D + 2,64; Di= + 3,31; Du — 1,18

und die Unbekannten ijp und <p0/»o werden

Ou Di k \ <7«

¦no AA^- — 1,254—+,'" ED E
<Po

»o ^E TT 0,447 A^.E

Unter Benützung der FormeOT (13a) und (13b) können
die Spannungskoeffizienten für den Fall X durch
Superposition gebildet werden, nachdem die Werte für t)0 und
cpo/»o bekannt sind. Man erhält

"tx — "ti + <T(ii + "tnafSli
9oi,0EStiA-

<*bx 11 + Obli

ki)o E Sn -

E Stil + <7U SfII

0T>IH

Vo
K

»0
ESb + k au Sim — «»« Si,

Damit ergeben sich für Tangentialspannungen

otx 1,254 StI — 0,447 Stn + Stm

und für die Biegespannungen

<xbx 1,254 S„i — 0,447 S6n + SH„

Durch Einsetzen der Werte Sa, Sai und Stm aus den
Diagrammen 2, 4 und 6, sowie der Werte Sn, Sm und
S&in aus den Diagrammen 1, 3 und 5 (Bild 3) ergeben sich
die Werte der Spannungskoeffizienten Stx und Sbx, welche
in Bild 5 dargestellt sind. Die zugehörigen Spannungen zeigt
Bild 6. Die Bilder 5 und 6 veranschaulichen die interessante
Tatsache, dass ein einseitig gestützter Zylinder ungünstiger
beansprucht sein kann, als der frei rotierende Ring. In
unserem Fall mit » — 2,5 beträgt die Erhöhung der Tangen-
tialspannung am freien Ende des Zylinders rd. 25 %!

6. Bezeichnungen

A, B, C, D Integrationskonstanten (allg.)
A*, B*, C*, D* Integrationskonstanten (speziell) —

a, ß, y, S Koeffizienten ¦—•

a mittlerer Radius cm
ö nüÄerer Radius (Ersatzzylinder) cm
h Wandstärke (Balkendicke) cm
l Länge des Zylinders (BalkeSänge) cm

C Bettungsziffer kg/cm»
E Elastizitätsmodul kg/cm2
7 Trägheitsmoment cm*

I* Biegesteifigkeit cm*
k Koeffizient —
X Abklingungszahl 1/cm
» dimensionslose Kennzahl » XI —

«0 dimensionsloser Wert »0 Xa
v Querkontraktionszahl

M Biegemoment (pro cm Umfang]
M* Biegemoment (speziell)

(pro cm Umfang]
p Flächenpressung

cm kg/cm

cm kg/cm
kg/cma

kg/cm2p Bettungsdruck
cp Neigung
Q Queïkraft (pro cm Umfang) kg/cm

Q* Querkraft (speziell)
(pro cm Umfang) kg/cm

Si, Spannungskoeffizient
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M*o(-

¦no

x -no;

Mxo 0

Qxo-0

}m„

»io

Qx,

-)mx

S 0.5

-0,1

1 /
/
/

Sb
/

1
//

1 0,5

Bild 5. Spannungskoeffizienten
zum Berechnungsbeispiel

kg/cm2

2000

1320

,1000

i

S

\6 t | /
6U r/

/
S

1 0,5 /
-400

Bild 6. Spannungen zum Berechnungsbeispiel

Bild 4. Symbolische Darstellung der Bildung des gesuchten Falles X durch Superposition der Fälle HI, I und II mit den Unbekannten

7)0 und yo. welche aus den Bandbedingungen M™ 0 und Q*o 0 bestimmt werden können

St Spannungskoeffizient
<jr( Tangentialspannung kg/cm2
au Biegespannung (längs) kg/cm2
~öi Biegespannung (quer) kg/cm2
<r„ Tangentialspannung des frei rotie¬

renden Zylinders kg/cm2
p spezifische Masse kg-s2/cm4
t Schubspannung kg/cm2
u Umfangsgeschwindigkeit cm/s
x laufende Abszisse cm

£ x/l laufende Abszisse (dimensionslos) —
y Deformation cm

¦q y/a Deformation (dimensionslos)
K<p Koeffizient —
Ka Koeffizient

Adresse des
Winterthur.

Verfassers: E. Eberle, dipi. Ing.,

kg/cm
Büelrainstr. 25,
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Projektierung der Ueberbauung am Helvetiaplatz in Zürich DK 711.5

Der Stadtrat von Zürich hat zwölf Architekten eingeladen,

auf dem Areal des Helvetiaplatzes (begrenzt durch
Molken-, Lang-, Kanzlei und Ankerstrasse) eine Ueberbau-
|b|P mit Bürohäusern, Kirchgemeindehaus, Schulhaus, Läden
und unterirdischer Garage zu studieren. Jeder Teilnehmer
erhielt eme feste Entschädigung von 4000 Franken. Die
Beurteilung der Projekte erfolgte durch ein aus neun Mitgliedern

bestehendes Expertenkollegium, worin neben den
Vertretern des Bauamtes n, des Schulamtes und der Kirchenpflege

Aussersihl drei unabhängige Fachleute mitwirkten.
Hier ist nicht der Ort, das gewählte Verfahren zur Abklärung

dieser wichtigen Bauaufgabe und die Durchführung dieser

Veranstaltung unter die Lupe zu nehmen; wir wollen uns
auch nicht mit der Verwirklichung des zur Ausführung
empfohlenen Projektes befassen. Diese Fragen sind andernorts

zu behandeln, weil sie den Rahmen unserer Zeitschrift
sprengen. Hier wollen wir uns nur mit der Aufgabe selbst
auseinandersetzen, denn diese ist, wie ein Blick ins Pro-
gramm und schon die flüchtige Betrachtung der hier
abgebildeten Projekte beweisen, von ausserordentlichem Reiz
aber auch ganz besonders schwer.

Der Helvetiaplatz in Zürich liegt angrenzend an die
Langstrasse, die sich im Laufe der Jahre zur
Hauptgeschäftsstrasse der Stadtkreise 4 und 5 entwickelt hat.
Diese Strasse ist aber auch vom Verkehr sehr stark belegt.
Die das Areal schräg durchschneidende Stauffacherstrasse

wird ebenfalls verkehrllj||Si»g.rk beanspiBght, der
Kreuzungspunkt beider Strassen zählt zu den wichtigen
Nebenzentren der Stadt. Der Platz ist auch insofern städtebaulich
interessant, als ihm im 'Zusammenhang mit dem Volkshaus
eine gewisse politische Bedeutung zukommt. Seme
Gestaltung oder, besser gesagt, sein raumkünstlerisch
ansprechender Ausbau ist nichfimur ein architektonisches Anliegen
einzelner weniger, sondern auch ein Gebot der Solidarität
mit der Arbeiterklasse Zürichs, für die allein schon der
Name Erinnerungen an die Kampfzeit wachruft; das Denkmal

der Arbeit ist als Wahrzeichen dafür dort vorgesehen.
Seit vielen Jahren hört man davon, dass der Platz einen
würdigen Rahmen erhalten soll. Jetzt ist er noch trostlos
anzusehen; Randbebauungen der Gründerjahre, die
Hauptfassade des architektonisch nicht gerade ansprechenden
Volkshauses, Nebenfassaden des Bezirksgebäudes und ein
altes Schulhaus mit Turnhalle sind das Gebilde, das mit der
leeren Fläche in der Mitte den stolzen Namen trägt.

Die Tatsache, dass die Kirchgemeinde Aussersihl am
Helvetiaplatz ein Kirchgemeindehaus erstellen will (die
Architekten dafür sind bereits auserkoren), mag den
Ausschlag gegeben haben, das Problem anzupacken. Laut
Programm standen den Projektverfassern zwei getrennte
Bauplätze, einer von rund 1000 m2 zwischen Helvetiaplatz und
Molkenstrasse, der andere von rd. 6850 m2 zwischen Stauff-
acher-, Lang-, Kanzlei- und Ankerstrasse zur Verfügung,
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