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Grösse, berechnet für die gesamte zugeführte Wärme, ist der
Prozesswirkungsgrad rjp. Er liegt, wie ersichtlich, über 60 %.

Dank der Ueberschreitung des kritischen Druckes
ist er nicht mehr sehr weit vom Carnot-Wirkungsgrad von
69 % entfernt, welcher der höchsten Temperatur im Prozess
entsprechen würde. Der überkritische Druck stellt einen
fundamentalen Fortschritt dar. Er verwirklicht gewissermassen
eine Synthese des Dampfturbinen- und Gasturbinen-Prozesses

und vereinigt deren Vorteile. Es ist zu erwarten, dass er
bei Grossanlagen allgemein angewendet werden wird.

Die Temperatur könnte man heute noch weiter erhöhen;
die dazu nötigen Stahllegierungen wären verfügbar. Doch
sind diese Superstähle so hoch mit edlen Bestandteilen
legiert, dass ihr Preis nicht tragbar ist. Wir sind heute nicht
in der Zwangslage, um jeden Preis Wärme sparen zu müssen

und werden es dank der Atomenergie auch in absehbarer
Zeit nicht sein. Die Temperaturerhöhung hängt also von der
Entwicklung billiger warmfester Stähle ab, von denen aber
gegenwärtig keine angeboten werden. Ueberhaupt gehört
das präzise wirtschaftliche Denken und Rechnen zur
Grundkonzeption heutiger Technik. Anlage- und Betriebskosten
sind unerlässliche Berechnungsgrössen beim Festlegen der
Höchsttemperaturen sowie bei der Bemessung von Rohrleitungen,

Wärmeaustauschern und manchen Maschinenteilen.

b) Leistung
Die Leistung der Netze wird sich ohne Zweifel stark ver-

grössern, wenn auch die geometrischen Progressionen, die
man dafür oft ansetzt, zu verwerfen sind, da sie zur
Absurdität führen. Mit den grossen Netzen wird auch der
Wunsch nach grösseren Einheiten wach. Man spricht
allen Ernstes von Zentralen mit 4 bis 16 Mio kW Gesamtleistung

in Einheiten von bis zu 1 Mio kW.
Würde man die Drehzahl von 3000 U/min auf 1500 oder

gar 1000 senken, so könnte man die Leistung praktisch ohne
Grenze steigern. Die Modellgesetze ergeben aber bei den
kleineren Drehzahlen zwangsweise höhere Gewichte pro
Leistungseinheit, weshalb die modernen Grossmaschinen heute
fast ausschliesslich mit 3000 U/min laufen (in Amerika
entsprechend der Netzfrequenz mit 3600 U/min). Bei sehr grossen

Einheiten werden viele, ja fast alle Organe verdoppelt
oder vermehrfacht. Man darf sich füglich fragen, ob nicht
die Grenze sich nähert, bei der man mit Vorteil eine Gruppe
in zwei vollständige Einheiten trennt, die zwar in bezug auf
Kontrolle und Instrumentierung gekuppelt sind, um den
Betrieb zu vereinfachen, im Störungsfall aber getrennt werden
können. Dies gilt besonders für Atomenergieanlagen, bei
denen noch kein extrem dichter Dampf die Verarbeitung in
einem einzigen Fluss erfordert und wo ein Betriebsausfall
besonders kostspielig ist.

c) Qualität
Wir stehen im Turbinenbau in einer Periode der

Vertiefung der Technik. Es steht ausser Zweifel, dass die
bessere Beherrschung aller Einzelheiten Fortschritte im
Wirkungsgrad, in der Sicherheit und Handlichkeit der Ma¬

schinen sowie ein Senken der Herstellungskosten bringen
wird. Wie Theorie und Experiment zusammenwirken und
sich ergänzen, haben wir am Beispiel des letzten Kapitels
erörtert. Man muss beifügen, wie bedeutungsvoll das neue
Arbeitsinstrument der elektronischen Rechenmaschinen zu
werden verspricht. Zunächst schalten sich solche HiMmittel
in die heutigen Verfahren ein. Beispielsweise wird die
langwierige Auswertung der Versuche an Modellturbinen für die
Rechenmaschine programmiert. Hernach ist es möglich, jede
neue Versuchsserie sofort auszuwerten und von den Ergebnissen

Kenntnis zu nehmen, bevor man an der Versuchseinrichtung

irgend etwas ändert. Zeigen sich Unklarheiten oder
Widersprüche, so ist es möglich, den Versuch zu wiederholen
oder zu ergänzen.

Die neuen Rechenmaschinen können aber auch zu ganz
neuen Verfahren führen. Es gibt Fälle, bei denen sie sich
sogar an Stelle des Versuches einschalten lassen (allerdings
vorläufig nicht, wo Turbulenz eine Rolle spielt). Das ist
nicht so befremdend, wenn man sich vergegenwärtigt, dass
manche Modellversuche nicht viel anders sind als ein
Analogie-Rechenverfahren. Man denke beispielsweise an die im
zweiten Kapitel beschriebene Temperatursonde, welche den
Temperaturzustand einer Turbine aus den Geschehnissen
der nahen Vergangenheit «integriert«. Wir sind Zeugen eines
Wettstreites des Analogie- und Digitalprinzipes im
mechanischen Rechnen. Das Digitalprinzip hat in letzter Zeit
riesige Fortschritte gemacht, nicht nur in den Rechengeräten,
sondern auch in sehr vielen Mess- und SteuerfunBHonen.

Durch das mechanische Rechnen darf der Sinn für die
Mechanik, das Vorstellungsvermögen, nicht verloren gehen.
Die Verbindung genauer Information und schöpferischer
Intuition beim Konstrukteur am Zeichenbrett blelEt' die
Grundlage eines erfolgreichen Maschinenbaues.

d) Unsere Industrie
Es gibt zu denken, dass als eindrucksvolle Beispiele

moderner Kraftwerkpraxis amerikanische Anlagen hier
gezeigt werden konnten. Es ist eine Tatsache, dass unsere
Kollegen jenseits des Atlantiks, begünstigt durch die Breite ihres
Marktes und die Grosszügigkeit ihres Kundenkreises,
Grossartiges geleistet haben. Angesichts dieser Tatsache erfüllt;?
es uns mit grosser Befriedigung, dass sich eine grosse
kalifornische Elektrizitätsgesellschaft fü|j| den Kauf zweier
Brown Boveri-Turbinen von 200/230 MW entschloss. Wir
sind also nicht ausgespielt. Aber nur ein zielbewusstBB. von
klarem Denken geleitetes Schaffen kann unsern Ruf
erhalten. Unsern übertriebenen Partikularismus müssen wir
beiseite legen und die Zusammenarbeit unter Firmen und
mit der Hochschule, die bereits einige Gebiete umfaggt.
erweitern. Die Amerikaner haben Pilot-Dampfkraftwerke für
überkritischen Druck und in breitester Weise auch solche
Anlagen auf dem Gebiete der Atomenergie gebaut. Für die
Schweiz ist es ein Gebot der Selbsterhaltung, ähnliches auch
zu tun. Mögen öffentliche Hand und Privatwœtschaft —
keines kann es allein — sehr bald vom Wort zur Tat schreiten!

Die Entwicklung des Entropiebegriffes DK 536.75

Von Prof. Dr. J. Ackeret, Zürich

Aurei Stodola hat sich bis zu seinem Lebensende auf das
eingehendste mit der Entropie befasst. Vor allem hatte er
seine zahlreichen Schüler erfolgreich gelehrt, mit diesem ja
oft als schwierig empfundenen Begriff zu arbeiten. Die
Entropietafel ist schon seit längerer Zeit das ständig gebrauchte
Werkzeug des technischen Thermodynamikers.

Was ihn aber besonders tief bewegte, waren die mehr
philosophischen Aspekte der Entropie, dieser eigentümlichen
Zustandsgrösse, die nicht wie die Energie erhalten bleibt,
sondern ständig wächst und die das wissenschaftliche Mass
eines unerbittlichen «running down» des Universums
darstellt. Seinem idealistischen Wesen war der Gedanke, dass
schliesslich die Welt sich in ein höchstens noch lauwarmes

Grab verwandeln sollte, unerträglich, und mit ergreifenden
Worten hatte er sich am Schluss der vierten Auflage seines
einzigartigen Lehrbuches gegen diese Vorstellung gewandt.
Freilich war er sich ganz klar, dass die Physik zu seiner
Zeit noch keinen Ausweg gefunden hatte, der zu besseren
Hoffnungen konkreten Anlass gegeben hätte, unqj dass man
mit billigen philosophischen Gedankenspielfigien nicht
auskommt.

Heute ist die Situation insofern verändert, als die
theoretische Physik grosse Umwälzungen erfahren hat und in
der Kosmologie anscheinend nicht weniger grosse Ueber-
raschungen bevorstehen. Und so mag heute in verstärktem
Masse gelten, was Stodola in deep! erwähnten Schlusswort
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(1910) treffend sagte: «Wir sind nicht gezwungen, dem
Druck vorzeitiger Folgerungen aus vergänglichen Formen
der Naturgesetze zu weichen.»

Was ich in dieser knappen Stunde vorbringen kann, ist
nur ein schwacher Abglanz eines gewaltigen Ringens um
Klarheit. Ich gehe einigermassen nach der geschichtlichen
Reihenfolge, aber es wird mir' vielleicht so ergehen wie jenem
ungeschickten Schriftenmaler, der auf einer Wand von
gegebener Breite links mit zu grossen Buchstaben anfängt
und gegen das rechte Ende hin immer kleiner werdende
Schriftzeichen anpinselt, damit noch alles Platz hat.

Die Entwicklung der Dampfmaschine im Lauf des
achtzehnten Jahrhunderts erfolgte zunächst auf völlig empirische
Weise. Noch konnte Leonhard Euler 1754 sagen, dass die
«Feuerkraft» nicht in den «gleichen Rang» wie die Wasserkraft

gehöre. Der Energiesatz kam viel später, und von
einer Thermodynamik war keine Rede.

So muss es wie ein Wunder erscheinen, dass 1824 ein
ganz junger Mann, Nicolaus Sadi Carnet (Bild 1) eine
Theorie der Wärmemaschinen aufgestellt hat, die ohne
Kenntnis des ersten Hauptsatzes (des Energiesatzes) wesentliche

Aussagen des zweiten Hauptsatzes der Wärmelehre
vorweggenommen hatte und Begriffe schuf, die heute noch
grundlegend sind [1] *). Wenn er nicht so früh ins Grab
gesunken wäre — wer weiss, ob er nicht den ganzen zweiten
Hauptsatz und die Entropie ein Vierteljahrhundert vor
Clausius gefunden hätte. Er war noch Anhänger des
«Wärmestoffes»; aber er sah, dass dieser Wärmestoff nur
Arbeit leisten kann, wenn er ein Temperaturgefälle durchläuft.

Aus dem Kessel kommt der Dampf mit hoher
Temperatur, leistet Arbeit und verschwindet im kalten Kondensator.

Er vergleicht nun diesen Vorgang mit der Arbeit des
Wassers in einer hydraulischen Maschine. Es wird ihm klar,
dass das untere Niveau im Wärmefall zufällig, nämlich
durch die Umgebungs- oder Kühlwassertemperatur gegeben
ist und man viel mehr Arbeit gewinnen könnte, wenn nur
eine kältere Umgebung vorhanden wäre. Die Ausnützung
des Wärmestoffes ist also in allen Fällen eine relativ
schlechte. Sogleich ist ihm auch klar, dass jeder Temperaturfall

des Wärmestoffes ohne entsprechende Arbeitsleistung

eine Verschwendung bedeutet, dass man also die
Wärme stets bei der höchsten vorhandenen Temperatur zu-
und bei der tiefsten abführen müsse. Kurzum, er erkennt
die prinzipielle Notwendigkeit isothermer Zu- und Abfuhr.

Das Bildchen aus dem Onsernonetal (Bild 2) ist eine
nicht unpassende Illustration der Carnotschen Gedanken.
An Stelle der (konstanten) Menge des Wärmestoffes tritt
hier die Wassermenge, an Stelle der Temperatur die
Gefällshöhe. Das Wasser kommt zwar in grosser Höhe an,
durchläuft auch die Maschine, aber das ganze Gefälle wird
nicht ausgenützt; vielmehr ist ein beträchtlicher Austrittsverlust

vorhanden. Auch geht einiges Wasser neben dem
Rad vorbei vom höheren zum tieferen Niveau, ohne Arbeit
zu leisten. Nehmen wir eine Sattdampfmaschine einer
modernen Kernkraftanlage, so dürften (horrible dictu!) die
energetischen Verhältnisse gar nicht so viel besser liegen
wie bei dieser romantischen Mühle.

Sehen wir nun die Dinge uns etwas genauer an! (Bilder
3a, 3b, 3c). Es ist nicht unbedingt richtig, wenn man sagt,
es sei unmöglich, Wärme z. B. auch die Umgebungswärme)

vollständig in Arbeit zu verwandeln. Die isotherme
Expansion eines Luftquantums von höherem auf irgend
einen tieferen Druck liefert die Arbeit (Bild 3a)

(1) L R T In Pl —RT\nVi
Vi «i

und das ist (was Carnot allerdings noch nicht wusste)
genau das Aequivalent der aus der Umgebung zugeführten
Wärme. Jedoch liegt hier ein einmaliger Prozess vor, und
wenn wir ihn wiederholen wollen, so müssen wir die Druckluft

neu beschaffen. Man kann das durch isotherme
Rückkompression erreichen; allein dann wird gerade so viel
Arbeit benötigt, wie vorher gewonnen wurde. Ohne
Temperaturgefälle ist eine nützliche mechanische Arbeit aus

*) Die Zahlen in eckigen Klammern verweisen auf das
Literaturverzeichnis am Schluss des Aufsatzes.
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Wärme nicht zu gewinnen. Die Formel zeigt aber deutlich,
dass, wenn die Wärme mit höherer Temperatur T0 zu- und
mit niedrigerer Tu abgeführt wird, die Kompressionsarbeit
kleiner als die Expansionsarbeit ist. Freilich müssen noch
zwei weitere Zustandsänderungen hinzugenommen werden,
die von der höheren zur tieferen Temperatur, bzw. zurückführen,

die Carnot so zu leiten vorschlägt, dass dabei keine
Wärme zu- oder abgeführt wird. Jede Zufuhr bei niedrigerer
als der Höchst-Temperatur würde ja einen «Gefällsverlust»
bedeuten. Also müssen es adiabaffische Expansionen bzw.
Kompressionen sein. Man sieht aus dem p-v Diagramm des so
entstandenen Gesamtprozesses (Bild 3b), dass sich eine
Netto-Arbeit ergibt. Damit iäfder Carnotsche Kreisprozess
aufgestellt.

Noch fehlt zwar ein wichtiges Glied, nämlich der
Energiesatz, der mit dem Wärmestoff aufräumte und die
Mayer-Jouleschen Erkenntnisse benützt. — Es ist ein
Zeichen für die Genialität Carnots, dass er auch ohne diesen

ersten Hauptsatz weitere fundamentale Schlüsse ziehen
konnte. Da ist in erster Linie die Einführung des umkehrbaren

Kreisprozesses zu nennen (Bild 3c). Carnot hat
erkannt, dass man seinen motorischen Prozess auch in
umgekehrter Richtung betreiben kann — also so, dass Wärme
bei tiefer Temperatur aufgenommen und mit einem
Arbeitsaufwand L bei höherer Temperatur abgegeben wird. Darauf
beruhen bekanntlich die Wärmepumpen bzw. Kältemaschinen,

deren Prinzip damit erstmalig aufgestellt wurde. Und
weiter folgt nun der so wichtig gewordene Beweis des
Satzes, dass die Ausnützung eines gegebenen Temperaturgefälles

durch den Carnot-Prozess auf bestmögliche Weise
erfolgt, dass es keinen Nutzen bringt, etwa verscjfjBdene
Stoffe als Arbeitsmittel zu verwenden. Es wird dazu eine
Kombination von Wärmemotor und Wärmepumpe aufgestellt

(Bild 3c). Arbeiten beide nach dem Carnotschen
Muster, so bleiben die Wärmemengen der heissen wie auch
der kalten Behälter unverändert. Wäre es aber möglich,
etwa einen günstigeren motorischen Prozess (zwischen den
gleichen Temperaturen) zu finden, so würde dann die
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Bild 1. Nicolaus Sadi Carnot,
1796 — 1832

Wärmepumpe mehr
Wärme in den wärmeren

Behälter befördern,
als zum Betrieb des
besser gedachten Motors

gebraucht wird.
Man würde also ohne
sonstigen Aufwand
Wärme gewissermassen
von selbst von tieferer
zu höherer Temperatur
transportiert haben.
Oder wenn man nur so
viel Wärme nach oben
bringt, als zum Betrieb
des hypothetischen
besseren Motors benötigt
wird, so würde noch
etwas Leistung übrig
bleiben. Man hätte dann
ein Perpetuum mobile.
Carnot weiss, dass es
so etwas nicht gibt, und

schliesst daraus, dass sein Prozess tatsächlich das Maximum

liefert.
Es ist wunderbar zu sehen, wie heute die fortlaufenden

Verbesserungen etwa des Dampfturbinenprozesses, mit
jedem Schritt eine genauere Annäherung an den Carnot-
Prozess ergeben. Ich erinnere nur an die vielstufige
Speisewasser-Vorwärmung und die zum Teil schon mehrfache
Zwischenüberhitzung. So sind also Carnots Gedanken, die
den Zeitgenossen offenbar so abstrakt und unpraktisch
vorkamen, dass seine Schrift ein Jahrzehnt lang unerwähnt
blieb, doch auch technisch fruchtbar geworden.

Der bekannte Eisenbahn-Ingenieur E. Clapeyron gab
1834 eine Abhandlung heraus, die Carnots Gedanken erläuterte
und in bessere mathematische Form brachte [2]. Auch er
steht noch auf dem Standpunkt des Wärmestoffes. Einige
wenige, recht bescheiden anmutende Figuren machten
damals auf die Gelehrten einen heute unverständlich starken
Eindruck. Es galt als kühn, physikalische Grössen wie
Drücke, Temperaturen und dgl. geometrisch aufzutragen.
Den Technikern war dies allerdings nicht neu, hatten sie
doch im Wattschen Indikator einen Apparat, der dies sogar
automatisch besorgte. Ging also Clapeyron nicht wesentlich

über Carnot hinaus, so hatte seine Schrift doch den
Erfolg, dass dessen Arbeit überhaupt bekannt wurde.

In den nächstfolgenden Jahren wurden sehr wichtige
Fortschritte gemacht. Es traten Robert Mayer (1842),
J.P.Joule (1843) und H.Heimholte (1847) mit dem Energiesatz,

dem ersten Hauptsatz, an die Oeffentlichkeit. Wenn
man die alten Schriften liest, macht es nicht geringe Mühe
zu verstehen, warum die Aussage, dass Wärme sich in
mechanische oder elektrische Arbeit verwandeln kann und dass

die umgekehrten Prozesse auch möglich sind, vielen
Zeitgenossen so revolutionär erscheinen konnte. Hirn besehreibt
diese Situation drastisch, indem er daran erinnert, dass

jahrelang vorher die Ingenieure den Pronyschen Zaum
benützten und zusahen, wie bei starken Maschinen
erstaunlich grosse Wärmemengen an der Bremse auftraten
und das Verbrennen der Bremsbacken nur mit Wasserfluten
verhindert werden konnte. Und doch ist tSaächlich keiner
von ihnen auf den Gedanken gekommen, dass diese Wärme
vielleicht von der vernichteten Leistung des Motors
herrühren könnte. Die Geschichte der Wissenschaft ist
glücklicherweise nicht so blutig wie die der Politik, aber auch sie
ist an Ueberraschungen reich.

Es war Rudolf Clausius (von 1855 bis 1867 am neu
gegründeten Polytechnikum und an der Universität Zürich
tätig, Bild 4), der nun die Gedanken von Carnot und Mayer
vereinigte. 1850 stellte er den zweiten Hauptsatz auf [3a],
den er einige Jahre später [3b] in der Form aussprach: Wärme
kann nicht «von selbst» aus einem kälteren in einen
wärmeren Körper übergehen! Dieses «von selbst» klang schon
damals den an die rationelle Mechanik mit ihren klaren
Definitionen Gewöhnten etwas verschwommen, und Clausius
hat es dann durch «ohne Kompensation» ersetzt, woraus
man ohne weitläufigen Kommentar allerdings auch kaum
klüger wird. — Erst mit der Schaffung des Entropiebegriffes

kommt die Möglichkeit, den zweiten Hauptsatz
c

exakt auszusprechen. Das griechische Wort selbst: y rparn
heisst auf deutsch «die Verwandlung»; es tritt zuerst in
einem Vortrag von Clausius am 24. April 1865 vor der
Naturforschenden Gesellschaft Zürich auf [3d] *). Was die
Thermodynamik betrifft, stehen wir also hier in Zürich
gewissermassen auf klassischem Boden.

Betrachten wir nun den Carnotschen Prozess mit neuen
Augen (Bild 5a). Die eintretende Wärmemenge Q0 ist grösser

als die austretende Qu; die Differenz ist eben die
Nutzleistung

L Qo — Qv.

Bei isothermer Expansion oder Kompression folgt aus dem
ersten Hauptsatz und der Gasgleichung:

RT0 In

BTuln

1>2

v3

Die beiden Adiabaten verlaufen zwischen gleichen
Temperaturen; daraus folgt leicht:

V2 vs
Vi

und damit die wichtige Beziehung für die Beträge

l) Das Wort «Verwandlung» findet sich aber schon in der Arbeit
von 1854 [3 b].

M
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Bild 3a. Isotherme Expansion
eines Gases

Bild 8b. Erweiterung
zum Carnotschen Prozess

pa i
C- warme-

Motor
C-Wärme-

Pumpe

P" P"

L>Lr i
Bild 3c. Umkehrbare Carnot-
Prozesse

Ein beliebiger
umkehrbarer Kreis-
prozess kann nicht
mehr Leistung geben
als der Carnotsche,
gleiche Temperaturen
und Quantitäten des
«Wärmestoffes»
vorausgesetzt

318 Schweiz. Bauzeitung ¦ 77. Jahrgang Heft 20 • 14. Mal 1959



p 1

/Q

Bild 5a. Kreisprozess
nach Carnot-Clausius

(2)
Qo

To

Qu

Tu

Adiob. da0

dQu

Bild 5b. Aufteilung eines umkehrbaren

Kreisprozesses in infinitesimale
Carnot-Prozesse

oder mit Berücksichtigung der Vorzeichen -

— Abfuhr)
Zufuhr,

(3) m-

u

Bild 5c. Das Integral
2

/ T

ist vom Wege 1 bis
2 unabhängig. Die
Entropie ist eine Zu-
standsfunktion

rs

Bild 4. Rudolf Clausius, 1822—1888

Die Leistung aber wird:
Qu

(4)

T„ — Tu
Qo

T0
foVc

Tic wird Carnot-Wirkungsgrad genannt.
Wesentlich ist nun der Uebergang zu beliebigen

umkehrbaren Kreisprozessen, der besonders von Zeuner (auch
einem «Zürcher»!) anschaulich dargestellt wurde. Teilt
man nämlich den Prozess passend in eine grosse Zahl
elementarer Carnot-Prozesse und nimmt statt der Summe
das Integral rund herum, so folgt (Bild 5b):

(5)
CdQ
Ò
J

0

Wenn dieses Umlaufsintegral null ist, so heisst das auch
folgendes (Bild 5c);

j T J T J> J TDa 0

(6) (a)

ergibt sich unter Umkehrung des Integrationsweges im
zweiten Integral

ï i
Das einfache Integral ist also vom «Weg» unabhängig.

Das bedeutet aber wiederum, dass es eine Zustandsfunktion
geben muss, die in jedem Punkt einen bestimmten Wert hat.
Diese Zustandsfunktion ist eben die Entropie:

(7)

welche Formel ganz allgemein, nicht nur für Gase, gilt.
Zwei wichtige Bemerkungen sind hier zu machen:

1. Aus der Ableitung geht hervor, dass man auf diese Weise
nur Entropie-Dif/erewaen bestimmen kann. Man muss
somit für jeden Stoff willkürlich einen Zustand als mit der
Entropie null behaftet annehmen; dann sind die Entropien
für andere Drücke und Volumina bestimmt und berechenbar.

Man kann für das Integral irgend einen geeigneten
Weg wählen und braucht dann im wesentlichen die gemessenen

spezifischen und Verdampfungswärmen, um eine
Entropietafel aufzustellen. Da der technisch so wichtige Stoff
H2O diesbezüglich ein etwas verwickeltes Verhalten zeigt,
so ist eine solche Tafel gegenüber einer formelmässigen
Darstellung, wie sie u. a. auch von Clausius und Zeuner
versucht wurde, viel bequemer. Aus der Willkür der Festle¬

gung des Entropie-Nullpunktes geht nun aber deutlich hervor,

dass man die Entropien chemisch verschiedener Stoffe
nicht direkt in Beziehung setzen kann. Wenn also
chemische Umwandlungen theoretisch behandelt werden sollen,
so müssen die Entropie-Unterschiede der Stoffe bekannt
sein; d. h. man muss über Clausius hinaus absolute Entropien

kennen. Diese hat erst die Quantentheorie zu bestimmen

gelehrt. Immerhin gab es in dem Sinne Vorläufer, als
Nernst 1906 und allgemeiner Planck das Theorem aufstellten,
dass die Entropien beim absoluten Nullpunkt mit einigen für
uns zunächst nicht wesentlichen Einschränkungen gleich null
seien. Man hat diese Aussage den dritten Hauptsatz der
Wärmelehre genannt.
2. Die Zustandsänderungen sind, so wie sie bisher behandelt

wurden, reversibel auszuführen. Verletzt man diese
Forderung, so gilt nicht mehr die Gleichung (7), sondern
es wird

(8) / dQ <82

d.h. die Entropie-Zunahme (bei Wärmezufuhr) ist grösser
als nach der reversiblen Formel. Das geht soweit, dass eine
beträchtliche Entropie-Zunahme ohne jede Wärmezufuhr
erfolgen kann. Das einfachste Beispiel hierfür ist der Jou-
lesche Versuch (Bild 6), bei dem ein Gas durch ein mit
Strömungshindernissen versehenes und wärmeundurchlässiges

Rohr strömt. Bei idealen Gasen ändert sich die
Temperatur nicht, wie aus dem Energiesatz folgt, wohl aber
der Druck und das spezifische Volumen. Dieser Vorgang
ist unumkehrbar, obschon keine Energie verlorengeht. Die
Entropie-Vermehrung lässt sich rechnen, wenn man einen
reversiblen Uebergang vom Anfangs- zum Endzustand
annimmt, beispielsweise erst eine isentrope (adiabatische)
Expansion unter Arbeitsgewinn längs 1 und 1* und eine
Erwärmung bei konstantem Druck von 1* nach 2. Auch ein
direkter Weg von 1 horizontal mit Abgabe von Arbeit und
Aufnahme von Wärme würde reversibel nach 2 führen. Es
ist leicht auszurechnen, dass für die Ueberströmung (ohne
Wärmezu- oder -abfuhr, aber mit Reibung) die Entropie-
Zunahme sich ergibt zu

AS R In Pi
Pa

(9) <0

Für nicht-umkehrbare Kreisprozesse ist stets

[dQoJ
was man als den einfachsten Ausdruck des zweiten Hauptsatzes

ansehen kann. — Da nun alle praktischen
Kreisprozesse irreversible Elemente enthalten, wächst die Entropie

fortwährend, und Clausius stellte deshalb am Schlüsse
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seines Vortrages von
1865 die beiden berühmt
gewordenen Sätze auf:

a) Die Energie der
Welt ist konstant, b)
die Entropie der Welt
strebt einem Maximum
zu.

Kehren wir kurz
zurück zum Stande von
1850. Da war zunächst
einmal die absolute
Temperatur klar zu
definieren. Wohl konnte
man aus dem Verhalten
der Gase bei höheren
Temperaturen auf einen
absoluten Nullpunkt
extrapolieren, aber das
wirkliche Verhalten der
Stoffe zeigt bei sehr
tiefen Temperaturen
Verflüssigung und

Verfestigung. Da war es W. Thomson (der spätere Lord Kelvin,
Bild 7), der zuerst eine thermodynamisch saubere Definition
gab, indem er nämlich prinzipiell ausführbare Operationen
vorschlug, die die absolute Temperatur festzustellen gestatten.

Wir erläutern dies kurz am Beispiel der sogenannten
Clapeyronschen Formel.

Die Grenzkurve, die den feuchten Dampf vom
Gaszustand (x 1) und von der reinen Flüssigkeit (x 0)
trennt, ist in Bild 8a im p-v und in Bild 8b auch im T-S
Diagramm eingetragen. Man denkt sich nun einen
infinitesimalen Kreisprozess im feuchten Gebiet reversibel
ausgeführt (schraffierte Fläche) und berechnet die Arbeit
einmal mechanisch und nach Clausius-Carnot. Man findet:

/

Bild 7. William Thomson (später
Lord Kelvin) 1824 — 1907

(v-i — v0)dp ri]c
dT

wo r die Verdampfungs- (oder Kondensations-)wärme
bedeutet. Daraus folgt die wichtige Clapeyron-Formel:"

(10) r (v, „ dp

Nun benützt Thomson u. a. diese Formel und schreibt für
ein kleines Temperatur-Intervall

(11)
AT
T

(!>! — U0) Ap

Geht man jetzt von irgend einer Temperatur T aus, so
liefern kalorimetrische und mechanisch-geometrische Messungen

den Unterschied AT. Durch schrittweise Weiterführung
nach oben und unten wird die ganze T-Skala festgelegt. Bei
sehr tiefen Temperaturen kann man ähnliche, auf Clausius-
Carnot beruhende Formeln anwenden. Es zeigt sich, dass
die Abweichungen etwa von der Wasserstoffgas-Temperaturskala

nur klein sind.
Es brauchte einige Zeit, bis alle diese neuartigen

Aussagen die Physiker und Techniker überzeugten, und auch
heute noch gibt es gelegentlich Leute, die glauben, dass man

1 1 p* —*¦

A Bild 6. Joules Ueberströ-
mungsversuch. Irreversibel
von 1 nach 2. Der Entropie-
Unterschied wird auf dem
Umweg 1 1* 2 berechnet

iP
K=0 x 1

T-

dT

Bild 8a. Clapeyron-Prozess
im p-v Diagramm

Bild 8b. Clapeyron-Prozess
im T-S Diagramm

durch irgendwelche Tricks um den zweiten Hauptsatz
herumkommen könne. Ich erwähne aus der früheren Zeit
(1863) nur ein geistreiches Gedankenexperimen^von Hirn,
das auf den ersten Blick scheinbar zeigt, dass Wärme
sehr wohl «von selbst» von niederer zu höherer Temperatur
gehen kann, und somit der zweite Hauptsatz verletzt wäre
(Bild 9a). Eine gegebene Gasmasse von der Anfangstemperatur

To sei in zwei Zylinder mit gekoppelten Kolben
eingeschlossen. Ein Zahnrad mit Gestänge sorgt dafür, dass
das Gesamtvolumen konstant bleibt. Wenn der Uebergang
vom rechten zum linken Zylinder genügend langsam erfolgt,
so ist die Kolbenkraft links und rechts gleich, und für das
Ueberschieben des Gases ist also keine äussere Leistung
erforderlich. Beim Ueberschieben werde das Gas auf eine
konstante Temperatur T„ > T0 erhitzt. Nun ist qualitativ leicht
zu übersehen, was geschieht. Da das Gesamtvolumen
konstant ist und das Gas erhitzt wird, steigt der Druck in beiden

Zylindern an. Die schon übergetretenen Gasmassen
werden also dauernd weiter verdichtet und damit auf
höhere Temperatur gebracht. Wenn sie! übergeströmt sind,
sind alle Gasteilchen auf höherer Temperatur als Tq,
bis auf das letzte, das gerade noch Tq erreicht. Flüchtig

betrachtet sieht es also so aus, dass mit einer
Wärmequelle Tq ohne äussere Arbeitsleistung das ganze
Gas «von selbst» auf höhere Temperatur gebracht
worden wäre. Clausius hat sogleich den Fehlschluss
nachgewiesen, allerdings dann die Rechnung nur pauschal
gemacht2). Man kann aber im einzelnen zeigen, dass der
zweite Hauptsatz durchaus nicht durchbrochen wird und
Temperaturen und Entropien zwar etwas mühsam aber
exakt ausrechnen. Es ist eben nicht so, dass der Vorgang
«ohne Kompensation» erfolgte, indem nämlich die Wärme
an das Gas mit einem Temperaturfall *(T5 > To) gegangen
ist, der eine beträchtliche Entropie-Erhöhung verursacht.
Die Verdichtungen erfolgen adiabatisch, also ohne Entropie-
Vermehrung (Bild 9b).

Bild 9a zeigt3) den Temperaturverlauf in einer
Zwischenphase und im Endzustand und Bild 9c die totale
Entropie-Vermehrung am Ende. Mit Stevin könnte man auch
hier sagen: «Wonder en is gheen Wonder».

Ich möchte nun nicht auf Anwendungen des Entropiebegriffes

in der technischen Thermodynamik eingehen. Sie
haben einen wesentlichen Teil der Lebensarbeit Stodolas
ausgemacht und sind wohl den meisten von Ihnen geläufig4).
Vielmehr will ich noch einiges sagen über die Grenzen der
Clausiusschen Entropiedefinition und über die Weiterentwicklung

zur statistischen Entropieerklärung.
Ich greife zunächst ein Problem auf, das schon früh

Sorgen gemacht hat: die Mischungsentropie und das
sogenannte Gibbssche Paradoxon (Bild 10). Man denke sich
einen geschlossenen Raum mit Scheidewand und rechts und
links zwei verschiedene Gase, etwa N2 und O2, bei gleichem
Druck und gleicher Temperatur. Lässt man die Scheidewand
weg, so mischen sich die Gase, ohne dass Arbeit geleistet
oder Wärme zu- oder abgeführt werden muss. So leicht dieser

Vorgang «von selbst» abläuft, so schw^Sg ist die Trennung

der Gase. Bei der Mischung hat eine Entropie-Vermehrung

stattgefunden, die sich mit der Clausiusschen
Methode leicht berechnen lässt, falls man sich einen rever-

2) In einem Vortrag auf der Tagung der Schweiz. Naturforschenden

Gesellschaft in Samaden 1863 [3 c],
•') Nach Rechnungen von Dipl. Ing. H. Baumann.
•i) Zum Ausbau und zur Verwendung der Entropietafeln hat

seinerzeit P. Ostertag in sehr anregender Weise beigetragen.
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Bild 9. Hirnsches Gedanken-Experiment — Bild 9a. Anordnung und Temperaturverlauf — Bild 9b. Entropie-Diagramm — Bild 9c. Ver-
grösserung der Entropie von Gas und Wärmebad

siblen Weg denken kann, der zum selben Endzustand führt.
Da in der Natur sogenannte semipermeable Wände, die nur
Moleküle einer Sorte durchlassen, andere aber nicht,
gelegentlich vorkommen, ist es grundsätzlich erlaubt, sich in
Gedanken solcher zu bedienen. Wir nehmen links n-i Mole,
rechts n% an, Druck und Temperatur seien auf beiden Seiten
gleich. Dann muss bekanntlich sein:

ni : n% v% : i>2

Die semipermeablen Kolben werden zunächst in die
Ausgangsstellung a-a zusammengestellt. Man lässt sie unter
Wärmezufuhr Q isotherm Arbeit leisten, wobei jedesmal nur
die nicht durchgelassene Molekülsorte Druckdifferenzen gibt
und damit Arbeit leistet. Dann gilt in Anwendung der schon
früher benützten Formeln für die isotherme Expansion:

(12) L R T0 rax In Vi + V*

Vi + «2 In vi

(13) AS _Q^
T„

R ni In 1
n» \

n2 in 1 + !).]
Wählen wir ni _l_ w2 1 Mol

«1 X
n% 1 — x

so folgt:

1M x ln
1

+ (1 —
X

x) In

welche Funktion bei x % ein Maximum, nämlich In 2, hat.
Man sieht aus der Formel, dass die Natur der Gase

keine Rolle spielt. Das führt zu einem eigentümlichen
Ergebnis, auf das Gibbs [5] 1875 hingewiesen hat. Die Entropie

wird nämlich genau so viel wachsen, wenn die beiden
Gase sich in ihren Eigenschaften beliebig wenig unterscheiden.

In Tat und Wahrheit ist nun die Mischungsentropie im
Falle identischer Gase exakt null, da das Wegnehmen des
Schiebers überhaupt nichts ändert. Es kommt also nicht auf
den Grad, sondern nur auf die Tatsache der Verschiedenheit

Sang Dieses Alles- oder Nichts-Verhalten weist nun deutlich
darauf hin, dass wir es bei der Entropie-Berechnung im
Grunde mit Abzahlungen zu tun haben, mit Diskontinuitäten,

und dies bestärkt uns in der Vermutung, dass das
wahre Wesen der Entropie erst zu Tage tritt, wenn wir
hinabsteigen In die Welt der Atome, wenn wir also
molekulare Statistik treiben.

Die Formel (12) für den reversiblen Mischungsvorgang
gilt natürlich auch für die Entmischung; sie liefert uns
somit beispielsweise den minimalen Arbeitsaufwand bei der

Isotopentrennung. Rechnet man sich etwa aus, wieviel
Energie für die Trennung von 1 kg U235Fe aus einem 0,7 %
Gemisch von U23BFG und U23SF6 benötigt wird, so erhält
man 0,023 kWh.

Es gibt kaum eine bessere Illustration dafür, wie
schwierig es ist, den so einfachen Mischungsvorgang
rückgängig zu machen, als wenn man den in den Mammut-
Trennanlagen von Oak Ridge, Paducah, Capenhurst usw.
wirklich benötigten Aufwand betrachtet. Leider gibt es für
diesen Fall nämlich keine semipermeablen Kolben. Man
muss einen komplizierten Diffusionsprozess mit tausend und
mehr Stufen durchführen, der zum allergrössten Teil
irreversibel verläuft. Nach ungefähren Angaben werden praktisch

für die Trennung eines kg TJ235 nicht weniger als 1,2
Mio kWh verbraucht. Der Wirkungsgrad liegt also in der
Gegend von zwei Millionstel Prozent. Da ist es nicht
verwunderlich, dass die Anlage Paducah am Ohio wesentlich
mehr Strom als die ganze Schweiz verbraucht.

Wenige Jahre nach Aufstellung des Entropiebegriffes
hat man versucht, ihn aus den Prinzipien der rationellen
Mechanik abzuleiten. Beim ersten Hauptsatz war es nämlich

recht gut gelungen, diesen aus dem Satz der lebendigen

Kraft, ergänzt durch einen allgemeinen Ansatz für die
potentielle Energie zwischen den Molekülen zu erklären,
d. h. auf die Mechanik zurückzuführen. Es lag im Zuge der
Zeit, alles Geschehen mechanisch zu deuten, und so hat als
erster Ludwig Boltzmann (Bild 11) im Jahre 1866 versucht,
den zweiten Hauptsatz
als eine Folgerung des
Prinzips der kleinsten
Wirkung abzuleiten
[4a] und Clausius [3e]
hat wenige Jahre später

(1871) anscheinend
unabhängig einen
ähnlichen Weg eingeschlagen.

Allein, beide mussten

sehr spezielle
periodische Bewegungen
voraussetzen und erhielten
nur gerade das Resultat,

dass bei umkehrbaren

Kreisprozessen
die Entropie sich n|||w<
ändert. Es gelang aber
auf diesem Wege nicht,
die Entropie-Aenderun-
gen bei irgendwelchen
irreversiblen Veränderungen

zu berechnen.

5chieber

K3

Bild 10. Irresrarslble (oben) und reversible

(unten) Mischung zweier Gase,
unten Anwendung semipermeabler
Kolben
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d? Jl

Bild 11. Ludwig
1844 —1906

äoltzmann,

Durch diesen spärlichen
Erfolg wurde Boltz-
mann auf einen andern
Weg gewiesen. Er
betrachtete jetzt die
Bewegung der Moleküle
eines Gases als
molekular-ungeordnet und
fand 1872 überraschend,
dass man mit ganz
einfachen und einleuchtenden

Annahmen
tatsächlich eine Grösse
definieren kann (er
bezeichnete sie mit H,
meinte aber damit das
grosse griechische Eta),
die (bis auf das
Vorzeichen) genau die
Eigenschaften der
Entropie hat — insbesondere,

dass sie ein zeitlich

einseitiges Wachstum

zeigt [4b]. Zunächst schien dies alles recht natürlich.
Allmählich aber regte sich die Kritik, und es folgten Diskussionen,

die sich über Jahrzehnte erstreckten und die zeigten,
dass in den Annahmen Boltzmanns tiefer gehende
Voraussetzungen steckten. — Boltzmann betrachtet die in einem
bestimmten Volumen (z. B. 1 cm3) enthaltenen Moleküle
und teilt sie in Gruppen je nach Geschwindigkeiten. Da sehr
viele Moleküle (Grössenordnung 1020) vorhanden sind, können

kontinuierliche an Stelle der in Wahrheit ja
diskontinuierlichen Funktionen treten, was die Rechnungen sehr viel

|w|||rsichtlicher macht.
In einem «Geschwindigkeitsraum» £, y, r (Abb. 12a)

wird ein Element d| dy dr herausgegriffen und die Zahl der
Moleküle, deren Geschwindigkeitspunkte in dieses Element
fallen, mit

(15) / (i,i], f, t) did-qdr fda
bezeichnet, worin also auch eine zeitliche Abhängigkeit von
/ enthalten ist. Greift man jetzt zwei Elemente des
Geschwindigkeitsraumes dai und Ä«2 heraus, so wird man für
die Zahl der Moleküle mit den Geschwindigkeiten Ci und c^
entsprechend setzen dürfen:

h (il, Vi, h, t) d^idiìid^i fidai
h (Is, -ni, h, *) d& di;2 d£2 fi dan

Es wird nun vorkommen, dass diese herausgegriffenen zwei
Sorten Moleküle zusammenstossen (Bild 12b). Für die Zahl
dn der Stösse in der Zeit dt wird der Ansatz gemacht:

(16) dn w fif^daida^dG dt

wo w die relative Geschwindigkeit der beiden Gruppen ist.
dG ist ein Faktor, der nur noch verlangt, dass diese Stösse
in ganz spezieller Weise erfolgen — nämlich so, dass die
Zentrilinie eine ganz bestimmte Lage zu den
Geschwindigkeitsvektoren ci. und Cn hat (wiederum mit etwas Spielraum,
daher dG). Im übrigen ist der Ansatz ein sehr natürlicher.
In Bild 12b ist eine solche Stoss-Situation dargestellt, die
Geschwindigkeitsvektoren sind im Diagramm 12c aufge¬

tragen. Aus den Gesetzen des elastischen Stosses folgt
bekanntlich, dass die Komponenten der Relativgeschwindigkeit
in Richtung der Zentrilinie gerade umgekehrt werden, während

die tangentialen Komponenten erhalten bleiben. Es geht
also Ci in cì und c2 in c%' über; die Relativgeschwindigkeit
bleibt dem Betrage nach unveränderter) s w')- Durch
jeden solchen Stoss werden die Geschwindigkeitspunkte der
Gruppe /i aus dem Element dai geworfen, so dass deren
Zahl abnimmt. Man muss aber bedenken, dass durch andere
Stösse auch wieder Geschwindigkeiten erzeugt werden, die
in den Raumteil dai fallen. Das kann, wie man sogleich
sieht, so erfolgen, dass zwei Teilchen mit den Geschwindigkeiten

cì und c2' und der Relativgeschwindigkeit w' w)
und analoger geometrischer Anordnung (dG' dG) gerade
wieder zu cx und e% zurückkehren (Bilder 12c und 12d).
Nun ist aber obendrein dai' dai, dai' da^, weil ja die
Punkte ci cì, cu c^ usw. spiegelbildlich liegen.
Daraus folgt dann für die Aenderung von fi.

(17) dfi
dt Juih' — hh) w dG da»

Im stationären Fall müssen die / zeitlich konstant sein,

also fi' fi' h h
und daraus folgt rein mathematisch:

(18) f — ae~cVa',

das Maxwellsche Geschwindigkeitsverteilungsgesetz (für eine
Richtung).

Boltzmann geht aber weiter. Eine geniale Eingebung
führt ihn dazu, die Funktion

(19) H ff Inf du

(summiert über den ganzen Geschwindigkeitsraum.) zu
betrachten. Mit dem obenstehenden Stosszahlansatz folgt,
wiederum ohne neue Annahmen, die fundamentale
Gleichung:

(20)
dH
Alt

r/[m(/i'/Y) — m(/i/2)] (fAh' — fif2) wdGdaida*

Die wichtigste Folgerung daraus ist die, dass der
Integrand stets positiv ist. Wenn etwa fì fì grösser als fi fi ist,
so ist ja auch die Differenz der Logarithmen positiv, und
umgekehrt. H kann also durch die Zusammenstösse nur
abnehmen. Für den stationären Fall, Gl. (18), zeigt die
Ausrechnung (ohne neue physikalische Annahmen), dass (bis
auf eine Konstante) — H S, die Clausiiissche Entropie ist.
Man kann aber, über Clausius hinausgehend, diese Gleichung
für eine verallgemeinerte Definition der EnÉjopie auch
ausserhalb des stationären Zustandes verwenden. Das H-Theo-
rem sagt dann, dass die Entropie eines Gases in einem
gegebenen Volumen bei Nicht-GIeichgeprlehtszuständen nur
zunehmen kann und im stationären Zustand ein Maximum
ist. Das ist bei näherer Betrachtung ein höchst seltsames
Resultat.

Loschmidt hat sogleich den sogenannten Umkehrein-
wand formuliert. Man denke sichj§|n Gas in einem beliebig
speziellen Anfangszustand, z. B. alle Moleküle in der rechten

/ci

Bild 12a.
«Geschwindigkeits-

raum»

Bild 12b. Direkter Stoss zweier
Moleküle (von Ci, Ca nach cì, cì)

S.P.
*"c

—3H^rc. m—

Bild 12c. Diagramme
der Geschwindigkeiten
vor und nach dem Stoss

X

Bild 12d. Inverser Stoss
(von Oi', C2' nach C\, Ca)
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Hälfte eines Behälters. Dann überlasse man es sich selbst:
es wird den Raum ganz ausfüllen und im Sinne des H-Theo-
rems immer «normaler» werden. Greifen wir jetzt irgend
einen Zeitpunkt heraus und kehren alle Geschwindigkeiten
dem Vorzeichen nach genau um. Dann sagen doch die
Gleichungen der Mechanik (und andere werden beim Beweis des
H-Theorems nicht gebraucht), dass alles weitere in
umgekehrter Folge vor sich gehen wird, und das Gas wieder in
den speziellen Zustand zurückgehen, H also zu-, die Entropie

aber abnehmen muss. Dabei ist nun der Zustand mit
umgekehrten Geschwindigkeiten um kein Haar weniger
unwahrscheinlich als der andere. Es brauchte sehr viel mehr
Zeit, als mir zur Verfügung steht, wenn ich versuchen
wollte, die daran anknüpfenden äusserst subtilen Diskussionen

hier auch nur zu streifen. Vielleicht genügt es, einen
gewissermassen praktischen Gesichtspunkt zu erwähnen.
Die umgekehrte Bewegung Loschmidts muss von aussen
vollständig ungestört vor sich gehen. Ein einziger «Fehl-
schuss» wird die kunstvolle Rückwärtsentwicklung total
unterbrechen und wieder zum molekularen Chaos, das dem
Stosszahlansatz zu Grunde liegt, führen. Wenn also auch
die umgekehrte Bewegung in einem Augenblick gleich
wahrscheinlich ist wie die direkte, so ist ein länger dauernder,
genau umgekehrter Verlauf innerhalb einer grossen
Gasmasse ausgeschlossen.

Etwas anderes ist es, wenn man sehr kleine
Gasvolumina betrachtet. Da kann sehr wohl für eine endliche
Zeit ein Zustand herrschen, bei dem die «Entropie»
abgenommen hat. Solche Schwankungen sind tatsächlich
beobachtbar und zeigen, dass der zweite Hauptsatz nur bei
makroskopischen Systemen den Charakter eines
Naturgesetzes hat; generell muss er in den Rang eines
Wahrscheinlichkeitsgesetzes gestellt werden (Bild 13).

So war es gegeben, dass man vom festen Schema der
rationellen Mechanik mehr und mehr abging und eine
Beschreibung anstrebte, die nicht den Einzel-Mechanismus,
sondern das statistische Verhalten etwa einer Gasmasse
erfassen sollte. Wiederum war es Boltzmann, der voran ging,
aber auch Maxwell und Gibbs wären zu nennen.

Boltzmann hat das ursprünglich abgeleitete H-Theorem
auf Wahrscheinlichkeitssätze oder besser auf ein statistisches

Abzählverfahren zurückgeführt und damit den Weg
für die ganze folgenschwere Weiterentwicklung freigemacht
[4c] (1877). — In der einfachsten Form lautet es so:

Der «Geschwindigkeitsraum» £, -n, f wird in zahlreiche
Zellen vom gleichen Volumen a eingeteilt. Man soll sich diese
zunächst als von endlicher Grösse vorstellen. Nun
enthalte etwa die erste Zelle (ei<o) Geschwindigkeitspunkte, d.h.
die Zahl der Moleküle mit der Geschwindigkeit ii, in, fi sei
i»i<o, wobei ein durch a gegebener Spielraum noch toleriert
wird. Ebenso seien v^a in der zweiten Zelle, usw. Die
Gesamtzahl der Teilchen ist

1(Vi + "2 + "S + ¦

Jetzt denken wir uns n gegeben und ebenso die
gen nach der Zahl Z der Anordnungen,

die unter diesen Bedingungen
noch möglich sind. Denn wir können
ja die n Moleküle auf die Zellen noch
in sehr verschiedener Weise verteilen,

so wie man p Personen auf s
gfpsp) Stühle in mannigfachster Art

setzen kann. Haben wir unsere n Teil-
äcnen in eine horizontale Reihe

geschrieben, so können wir diese
bekanntlich auf n! (Fakultät) Weisen
umstellen. Nun sollen via Teilchen in
der ersten Zelle sein. Es wird aber
die Reihenfolge der Teilchen in der
Zelle nicht vorgeschrieben. Es genügt
zu wissen, dass sie drin sind. Somit
kann man in der ersten Zelle (via)'.
Vertauschungen vornehmen, ohne
dass diese einen Einfluss auf die Zahl
Z geben. Das gleiche gilt für die
zweite, dritte usw. Zelle. Damit wird

und fra-

die Zahl der massgebenden Anordnungen

(21) Z
(via) (viu)\

Jetzt geht Boltzmann zum Logarithmus dieser Zahl über,
benützt, da alle Zahlen, deren Fakultät man nimmt, als sehr
gross betrachtet werden, die Stirlingsche Näherungsformel

In (al) =alna — o

und findet durch Ausrechnen

(22) InZ — a(viinpi + i>slnjrs + + C (n, a)

Damals hat man gewiss nicht ahnen können, dass a tatsächlich

eine endliche Grösse aufweist; Boltzmann geht deshalb
schliesslich zur Grenze sehr kleiner a über und macht
folgende Zuordnung:

a —> d| d-q dr

v^ftt, -n, r)

um mit der vorangehenden H-Berechnung übereinstimmende
Bezeichnungen zu haben. Die Summe aber wird zum Integral.

Dann zeigt sich:

InZ [flnfdidydr H

Das Integral ist also gerade H, oder bis auf eine Konstante
die negative Entropie. Damit findet Boltzmann den wunderbar

einfachen Zusammenhang:

(23) S co inZ
Jetzt ist es klar, wapn die Entropie im stationären Zustand
ein Maximum ist. Dieser ist nichts anderes als ein Zustand,
der sich auf die zahlreichste Art verwirklichen lässt; er ist
der häufigste, oder wie man auch sagt: der wahrscheinlichste.

Beim Nullpunkt der Temperatur ordnen sich die
Teilchen völlig regelmässig an (fester Körper). Es gibt
dann nur einen Zustand (Z — 1), und die Entropie wird
gleich null, wie es der dritte Hauptsatz verlangt. Die
algebraische Abzahlung (Summation statt Integration) ist
dem Problem letzten Endes besser angemessen. Man erhält
dann den Differenzenquotienten AH/At, und H zeigt einen
zackenförmigen VeriaufjpEAreTC/esi [6] hat durch ein
Modell-Würfelspiel eine solche «H-Kurve» gewonnen (Bild
138)). Von einem extrem unwahrscheinlichen Anfangszustand

aus fällt «H» fast gleichmässig auf null (Maximum
der Entropie); dann aber werden Schwankungen beobachtet,
die dauernd weiter vorhanden sind, und im Prinzip nach
allerdings sehr langen Zeiten auch grösser werden können.
Freilich sind hier nur 40 Teilchen betrachtet. Bei einem
wirklichen Gas mit sehr viel mehr Teilchen sind die Schwankungen

praktisch verschwindend klein.
Mit diesem Ergebnis ist der Durchbruch zur modernen

Theorie vollzogen. Aber es mussten noch fundamental wich-
5) Die Figur ist der vortrefflichen «Einfuhrung in die theoretische

Physik», Band II. von Cl. Schäfer, entnommen.
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Bild IS. «HVKurvenmodell nach Ehrenfest für 40 Teilchen. Abnahme von H (Zunahme der
Entropie) aus einem unwahrscheinlichen Zustand. Schwankungen um das Minimum von H
(Maximum der Entropie)
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Bild 14. Absolute Entropie von einem Mol Helium IM 4,

einatomig) bei verschiedenen Drücken und Temperaturen nach
Sackur-Tetrode. Es ist

S 5 3 5 i2ir \2 k2
— — -\ In M + - in T — In p + In ^H ^=-R 22 2 1. V N f fe3.

Der Punkt St. E. ist die Standard-Entropie bei p 1.01325 108

-und T 298.1 OK (t 25 ° C)

tige neue Erkenntnisse kommen, bevor es gelang, etwa die
Entropie eines Gases absolut und auf rationelle Weise zu
bestimmen; diese wurden durch die Quantentheorie (später in
der Form der Wellenmechanik) gebracht. Der erste wesentliche

Punkt (für unser ja sehr begrenztes Ziel) ist, dass
diese nun die Zellengrösse nicht nur als endlich erkannte,
sondern sie auch numerisch festlegte. Um diesen Schritt zu
verstehen, kann man sich nach Gibbs statt dem
Geschwindigkeitsraum einen sogenannten «Phasenraum» denken, der
sehr viele Dimensionen hat (nämlich 6 n), in dem der Mikro-
zustand des ganzen Gases durch einen Punkt dargestellt ist
und zwar sowohl nach der Lage der Moleküle als auch ihrer
Geschwindigkeiten, bzw. der hier wichtigeren Impulse
(mi, mi], mf). Eine Zelle in diesem Raum hat die
physikalische Dimension

(Länge) 3n • (Impuls) 3n (Impulsmoment) 3".

Und jetzt folgt der grosse Schritt, dass man (nach Sackur
und Tetrode) als Einheit des Impulsmomentes jene
Fundamentalkonstante wählt, die heute die ganze Mikrophysik
beherrscht, das Plancksche h:

oder grh 6,625 • IO-2' erg • sec

Unser bisher unbestimmtes a wird ersetzt durch h3n. Dann
kann man schreiben (Planck):

(24) S - k\TiZ

k ist die sogenannte Boltzmannsche Konstante. Sie hat den
Wert:

k

worin R '¦

N ¦

R
Asï

8,316-IO7
6,025-IO23

1,38 • IO-16 erg
Grad

allgemeine Gaskonstante für 1 Mol
Zahl der Moleküle pro Mol.

Ein zweiter Schritt war notwendig, der seinerzeit zwar
intuitiv erkannt, aber nicht verstanden und erst durch die
Wellenmechanik erklärt wurde. Man zählt nach Boltzmann
nämlich immer noch zu viel Zustände als gleichberechtigt.
Es zeigte sich allmählich deutlicher, dass die Atome keineswegs

Individuen sind, die man in jedem Fall einzeln
aufweisen, numerieren und ständig verfolgen kann. Sie
benehmen sich eben nicht immer als Massenpunkte, sondern
auch als Wellen, die interferieren können. Es ist beinahe so
wie mit echten Zwillingen, die gleich gekleidet und auch
sonst ununterscheidbar sein sollen. Wenn man einen trifft,
ist man versucht, zu fragen: «Sind Sie es oder sind Sie Ihr
Bruder?» Ob dann der eine oder der andere im Zimmer ist,
wird man als einen Fall rechnen. — Was hier mehr scherzhaft

gesagt ist, stellt sich rechnungsmässig als die berühmte
Division durch nl dar. So gelingt es, absolute Entropien
exakt zu rechnen (Bild 14). Damit ist ein Abschluss
erreicht, mit dem wir uns begnügen wollen. Weit über das
Entropieproblem hinaus kämen wir sonst mitten in die
Quantenphysik mit ihren wundersamen neuen Aspekten.
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Zur Theorie der Nassdampfturbine
Von Prof. Dr. W. Traupel, Zürich

Zusammenfassung. Es wird theoretisch geneigt, dass

die Temperaturverhältnisse in den Grenzschichten der Schaufeln und
die dort vor sich gehenden Wärmeübertragungsvorgänge das
Einsetzen der .Kondensation im unterkühlten Dampf massgebend
bestimmen. Auch wenn die Kondensation einmal eingesetzt hat, durchläuft

das System Wasser I Dampf nur unter gewissen Bedingungen
annähernd die Gleichgewichtszustände, die man üblicherweise
voraussetzt.

1. Vorbemerkung
Die Vorgänge in der Nassdampfturbine sind bis heute

einer genauen theoretischen Analyse weithin unzugänglich
geblieben. In letzter Zeit haben sie indessen im Zusammen-

DK 621.166.621.1.013

hang mit den Problemen der Kernkraftwerke erneut an
Bedeutung gewonnen. Wenn wir nachfolgend über sie einige
Betrachtungen anstellen, so glauben wir, dass dies besonders
sinnvoll ist innerhalb dieser Sondernummer zum Gedenken
an Aurei Stodola, den Altmeister des Dampfturbinenbaues.
Der Autor hatte als ganz junger Ingenieur noch einige
wenige Male Gelegenheit, mit Stodola zusammenzutreffen
und erinnert sich einer Bemerkung, die dieser nachdenklich
in das Gespräch einstreute. Sein Lebenswerk, meinte
Stodola, sei unvollendet geblieben, da es ihm nicht gelungen
sei, eine wohlfundierte geschlossene Theorie des Nassdampfteiles

der Dampfturbine zu schaffen. In der Tat ist auch
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