Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 75 (1957)

Heft: 48

Artikel: Das Gezeitenkraftwerk an der Rance bei St. Malo

Autor: Schnitter, Erwin

DOI: https://doi.org/10.5169/seals-63453

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

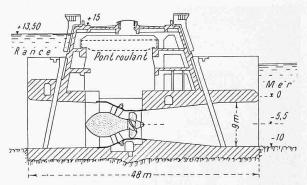
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mantel und der Hauptstütze verbleibende Zwischenraum wurde nach einem Spezialverfahren betoniert. Die ursprünglich vorgesehenen diagonalen Zugglieder aus Stahlketten zwischen den drei Hauptstützen wurden weggelassen, da die Stützen durch Schächte von 4,5 m Durchmesser in die Plattform hineinragen und darin eingespannt gehalten werden. Das untere Ende der Hauptstützen dringt 14,7 m tief in den harten Meeresboden.

Das oben genannte Heben der Plattform wurde wie folgt ausgeführt. Jede Hilfsstütze trug zwei mit Druckluft betätigte Heber von je 300 t Tragkraft. Jede Hebevorrichtung bestand aus einem oberen, mit dem Tragwerk durch Zugstangen verbundenen stählernen Gehäuse mit eingebauten, aufblähbaren Greifbacken aus Gummi, ferner aus einem untern gleichen Gehäuse, das ebenfalls solche Greifbacken enthielt, und einem dazwischen angeordnetem Blasbalg. Beim Heben der Plattform wurden die untern Greifbacken mit Druckluft von 14 Atm. an die Hilfsstütze angepresst, während die Greifbacken im obern Gehäuse gelöst blieben. Mit Druckluft wurde der Blasbalg hierauf ausgedehnt, wobei die obern Greifbacken samt Tragwerk und die mit diesem verbundene Plattform Zentimeter um Zentimeter hinaufgestossen wurden. Hierauf wurden die obern Greifbacken mit Druckluft an die Hilfsstütze angedrückt und damit die Plattform in der neuen Höhenlage festgehalten. Gleichzeitig wurden die untern Gleitbacken gelöst und durch den sich wieder zusammenziehenden Blasbalg um den gleichen Betrag ebenfalls gehoben. Dieses Spiel wiederholte sich, bis die Plattform auf die gewünschte Höhe gehoben war.


Die für das Einschwimmen dieses ungewöhnlichen Bauwerkes bestgeeignete Methode war durch Modellversuche ermittelt worden. Diese ergaben die Notwendigkeit, die Schwimmfähigkeit der abgedichteten Plattform dadurch zu erhöhen, dass die an der gezogenen Bugecke der Plattform angebrachten zwei Tragwerke der Hilfsstützen zu wasserdichten Behältern gestaltet wurden. Während dem Einschwimmen tauchten die Hauptstützen 3 m tief ins Meer und überragten das Hauptdeck ebenso wie die Hilfsstützen um 50 m. Der Aufrechterhaltung der Stabilität während dem Einschwimmen musste bei dem sich oft ändernden Wind und Wellengang besondere Aufmerksamkeit geschenkt werden. Soweit bekannt, stellt der Texas Tower No. 2 bis jetzt das grösste Bauwerk dar, das so hoch über dem Meeresspiegel, so weit entfernt vom Festland und unter so schlechten Wellen- und Strömungsverhältnissen errichtet wurde. Ausser der oben genannten Zeitschrift hat auch «Der Bauingenieur» 1957, Heft 5, dem wir unser Bild entnehmen, über diesen Bau berichtet. M. P. Misslin

Das Gezeitenkraftwerk an der Rance bei St. Malo

DK 621.287

Die langjährige Planung für die Nutzbarmachung der Gezeiten zur Erzeugung elektrischer Energie hat in Frankreich zu Lösungen geführt, die es der Electricité de France ermöglichen, an den Bau der ersten derartigen Grossanlage heranzutreten. Auf drei Gebieten musste die technische Entwicklung die nötige Reife erlangen: Der Elektro-Maschinenbau hatte ein Rohrturbinen-Aggregat von besonderer Vielseitigkeit zu entwickeln; die Modell-Versuchstechnik musste die Bauzustände sicher beherrschen lernen; die Handhabung sehr grosser Materialmassen in bestimmten Zeitabschnitten stützt sich heute auf jüngst entwickelte Mittel von ungeahnter Beweglichkeit und Anpassung.

An der Mündung der Rance, 2,5 km südlich von St. Malo, wo der Wasserdurchfluss bei Springflut 15 000 m³/s beträgt, hat die Natur besonders günstige Verhältnisse geschaffen: durch die Topographie der Bucht von St. Malo steigert sich die Flutwelle zu einem Gezeitenhub von 10,9 m bei normaler Springflut, 13,5 m bei höchster Springflut, 5,4 m bei tauber Flut. Eine Talverengung in homogenem Granit mit mässiger Alluvialüberdeckung ermöglicht es, durch eine Sperre von 710 m Länge bei 28 m Höhe und 48 m Fundamentbreite einen Stauraum mit einer Oberfläche von 20 km² bei Flut abzuschliessen. Diese Mauer (wir nehmen den Schnitt wie auch weitere Daten dieses Berichtes aus «Le Génie Civil» vom 15. Februar 1957) überragt den höchsten Flutspiegel um 1,5 m. In ihrem Fundament sind die Durchlässe angeordnet für 38

Schnitt 1:750 durch das Sperrmauer-Kraftwerk

Rohrturbinenaggregate von je 9000 kW, deren horizontale Achsen 5,5 m unter tiefstem Wasserspiegel liegen. Der aufgehende Mauerkörper ist hohl und enthält die Betriebsräumlichkeiten; die Decke trägt zwei breite Strassenfahrbahnen. An beiden Ufern sind je fünf Entlastungs-Oeffnungen angeordnet; am linken Ufer dient eine Schleuse der Binnenschiffahrt.

Der als Tauchkörper ausgebildete Generator mit Turbine (Schnitt s. SBZ 1956, S. 789) kann in jeder Strömungsrichtung (Füllen und Leeren des Staubeckens) vier Funktionen erfüllen: 1. Stromerzeugung, 2. Pumpen, 3. Freier, ungehinderter Durchfluss, 4. Abschluss. Demnach bietet die Anlage die Möglichkeit, sich nach Bedarf in das Regime des Netzes einzupassen. Das Spiel im Gezeitenrhythmus kann etwa folgendes sein: innen und aussen liege Hochwasser; ist im Netz Ueberschussenergie frei, so kann durch Pumpen der Beckenspiegel weiter angehoben und die Energiereserve gesteigert werden. Nachdem der Aussenspiegel durch die Ebbeströmung genügend abgesunken ist und im Netz Energiebedarf herrscht, wird Energie erzeugt. Ist bei Ebbe der Beckenspiegel auf die minimale Nutzhöhe abgesunken, so werden die Turbinenschaufeln so gestellt, dass freier Wasserdurchfluss eintritt (jede Einheit führt bei 1 m Gefälle statt 180 m^3/s deren 420 ab).

Durch solches Oeffnen aller 38 Einheiten und der zehn seitlichen Durchlässe wird der Stauraum rasch entleert. Sofern zu dieser Zeit im Netz Ueberschuss-Energie zur Verfügung steht, können, so lange aussen tiefster Wasserspiegel herrscht, die 38 Gruppen den Innenwasserspiegel noch tiefer abpumpen. Bei eintretender Flut ergibt sich hierdurch ein früher eintretendes und zusätzliches Gefälle zur Stromerzeugung während des Füllens des Beckens.. Nach Eintreten des Minimal-Gefälles werden die Turbinen-Schaufeln auf freien Durchfluss gestellt und die seitlichen zehn Schützen geöffnet, wodurch sich das Becken rasch füllt. Damit wiederholt sich das Spiel von Aufpumpen, Ablauf mit Stromerzeugung, Leerlaufen, Abpumpen, Einlauf mit Stromerzeugung, Vollaufen. Diese Arbeitsweise gestattet, sich dem Bedarf, besonders den Spitzen, auf das weitgehendste anzupassen und damit hochwertige Energie zu erzeugen.

Mit der installierten Gesamtleistung von 342 000 kW wird die jährliche Netto-Energieerzeugung 800 Mio kWh betragen. Man rechnet mit vollem Betrieb für 1960 und mit Baukosten von 400 Mio Schw. Fr. «Water Power» 1956, Nr. 11 und 12, gibt ausser Obigem weitere interessante Angaben über die Anlage, ihren Bau und ihre Funktion. Erwin Schnitter

NEKROLOGE

† Giovanni Rodio, Bau-Ingenieur G. E. P., Dr. h. c., von Brindisi, geboren am 24. Jan. 1888, ist im Alter von 10 Jahren zusammen mit Eltern und Geschwistern nach Zürich gekommen und dann in dieser Stadt aufgewachsen. Er hat seine Studien mit dem Diplom als Ingenieur am Polytechnikum im Jahre 1910 abgeschlossen. Er ist Zeit seines Lebens mit der Stadt Zürich und der Schweiz stark verbunden gewesen, und wir haben durch sein Ableben einen grossen Freund unseres Landes verloren.

Rodios Tätigkeit als Ingenieur war stark mit dem Bau von Wasserkraftanlagen verbunden, hat er doch in jungen Jahren zuerst bei den Brusio-Kraftwerken und seit 1911 im Auftrage der Firma Locher & Co. für den Bau einer Kraftanlage in Spanien gewirkt. Von 1914 an hat er für Prof.