Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 74 (1956)

Heft: 8

Artikel: Die Kernenergie in der europäischen Energiebilanz der Zukunft

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-62579

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

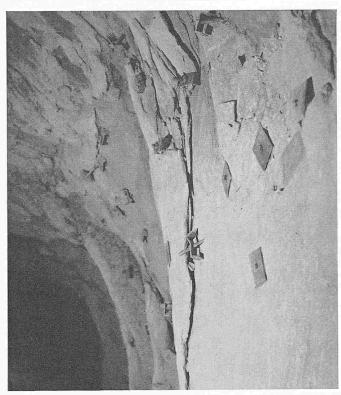
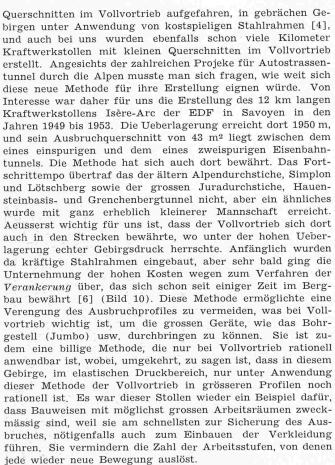



Bild 10. Stollen Isère-Arc, Verankerung einer zu Bergschlag neigenden Ulme (Phot.: H. Baranger, Paris)

Es darf allerdings nicht übersehen werden, dass der Stollen Isère-Arc hauptsächlich im elastischen Bereich des Gebirgsdruckes verlief, den plastischen höchstens streifte (Bild 11). Es gibt Spezialisten, die behaupten, bei Anwendung von genügend langen Ankerbolzen sei die Methode der Verankerung auch im plastischen Bereich mit Erfolg zu verwenden. In Uebergangszonen dürfte das zutreffen; ob aber auch

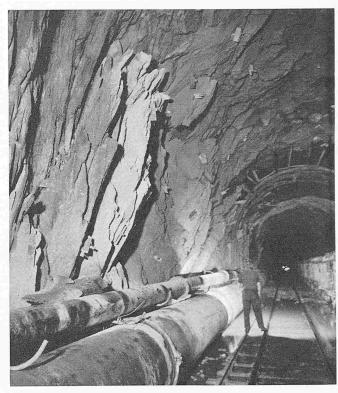


Bild 11. Verankerung einer gedrückten Ulme, Grenze des plastischen Bereiches (Phot.: H. Baranger, Paris)

in Strecken, wie sie die Bilder vom Simplon zeigten (Bilder 7, 8, 9), ist weniger sicher. Jedenfalls wird vorläufig diese Frage besser noch offen gelassen, bis darüber die Erfahrung entscheidet. Die Strecken, in denen im Simplontunnel der echte Gebirgsdruck die Elastizitätsgrenze überschritt, lagen unter Ueberlagerungen von 1750 bis etwa 2200 m. Unter höheren Ueberlagerungen könnten sich doch bedeutende Schwierigkeiten ergeben, um so mehr, als der Querschnitt eines Autostrassentunnels wesentlich grösser ist als der des Stollens Isère-Arc (Ueberlegung des projektierten Mont-Blanc-Tunnels bis 2500 m).

Die Kernenergie in der europäischen Energiebilanz der Zukunft 621.311.25:621.039.4

Der Ausschuss für elektrische Energie der Europäischen Wirtschaftskommission der Vereinigten Nationen (Commission Economique pour l'Europe, CEE) prüft die Frage ihrer Mitarbeit auf dem Gebiete der Kernenergie auf Grund eines von seinem Sekretariat ausgearbeiteten Berichtes*). Dieser Bericht enthält eine interessante Bilanz des Energiebedarfs und des natürlichen Energiedargebotes der verschiedenen europäischen Länder. Daraus ergibt sich, dass die meisten europäischen Länder nicht über genügend natürliche Energiequellen verfügen, die es ihnen gestatten würden, ihren Eigenbedarf im Verlaufe der nächsten 20 Jahre zu decken. Sie werden also gezwungen sein, sich mit namhaften Importen zu behelfen oder ihr Defizit durch Beizug von Kernenergie zu decken.

Die Vorräte an festen Brennstoffen sind zwar noch sehr gross. Die jährlichen Fördermengen lassen sich jedoch nicht beliebig steigern, weil man zu immer tieferen Schichten hinabsteigen muss und die verfügbaren Arbeitskräfte seltener werden. Die Weltvorräte an Erdöl sind schwer zu ermitteln; die wahrscheinlichen Vorkommen, die man zu etwa dem Fünffachen der nachgewiesenen annimmt, betragen in Europa nur etwa 2 ‰ derjenigen der festen Brennstoffe. Kürzlich in

*) Eine ausführliche Berichterstattung findet man im «Bulletin des SEV» 1956, Nr. 9, S. 19.

einer grossen Anzahl europäischer Länder vorgenommene Sondierungen haben neue wichtige Erdölvorkommen zutage gefördert. Das selbe gilt auch für Erdgas. Sehr schwierig ist ferner auch das Abschätzen der Grösse der noch ausnutzbaren Wasserkräfte. Man schätzt sie zu 20 bis 30 % der theoretisch möglichen Mengen. Dieser Wert hängt naturgemäss vom technischen Können, von den Gestehungskosten der Energie und von den Bauzeichen der Werke ab.

Energiebedarf und Energiequellen sind nicht nur sehr ungleichmässig über die Erdoberfläche verteilt, sondern der Ausgleich zwischen Dargebot und Bedarf ist schwach. So beträgt z.B. bei Kohle im Tauschverkehr zwischen den europäischen Ländern das Total der Importe im Jahre 1952 nur 12 % der europäischen Produktion, bei Erdöl 13 %, bei elektrischer Energie nur 1,3 bis 1,6 % in den Jahren 1937 bis 1954. Der Hauptgrund hierfür sind die hohen Transportkosten und die nötige Speicherung.

Die Prognosen für die zukünftige Entwicklung haben ergeben, dass die Länder mit vorwiegender Energieversorgung aus Wasserkräften (Spanien, Finnland, Italien, Schweden und die Schweiz) ihr gesamtes Potential in etwa 20 Jahren ausgebaut haben werden. Nachher werden nur noch Oesterreich, Norwegen, Portugal, Rumänien, die Türkei und Jugoslawien über ein gewisses hydraulisches Potential verfügen. Aber auch die Länder mit hauptsächlich fossilen Energiequellen werden sich wegen den Grenzen, die der Ausbeutung gesetzt sind, neue Quellen sichern müssen. Das ist z.B. in England schon jetzt spürbar.

Im Bericht wird versucht, die Gestehungskosten für Kernenergie zu ermitteln und sie mit denen bisheriger Rohenergien zu vergleichen. Die diesbezüglichen Schätzungen sind auch heute noch sehr unsicher. So weiss man noch wenig über die Lebensdauer der Elemente, aus denen die Reaktoren bestehen, ebenso über die Verkaufsmöglichkeiten von Plutonium. Sicher ist, dass die Atomkraftwerke bedeutende Investitionen erfordern. Diese werden mit den technischen Fortschritten beträchtlich zurückgehen, ebenso mit der Grösse der Anlage und dem Ausnützungsgrad. Jedenfalls darf man heute noch nicht behaupten, die Kernenergie vermöge die in thermischen Zentralen gewonnene Energie wirksam zu kon-

Es wäre geboten, die Entwicklung der Verbindungsleitungen zwischen den europäischen Ländern und die Ausbaumöglichkeiten der noch vorhandenen Wasserkräfte sorgfältig zu verfolgen. Die Laufwerkenergie wird noch auf lange Zeit hinaus billiger zu stehen kommen als die Kernenergie, und zur Deckung des Spitzenbedarfs werden Speicherwerke immer nötiger werden, da ja Atomkraftwerke vor allem die Grundlast zu decken haben werden. So bleibt die Notwendigkeit bestehen, den Ausbau der Wasserkräfte weiterhin tunlichst zu fördern, ebenso den Energieaustausch mit wasserkraftarmen Ländern. In Verbindung mit dem Bau von Atomkraftwerken in Europa stellen sich weitere Probleme, so z. B. die Verwertung der anfallenden Wärme, der Bau von Fabriken zur Herstellung von Isotopen und von schwerem Wasser und der Erfahrungsaustausch.

Das Kraftwerk Wildegg-Brugg

Mitgeteilt von den Nordostschweizerischen Kraftwerken AG., Baden

DK 621.292.2

Fortsetzung von S. 99

3. Generatoren

Die Generatoren sind im Maschinensaalboden versenkt über den Turbinen angeordnet und mit diesen starr gekuppelt. Ihre Hauptdaten lauten:

-						
Nennleistung	bei	$\cos \varphi$	=	0,7	übererregt	30 000 kVA
	bei	$\cos \varphi$	=	0	übererregt	24 000 kVA
	bei	$\cos \varphi$	=	0	untererregt	12 500 kVA
Nennspannung						$8,2 \text{ kV} \pm 5\%$
Nennfrequenz						50 Hz
Nenndrehzahl						115,4 U/min
Durchgangsdrehzahl						350 U/min
Schwungmoment des Polrades						4000 tm ²

von Laufrad mit Welle (93 t) und Polrad einschliesslich Erregerrotor (174 t) stützt sich dabei über die Bremsböcke auf die Arme des Tragsternes ab. Die Kräfte auf das Spurlager sind aber bei laufender Maschine wesentlich grösser, da der hydraulische Druck des Wassers hinzukommt, der bis zu 380 t betragen kann.

Das Polrad von 6,2 m Durchmesser trägt 52 Magnetpole von rund 1,6 m Höhe. Die Dämpfungswirkung der Pole aus massivem Stahlguss macht eine besondere Dämpferwicklung überflüssig, was eine äusserst einfache und betriebssichere Konstruktion ergibt. Die Pole sitzen in schwalbenschwanzförmigen Nuten von drei Radkränzen. In Abweichung von der bisher in der Schweiz gebräuchlichen Bauart bestehen die

Generator 2 gegen den Uhrzeigersinn Für die Wahl der Leistungsdaten war massgebend, dass bei der zentralen Lage des Kraftwerkes keine langen, leerlaufenden Hochspannungsleitungen unter Spannung zu setzen sind. Die oben angegebene kapazitive Blindleistungsgabe ist daher genügend. Hingegen ist es sehr erwünscht, wenn die Generatoren besonders bei kleiner Aarewasserführung stark induktiv belastet werden können, damit aus den entfernten Speicherwerken nur reine Wirkleistung bezogen werden muss.

Drehrichtung von oben gesehen: Generator 1 im Uhrzeigersinn

Im Aufbau der Maschinen wurde die gewohnte Ausführung mit zwei Führungslagern oberhalb und unterhalb des Polrades sowie dem Spurlager auf dem Turbinendeckel gewählt. Dies erlaubte eine leichte Konstruktion der Tragsterne für die beiden Generatorlager, da sie nur die horizontalen Führungskräfte zu übertragen haben. Der untere Tragstern hat allerdings beim Anheben des rotierenden Teiles der Maschinengruppe die Last des Turbinenlaufrades und des Polrades aufzunehmen. Das Gewicht

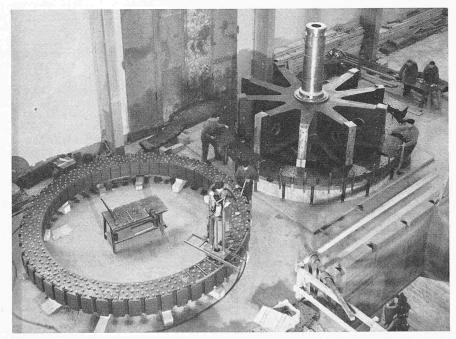


Bild. 47. Montage des Generator-Polrades im Maschinenhaus, Rechts Schichten der Blechkette eines Polradkranzes, links Ausreiben der Löcher für die Passchrauben. 4. Januar 1952