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7. Januar 1956 SCHWEIZERISCHE BAUZEITUNG
74. JAHRGANG HEFT NR. 1

Seite 1

Berechnung des elastischenVerhaltens und der Eigenschwingungen von Eisenbahnfahrzeugen

Ergänzte Fassung der Antrittsvorlesung, die Prof. Otto Zweifel am 7. Dezember 1954 an der ETH gehalten hat
DK 625.2.034

1. Einleitung
Die Grundlage der Schwingungslehre ist die Mechanik

der Eigenschwingungen, jener Schwingungen also, die ein
elastisches Gebilde ausführt, wenn es, einmal aus dem
Gleichgewicht gebracht, sich selbst überlassen bleibt. Da auch die
Laufruhe oder besser gesagt die Lauf-Unruhe ein
Schwingungsproblem ist, so spielen die Eigenschwingungen eines
Fahrzeuges für seine Fahreigenschaften eine grosse Rolle.
Wenn man von Dämpfungseigenschaften und konstruktiv
bedingten Schwingungserregungen absieht, so kann man sogar
soweit gehen, zu sagen, dass z. B. Eisenbahnwagen, die in
den Eigenschwingungen aller KÉreiheitsgrade nach Form und
Frequenz übereinstimmen, gleiche Fahrqualitäten aufweisen
müssen, auch wenn sie ganz verschieden konstruiert sind.

Die Kenntnis der Eigenschwingungen ist deshalb für
Versuchsingenieur und Konstrukteur von eminenter
Wichtigkeit. Für die Beurteilung von auf Versuchsfahrten
aufgenommenen Messdiagrammen ist es unerlässlich, zu wissen,
wie sich die Frequenzen von Erregung und Eigenschwingung
zueinander verhalten und in welchem Masse die verschiedenen
Eigenschwingungsformen an der gemessenen Fahrzeugbewegung

beteiligt sind. Der Konstrukteur wird wiederum
bewusst versuchen, die Eigenscnwingungsfrequenzen so zu
legen, dass unter normalen Betriebsbedingungen keine störenden

Resonanzerscheinungen auftreten.
Während jedoch der Versuchsingenieur in der Lage ist,

die Eigenschwingungen auf dem Versuchsstand zu bestimmen,

ist der Konstrukteur auf die Berechnung oder den
Modellversuch angewiesen. Da ein solcher Modellversuch aus
Zeitmangel und der nicht zu unterschätzenden Kosten wegen
meistens nicht in Frage kommt, wird im Rahmen des
vorliegenden Aufsatzes in erster Linie die Eigenschwingungsberechnung

behandelt.
Zunächst sei aber einleitend das Fahrverhalten eines

ganz einfachen Fahrzeuges beim Fahren über Bodenwellen
in Erinnerung gerufen, ohne allerdings in diesem Zusammenhang

auf die mathematische Ableitung der angeführten
Beziehungen einzugehen. Dieses Fahrzeug (Bild 1) laufe auf
einem einzigen Rade, und seine vertikale Lage sei durch

Bild 1. cEinrad-Fahrzeug:
beim Fahren über Boden
wellen.

Bild 2. Ausschwingversuch. Abklingen
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Bild 3. Fahren über Bodenwellen.
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Bild 4. Fahren über Bodenwellen.
SchUttelkraft in Funktion der
Fahrgeschwindigkeit.

nichteingezeichnete mitbewegte Führungen gesichert. Eine
Federung bestehe nur in vertŒaler Richtung, und ihr parallel

sei ein geschwindigkeitsproportional wirkender
Schwingungsdämpfer angeordnet.

Dieser Schwingungsdämpfer soll verschieden stark
eingestellt werden können, was z. B. im sog. Ausschwingversuch
(Bild 2) zum Ausdruck kommt. Bei diesem Versuch wird
das stillstehende Fahrzeug um ein bestimmtes Mass einmalig
in seiner Federung angehoben und dann losgelassen. Ist gar
keine Dämpfung vorhanden (D 0), so entsteht eine Schwingung,

deren Amplitude in Funktion der Zeit unverändert
bleibt, während sie im allgemeinen in der Weise abklingt,
dass das Verhältnis zweier aufeinander folgender Gegen-
Ausschläge konstant bleibt und die Form

hat. Der Dämpfungswert D ist eine dimensionslose Grösse,
die — wenigstens im periodischen Fall — recht gut mit den

Ausschwingdiagrammen auf Bild 2 veranschaulicht werden
kann. Bild 5 zeigt Ausschwingkurven, die an
Eisenbahnfahrzeugen aufgenommen wurden. Solche Diagramme geben
auf einfache Weise Auskunft über den Zustand der Federung
und die Art der Dämpfung, in diesem Falle für
Vertikalschwingungen.

Wie in Bild 1 angedeutet, fährt das Einrad-Fahrzeug
mit einer konstanten Geschwindigkeit v über sinusförmige
Bodenwellen von der Amplitude a0. Dann bewegt sich der
Fahrzeugkörperfflbenfalls auf einer sinusförmigen Bahn, die
im allgemeinen eine andere Amplitude a aufweist. Die
Beziehung zwischen diesen beiden Grössen lautet dann

a
a0

(2D-

G-JT+ 2D i
und ist in Bild 3 graphisch dargestellt. Dabei ist vie die
kritische Fahrgeschwindigkeit, bei der die Bodenwellen grade
im Takt der Eigenschwingungsfrequenz auf das Fahrzeug
schlagen. Bei ganz langsamem Fahren oder bei weit
auseinanderliegenden Bodenwellen (man denke an eine Autofahrt

über eine Reihe von Pässen) ist o aa, d. h. der
Fahrzeugkörper folgt genau der Sinusform der Fahrbahn. Mit
wachsender Geschwindigkeit werden die Ausschläge grösser
und in Resonanznähe maximal. Wird v schliesslich wesentlich

grösser als vk, so nimmt a wieder ab und geht für
unendlich hohe Werte von v bei kleiner Dämpfung gegen Null:
Die Fahrzeugmasse vermag dann den unendlich raschen
Stössen nicht mehr zu folgen und bleibt in Ruhe.

Bild 6. Ausschwingversuche (Vertikalfederung). Oben: Personenwagen
AB4Ü 1182 gutes Dämpfungsverhalten. Unten: AB4Ü 1827 (kurz vor
Revision) unbefriedigendes Dämpfungsverhalten.
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Bild 6. Leichtstahlwagen
AB4ü 1135 der SBB mit
modernen Torsionsstabdrehgestellen

Betrachtet man Bild 3 allein, so könnte man versucht
sein, zu glauben, dass in allen Fällen eine möglichst wirksame

Dämpfung anzustreben sei. Im Resonanzgebiet reduziert

eine solche die Ausschläge beträchtlich und die sichtliche

Verschlechterung im Gebiet v > \2 Vk scheint nicht
ins Gewicht zu fallen. Sobald man aber nicht nur die
Ausschläge untersucht, sondern beispielsweise auch die Kraft,
mit der ein Fahrzeugpassagier geschüttelt wird (Bild 4), so
verändert sich das Bild wesentlich1). Für den dämpfungsfreien

Fall D 0 ergibt sich zwar noch ein einigermassen
ähnliches Bild: Im Resonanzgebiet wird die Schüttelkraft
unendlich gross, während sie weiter oben in bescheidenen Grenzen

bleibt. Betrachtet man aber die Kurve D 0,5, so steigt
hier die Schüttelkraft für grosse Stosszahlen rapid an, während

sich die Dämpfung im Resonanzgebiet sehr günstig
auswirkt. Die Kurve für eine mittlere Dämpfung von D
0,25 zeigt sowohl im Resonanzgebiet wie oberhalb desselben
einen vernünftigen Verlauf; tatsächlich wird für Fahrzeuge
ein Dämpfungswert von D 0,2 bis 0,3 empfohlen, der am
besten durch den Ausschwingversuch (Bild 2 bzw. 5)
kontrolliert wird.

Bei einem wirklichen Fahrzeug liegen allerdings viel
kompliziertere Verhältnisse vor. Einmal wird dem Wagenkörper

nicht mehr durch Führungen eine rein translatorische
Auf- und Abbewegung aufgezwungen, sondern er kann sich
im allgemeinen allseitig verschieben und drehen und hängt
in einem komplizierten System von Pendellaschen,
Federungselementen usw. Es tritt dann nicht nur eine, sondern
eine ganze Reihe von Eigenschwingungen auf, die in den
folgenden Abschnitten wenigstens zum Teil näher untersucht

werden sollen.
Bild 6 zeigt als Beispiel eines solchen wirklichen

Fahrzeuges einen Eisenbahnwagen mit modernen Drehgestellen in
Torsionsstabbauart, Auf Bild 7 ist der Drehgestellrahmen

Es sei hier nicht darauf eingegangen, ob der Mensch physiologisch

mehr auf die Beschleunigungen aufi (co Kreisfrequenz) oder
deren Ableitung, den Ruck, aus oder gar auf die verschiedentlich
angeführte Grösse o2ù)3 reagiert. In Wirklichkeit ist nämlich die
Empfindlichkeit noch überdies von Form und Frequenz der Schwingung
abhängig, wozu komplizierend kommt, dass der Mensch auf das gleichzeitige

Auftreten mehrerer Schwingungen nicht unbedingt wie eine
Additionsmaschine reagiert: es ist z. B. möglich, dass die Wirkung
eines seekrankheitserregenden langsamen Wiegens durch eine
überlagerte rasche Schüttelschwingung vermindert werden kann.
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Bild 7. Torsionsstabdrehgestell Bauart BIG.

deutlich sichtbar, der sich über acht Schraubenfedern auf
die vier Achslager abstützt. Auf Bild 8 ist dieser
Drehgestellrahmen mit D bezeichnet; die AbStützung des Wagenkastens

L bzw. Q erfolgt über Gleitstücke K, die auf
Gleitbahnen (auch auf Bild 7 sichtbar) ruhen, die ihrerseits zum
Wiegebalken B gehören. An diesem sind zu beiden Seiten
des Drehgestelles je zwei parallele Torsionsstäbe T montiert,

deren innere Enden in den Fixpunkthebeln F (mit
Schrauben V einstellbar) eingespannt sind. An den äusseren
Enden der Torsionsstäbe greifen bewegliche und in
Gleitlagern S gelagerte Hebel H an, die über die Pendellaschen
W am Drehgestellrahmen D hängen.

So verwickelt bei einem solchen Beispiel der kinematische

Mechanismus der Federaufhängung auf den ersten
Blick auch aussehen mag, so lassen sich doch immer vereinfachte

Prinzipskizzen (vgl. Bild 13) zeichnen, deren Ueber-
sichtlichkeit die Durchführung der Eigenschwingungsrechnung

beträchtlich erleichtert.
Auch die^Erscheinungsformen von Erregung und Dämpfung

sind in Wirklichkeit wesentlich mannigfaltiger und
komplizierter als beim idealisierten Fall des Einrad-Fahrzeuges.

Was die Dämpfung anbetrifft, so wird man zwischen
den konstruktiv bedingten Dämpfungen (wie innere Reibung
der Blattfedern, Gelenkreibungen usw.) und den eigentlichen
Zusatzdämpfern unterscheiden müssen; dabei müssen die
letztgenannten entsprechend den Schwingungsformen so
angeordnet werden, dass sie wirksame Energievernichtungs-
arbeit leisten können.

Bei der Erregung handelt es sich bei Eisenbahnfahrzeugen

nicht nur um eine vertikale Welligkeit des Bodens wie
beim Einrad-Fahrzeug von Bild 1. Am nächsten kommt dieser

WelligkeitsWirkung die Erregung durch Schienenstösse;
nur handelt es sich dabei nicht mehr nur um eine
sinusförmige Erregung, sondern um ein ganzes Frequenzspektrum
solcher Erregungen und zudem wirken diese Schienenstösse
sukzessive auf alle Radsätze, wobei Phase und Angriffspunktlage

eine Rolle spielen. Dazu kommt nun aber noch eine
ganze Reihe weiterer Erregungsarten, wie nicht ausgeglichene
Massenkräfte der Maschinen oder Radsätze, Unregelmässigkeiten

der Rad-Laufflächen, Reibschwingungen zwischen Rad
und Schiene, sowie der Zickzack- oder Schlingerlauf der
Radsätze und Drehgestelle innerhalb des Spieles zwischen
Spurkranz und Seditene.

Insbesondere die letztgenannte Erregungsart
ist sehr oft für den schlechten Lauf raschlaufender
Fahrzeuge verantwortlich. Dabei handelt es sich
um eine interessante Erscheinung, die als ein
Gemisch von Fremd- und Selbsterregung angesprochen

werden muss. Wenn es sich um ein neuverlegtes

Gleis handelt, so beruht dieser Schlingerlauf
auf reiner Selbsterregung; jedoch prägen sich dem
Gleis mit der Zeit infolge des Hin- und Herlaufens
mehr oder weniger periodische Unregelmässigkeiten

auf, die dann ihrerseits als additive
Fremderregung hinzukommen. Eine Dämpfung dieser
Laufunruhen ist hier auf zwei Arten möglich:
einmal durch Dämpfung der Wagenkastenschwingung

für sich, dann aber auch — und wohl
wirkungsvoller j— durch Dämpfung des Drehgestell-
schlingerns selbst.
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2. Eigenschwingungsformen und Kennbilder

Die mathematische Behandlung der
Eigenschwingungsbestimmung gestaltet sich einfacher,
wenn man schon von Anfang an auf allfällige
Symmetrien Rücksicht nimmt. Fahrzeuge haben
in der Regel zumindest eine Symmetrieebene,
durch die das System in eine rechte und eine
spiegelbildlich gleiche linke Seite unterteilt wird.
Die meisten Eisenbahnfahrzeuge weisen sogar
zusätzlich eine zweite Symmetrieebene auf, was
ihre schwingungsrechnerische Erfassung wesentlich

erleichtert.
Zunächst sei rein überlegungsmässig festgestellt,

was für Eigenschwingungen ein Fahrzeug
mit einer Symmetrieebene — beispielsweise eine

Dampflokomotive — überhaupt ausführen kann,
wobei dieses Schwingungssystem aus einem
einzigen starren Körper bestehe, der irgendwie
federnd und pendelnd aufgehängt ist. Dabei sollen
nur Schwingungen mit kleinen Ausschlägen
betrachtet werden.

Legt man zwei horizontale Achsen (die eine
längs, die andere quer) und eine vertikale durch
den Schwerpunkt, so kann man mit Hilfe dieses
Achsenkreuzes sechs elementare Schwingungsformen

definieren, wie sie in Bild 9 eingezeichnet

sind. Es ergeben sich somit drei
Drehschwingungsformen, die meistens mit Wanken, Schlingern

und Nicken bezeichnet werden, sowie drei
translatorische Schwingungsformen mit den
Bezeichnungen Zucken, Stampfen und Schwanken.
Drei dieser Elementarbewegungen, nämlich das

Stampfen, Zucken und Nicken, können als
symmetrisch bezeichnet werden, weil sich dabei alle
Punkte in Parallelebenen zur Symmetrieebene
bewegen, während bei den «rein» asymmetrischen
Formen, nämlich beim Schlingern, Wanken und
Schwanken, die Bewegungen in Normalebenen zur
Symmetriebene stattfinden.

Entsprechend der Anzahl der Freiheitsgrade
treten sechs Eigenschwingungen auf, die, solange
es sich um kleine Ausschläge handelt, als
Rotationsbewegungen 2) um ganz bestimmte Achsen,
nämlich die Schwingungsachsen, aufgefasst werden

können. Da diese Achsen in bezug auf di,e

Symmetrieebene ebenfalls symmetrisch liegen
müssen, können sie nur entweder in der
Symmetrieebene selbst liegen oder senkrecht zu ihr
stehen. Ist das letztere der Fall, so sind die Eigen-
schwingungßtewegungen rein symmetrisch, und
sie müssen sich aus den drei symmetrischen
Elementarbewegungen zusammensetzen. Wie in
Bild 10 eingezeichnet, ergeben sich damit drei
symmetrische pigenschwingungen mit den
Schwingungsachsen A123, A231 und A312. Die
Indizes 1, 2 und 3 deuten darauf hin, dass jede dieser
Eigenschwing^ungen eine Kopplung der Stampf-,
Nick- und Zuekbewegungen ist, die in Bild 9 mit
diesen Ziffern bezeichnet sind. Analog gibt es

drei rein asymmetrische Eigenschwingungen, bei
denen das Schlingern, Wanken und Schwanken
gekoppelt auftritt und deren Schwingungsachsen
A458, A504 und Ao-iä in der Symmetrieebene liegen.

Handelt es sich um ein Fahrzeug mit zwei
senkrecht aufeinanderstellenden Symmetrieebenen
wie auf Bild 11, so müssen sich die Achsen von
Bild 10 in einer Weise ordnen, die beiden
Symmetriebedingungen genügt. Die Stampfbewegung
bleibt dabei als einzige symmetrisch zu beiden
Symmetrieebenen, die Schlingerbewegung ebenfalls

als einzige asymmetrisch. Beide treten
deshalb vollständig entkoppelt auf A12:> wird zu A(
im unendlich Fernen; A450 wird zu A4 durch S),
während das Zucken und Nicken (Achsen A<_>:;

2) Die allgemeinste kleine Bewegung eines starren
Körpers ist zwar eine Schraubung, Jedoch verträgt sich
diese Bewegungsart nicht mit der hier vorausgesetzten
Symmetrie.

>M

Bild 8. Torsionsstabdrehgestell. AbStützung des Wagenkastens Q auf den
Drehgestellrahmen D.

symmetrisch

Ci5

m
Koppelung WIEGEN

asymmetrisch

Bild 9. Elementare Schwingungsformen inbezug auf ein rechtwinkliges

Achsenkreuz durch den Schwerpunkt.
>- Richtung der translatorischen Schwingungen.

_ Achsen der Drehschwingungen.
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A|23

-$-A"

i-A,

STAMPFEN
(entkoppelt)

m
A,
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Bild 10. Schwingungsachsen bei Bild 11. Schwingungsachsen hei
Fahrzeugen mit einer Symmetrie- Fahrzeugren mit zwei Symmetrieebene,

ebenen.
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Bild 12. Kennbild der Fahreigenschaften. Die Lage der Schwingungsachsen und die
zugehörigen Eigenfrequenzzahlen charakterisieren weitgehend das dynamische
Verhalten eines Fahrzeuges.
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Bild 13. Beispiele von Drehgesteüaufhängungen.
Schematische Schnitte in Fahrrichtung gesehen.

und A32) einerseits und das Wanken und Schwanken (Achsen
A56 uiS| Abb) anderseits gekoppelt bleiben. Die
Kopplungsschwingung von Schwanken und Wanken wird im folgenden
als «Wiegen» bezeichnet; sie besitzt eine derartige Wichtigkeit

bei Eisenbahnfahrzeugen, dass es gerechtfertigt erscheint,
ihr einen eigenen Namen zu geben.

Auf Bild 12 sind die rechnerisch ermittelten Lagen der
Schwingungsachsen sowie die zugehörigen Eigenschwingungszahlen

für einige der im letzten Jahrzehnt in der Schweiz
gebauten Personenwagen angegeben. Für den Wagen Typ
«C» 1109 (die Buchstaben «A», «C» und «D» beziehen sich
auf die Drehgestelltypen von Bild 13, die Zahlen 1109 usw.
sind Wagennummern der SBB) ist in der Mitte des Bildes ein
schematisches Profil eingezeichnet. Die Schwingungsachsen
der beiden Wiegeschwingungen sind mit den Eigenfrequenzzahlen

ni 30 und n2 105 (Schwingungen pro Minute)
bezeichnet, die zugehörigen Schwingungsformen sind links
daneben skizziert (Wiegen 1 und Wiegen 2). Beim Wiegen

1 befindet sich die Schwingungsachse unter dem Schwerpunkt

S und die entsprechende Eigenfrequenz Hegt tief, weshalb

diese Schwingung auch mit «unterer Wiegeschwingung»
bezeichnet werden kann. Das Wiegen 2 ist dann die «obere
Wiegeschwingung», die Sigenfrequenz ist höher und die
Schwingungsachse liegt über dem Schwerpunkt. Diese obere
Wiegeschwingung kann bei Eisenbahnfahrzeugen oft
beobachtet werden; sie ist dadurch gekennzeichnet, dass sich der
Wagenkasten so bewegt, als ob er um eine feste Achse in
Kopfhöhe der Passagiere hin- und herschaukle.

Eine dritte Eigenschwingung ist die des Schlingerns um
die vertikale Schwerachse. Die Skizze auf Bild 12 links oben
zeigt den Wagen von oben gesehen, wie der schwingende
Kasten übers Kreuz nach beiden Seiten ausschlägt. Die
Schlinger-Eigenfrequenz ist mit wB 76 angegeben. Die
vierte Eigenschwingung ist die des Stampfens (Skizze links
unten). Die Eigenfrequenz dieser vertikalen Translationsschwingung

wurde zu wyll= 84 berechnet.
Streng genommen sollten noch zwei gekoppelte Nick-

Zuckschwingungen vorhanden sein; hier wurde aber
näherungsweise nur das reine Nicken um eine Querachse durch
den Schwerpunkt gerechnet. (Im Prinzip steht einer genaueren

Berechnung der Nick-Zuckschwingungen nichts entgegen,
vgl. Abschnitt fe. Die reine Nickfrequenz ergab sich mit
Wy 112.

Für drei andere Wagen sind in der rechten Hälfte von
Bild 12 ebenfalls Diagramme eingetragen, die nur noch aus
dem Skelett der Schwingungsachsen und Eigenfrequenzzahlen

bestehen. Diese Diagramme kann man als Kennbild der
Fahreigenschaften bezeichnen, da durch die darin enthaltenen
Angaben das dynamische Verhalten weitgehend charakterisiert

ist. Zwei Eisenbahnwagen, die gleiche Kennbilder ha¬

ben, besitzen mit gewissen Einschränkungen gleiche
Fahreigenschaften. Zu diesen Einschränkungen gehört, dass
gewisse Konstruktionsuntersmiede von Einfluss auf die
schwingungserregenden Kräfte sein können (man denke nur z. B.
an ein und denselben Wagen mit neuen oder abgenutzten Rad-
Laufflächen), so dass trotz gleicher Kennbilder verschiedene
Fahreigenschaften resultieren. Auch das Dämpfungsverhalten
ist in den Diagrammen nicht berücksichtigt, immerhin könnten

sie dadurch vervollständigt werden, dass jeder
Eigenschwingung Angaben über die zugehörige Dämpfung beigefügt

würden, die aus Versuchen bestimmt werden mussten
Die Kennbilder sind noch durch die Punkte 8' und Z

ergänzt, die das Kurvenverhalten der Fahrzeuge kennzeichnen

(vgl. Abschnitt 6).

3. Berechnung der Wiege- und Stampfeigenschwingungen
Wenden wir uns jetzt der eigentlichen Berechnung der

Eigenschwingungen zu, so sei zunächst das rein zweidimensionale

Problem der Stampf- und Wiegeschwingungen für
Fahrzeuge mit zwei Symmetrieebenen behandelt. Bild 13
zeigt an vier Beispielen in schematischen Schnitten (in
Fahrrichtung gesehen) die Mannigfaltigkeit der möglichen
Drehgestellaufhängungen. So einfach die Kinematik solcher
Aufhängungen auch aussehen mag, so erweist sie sich doch als
reichlich kompliziert, wenn man sie in der Eigenschwingungsrechnung

berücksichtigen will.
Alle vier gezeigten Typen setzen sich aus drei oder vier

gegeneinander beweglichen Körpern zusammen, wobei in
allen Fällen der unterste als ruhendes Absolutsystem (Schienen,

Radsätze, Achslager) angesprochen werden kann. Der
zweitunterste Körper ist der Drehgestellrahmen und der
oberste der Wagenkasten. Bei allen gewählten Beispielen ist
(zufälligerweise) die Anzahl der System-Freiheitsgrade fünf.

Um bei der Rechnung mit einem vernünftigen Zeitaufwand

durchzukommen, werden folgende zwei Hauptpunkte
beachtet:

1. Die Schwingungssysteme werden in Teil- oder
Nachbarsysteme auseinandergebrochen und die kinematischen
Zusammenhänge jedes Teilsystems für sich untersucht. Einerseits

ist dies eine beträchtliche Arbeitsersparnis, weil sehr
oft gleiche Teilsysteme bei ganz verschiedenen Schwingungssystemen

vorkommen, und anderseits ist der Rechnungsgang
an sich weniger langwierig, da sich eine einfache
Superpositionsmethode angeben lässt.

2. Jede Beziehung — auch wenn sie sich scheinbar noch
so einfach durch trigonometrische Funktionen exakt
ausdrücken liesse — wird unverzüglich in Potenzreihen
entwickelt und nach den Grössen zweiter Ordnung abgebrochen.
Genauere Beziehungen mitzuschleppen belastet nicht nur den
Rechnungsgang in schliesslich prohibitivem Ausmass,
sondern ist auch ganz überflüssig, da am Schluss für kleine
Schwingungen doch nur noch (nach einer Differentiation)
Grössen erster Ordnung berücksichtigt werden müssen.

Die Berechnungsmethode wird im folgenden zunächst
allgemein abgeleitet, jedoch erweist es sich als zweckmässig,
sie immer wieder an einem Anwendungsbeispiel zu erläutern.
Dafür wird der Typ A von Bild 13 gewählt, der in Bild 14
nochmals dargestellt ist, und zwar links in der
Gleichgewichtslage, rechts in einer allgemeinen Stellung. A ist das
Absolutsystem, I, II und HI sind die beweglichen Systemkörper.

Die allgemeine Lage des Körpers in sei bestimmt
durch seine horizontalen und vertikalen Schwerpunktsverschiebungen

£ und t? sowie den Drehwinkel f.
Jedem der drei Körper sowie dem Absolutsystem A wird

nun je ein mitbewegtes Koordinatenkreuz zugeordnet. In der
Gleichgewichtslage liegen alle Koordinatenkreuze übereinander,

mit dem Nullpunkt im Schwerpunkt S des Körpers Hl;

S+

I-
HÜ

Bild 14.

-i.
iä

i
lu,r

ta.» Otto

W
znxxi.
i I
i i
I i

Bild 16,

Ü1

Bild 14. Zweidimensionales,
symmetrisches Schwingungssystem.

T.trtfr« : Gleichgewichtslage.
Rechts : Allgemeine
Schwingungslage.

Bild 15. Mitbewegte Koordinatenkreuze

der einzelnen Systemkörper

von Bild 14 in allgemeiner
Lage.

Bild 16. Teilsystem I-II.
Verschiebung des Körpers II
gegenüber Körper I (Ausschnitt
aus Bild 16).

U2»x»»*e

ÜJ1 I

*!

Bild 16.
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in einer allgemeinen Lage haben sie sich jedoch fächerartig
gegeneinander verschoben, wie in Bild 15 angedeutet ist. Die
horizontalen (absoluten) Verschiebungen der Nullpunkte
gegeneinander sind dann Mi, M2 und m3, die vertikalen v±, v%

und va, während die relativen Drehwinkel mit e%, 62 und 63

bezeichnet sind. Damit gelten die Beziehungen:

(1) | Mi + M2 + M3

17 Vi + V2 + Vs

«1 + «3

Darauf teilt man das Schwingungssystem in drei
Teilsysteme auf und führt in jedem Relativkoordinaten ein. In
Bild 16 sind beispielsweise die Koordinatenkreuze des Teil-
systemes I—H (wie in Bild 15, aber vergrössert) herausgezeichnet.

Die Lage des Kreuzes TL im Koordinatensystem I
wird durch die Relativkoordinaten £D2 und j/2 sowie den
relativen Drehwinkel e2 bestimmt. Die Beziehungen zwischen den

absoluten und den relativen Verschiebungen lauten dann

«2 -• afecosei + 3/asinei

»2 d — Vz^ + ¦ ¦ ¦ ¦) + y, («i — Ve«i8 + • • •)

f2 3/2C0Sei — a^sinei

3/2 (1— %«i2 + — »2 («i— Va«!8 + ¦ • •)

Wir vernachlässigen nun verelnbarungsgemäss alle Glieder,
die von höherer als von zweiter Ordnung sind. Da »2 und 2/2

genau wie ei erster Ordnung sind, bleibt nur noch

W2 »2 + 3/2 «1

V, J/2 »2«1

Für die Teilsysteme A—I und n—HI findet man analoge
Ausdrücke, so dass die Beziehungen zwischen den Relatlv-
und Absolutverschiebungen gesamthaft lauten:

(2) Ml «1

«2 — »2 + 3/2 • «1

Ms Xa + Va • («i + «2)

vi 3/1

«2 3/2 — #2 ei

Va Va — »3 («i + «2)

Der nächste Schritt besteht nun darin, die kinematischen
Abhängigkeiten der drei Teilsysteme abzuleiten.

Dem besseren Verständnis zuliebe sei das gleich am gewählten
Beispiel durchgeführt. Bild 17 zeigt das unterste Teilsystem A—I des

Schwingungssystems von Bild 14. In der rechten Bildhälfte ist es

noch schematischer, sozusagen nur als Skelett gezeichnet, und zwar
sowohl in der Gleichgewichtslage wie in einer allgemeinen Stellung.
Die Nullpunkte der Koordinatenkreuze sind wie in Bild 16 durch A
bzw. I bezeichnet, die Verschiebungen von I gegenüber A sind sti und
3/1, der Drehwinkel des Körpers I ist ei.

Diese drei Grössen sind nicht unabhängig voneinander, da dieses

Teilsystem offensichtlich nur zwei Freiheitsgrade hat. Deshalb wählt
man zwei unabhängige Lagekoordinaten zu und «12. Mit «n wird
beispielsweise die Vertikalverschiebung des Führungspunktes bezeichnet,
mit «u der Drehwinkel ei selbst. Jetzt drückt man die Grössen «1, S/i

und ei durch zu und «12 aus, was in diesem Fall einfach ist:

(101) asi S 81 -sin «i2 » 81 • *i2
2/1 «11 + «1 (COS «12 — 1)

«1 «12

%«1

Oft, Insbesondere wenn verwickeltera Zusammenhänge auszudrük-
ken sind, kommt man mit Hilfe von VektorzUgen rasch zum Ziel, wie
beim Teilsystem I—II auf Bild 18 gezeigt werden soll. Dort ergibt die

Nullsetzung des geschlossenen Vektorzuges 1 2 3 4 6 4' 3' 2' 1 0

sofort alle wichtigen Zusammenhänge der Kinematik dieses Systems,

und der Vektorzug 12 3 I II 8' 2' 1 0 liefert die Grössen x. und j/».
Dabei haben die einzelnen Vektoren folgende Komponenten:

IH:
23 34:

y
2'3' 3'4
—y

31:

jra!
2ÏT*

>
2'1:
45:

y
4'5:

»2 3/2

02 0

O2 • COS 62 #2 ' S^n «2

0 «2

S2 " Sin £2 s2 ¦ COS 62

P a

p' Q'

—p.. 1

—p" q"
—** —s

Die Komponenten p' q' p" und q" der Vektoren 2' 1 bzw. 4' 6 können

mit der Pendellänge l wie folgt ausgedrückt werden:

Es ist p' Z • sin (S + a) l • sinS cosa + Z • cosS • sina

anderseits ist Z • sin S p und Z • cos 8 q

womit p' p • cosa + q • Sina

wird. Analog werden

q' q ¦ cosa — p • sina

p" p • cos/3 — q • sin/}

q" q • cos/3 + p • sin/3

Berücksichtigt man diese Beziehungen und entwickelt man alle

sin- und cos-Glieder wieder in Potenzreihen, so erhält man für die
—^

beiden Komponenten des Vektorzuges 1 2 3 4 5 4' 3' 2' 1:

(102) %p („24-/32)— q (a_ig)_o2g22 0

Vaq (a2 — 02) +p (a + j8)—20362= 0

wenn man wiederum Glieder höherer Ordnung weglässt.

Da dieses Teilystem einen Freiheitsgrad besitzt, darf eine

unabhängige Lagekoordinate Z21 gewählt werden. 82 eignet sich dazu nicht,
weil es die unangenehme Eigenschaft hat, für den Fall paralleler
Pendel zu verschwinden. Man wählt deshalb (aus Symmetriegründen)

(103) 321 Vi (et + ß)
Um a, ß und e» durch «ji ausdrücken zu können, macht man die

quadratischen Ansätze

(104) e2 H • «21 + Ea ¦ »212 «22 -Ei2 • «21s

a Ai • S21 + Ao - «2i2 a2 Ai2 ¦ «212

ß Bi • »si + B2 • «2i2 03 g B12 • «ai2

Darauf setzt man diese Ausdrücke in (102) und (103) ein und
erhält die Koeffizienten E± Ei Ax usw. durch Identifikation, wenn man

berücksichtigt, dass die so erhaltenen Gleichungen sowohl für die

Terme erster Ordnung als auch für diejenigen zweiter Ordnung allein
gelten müssen. Man findet dann:

(105) 62
«2

- » il

a — «21 + V

2q

ß «21 —
V

2q

P V »„ 9—— I «21*
Os /

as)

(i*--*-V 02

«si*

/3S «si2

Um schliesslich x» und 3/2 anschreiben zu können, wird wie

erwähnt der Vektorzug 1 2 3 I II 8* 2' 1 0 gesetzt, und man findet
damit
(106) 352= % P <*2 — 1 « — % Os es2 + «2 • es

V2 — Vi q «2 + P a — % «s «s2 — 03 • «a

Mit (106) wird dann schliesslich :l)

P
Sa(107) x. — [q

3/2 =•

- Qx «21

lì«»*»*

«2 —¦ «ai
00
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Das Teilsystem II-III (Bild 19) sieht beinahe gleich aus wie das
unterste (Bild 17), und man findet deshalb nahezu gleiche Beziehungen
wie dort, nämlich :

(108) x3 - (s3 + «si) «32

3/3 «31 % • S3 ¦ «322

«3 — «32

Drückt man allgemein aus, was hier am Beispiel durchgeführt
wurde, so lässt sich das etwa wie folgt formulieren:

Man wählt n unabhängige Lagekoordinaten «;& (i
laufende Nummer der Teilsysteme wie in (1) und (2), fc
laufende Nummer der Lagekoordinaten im gleichen
Teilsystem) entsprechend den n Freiheitsgraden des Systems und
drückt sowohl die Relatiwerschiebungen œi x% xa und y± 3/2 3/3
als auch die Drehwinkel ei 62 «3 durch diese zg, aus

(3) Xl Xl («li «12

3/1 3/1 («11 «12 •

ses «i («11 «12 •

a?2 =: X» («21 «22 ¦ • •

2/2 3/2 («21

C2 62 («21

Xa — Xa («31 «32 •

3/3 3/3 («31 «32 •

63 63 («31 «32 ¦

Zusammen mit den Beziehungen (1) und (2) findet man für
den Körper HT:

(4) i — i («11 «12 • - - «21 «22 • • • «31 «32 • ¦ •)

plllll V («u «12 «21 «22 • • - «31 «32 ¦ • •)

<ft= f («11 «12 • • • «21 «22 • • • «31 «32 • • ¦)

Für das Beispiel ergibt sich somit aus (1) (2) (101) (107) und (108)
PPjBJaie Jdnemctischen Zusammenhänge in bezug auf den Körper III
(109) i St «12 — Qx «21 + S3 «32 + «31 «32 + f «1: Äei «31

wÊëk «31 VS Sl«l22 - l/2 S3 «3! 2 + Vs Qv «212

+ Qx «12 «21 -(«12jf P_

CU
«. !1 JS3 «32

Vf — «12 + — «21 + «32
U2 |

worin nach JSm) speziell bedeuteten 3)

(110) Qx=q—s2 —
a2

(111) Qy=q — Sa(£-) q\ an)

Während (101), (107) und (108) djf Kinematik jedes Teilsystems
für sich umschrieben, sind in (109) noch neue Glieder (gestrichelt unter-

3) Die Ausdrücke Qx und Q>- gehen für p 0 (parallele Pendel) in
die Pendellänge über; sie sind eine Art äquivalente Pendellängen.

strichen) hinzugekommen, die den gegenseitigen Einfluss der
Teilsysteme aufeinander enthalten. Dieser Einfluss war in (2) in denjenigen
Gliedern enthalten, die dort ebenfalls gestrichelt unterstrichen waren.

Bei der Wahl der Unabhängigen «jfc soll so vorgegangen
werden, dass diese entweder wie n rein symmetrisch oder
wie | und if, rein asymmetrisch sind. In erster Näherung sind
dann | und f in (4) nur eine Funktion der asymmetrischen
und i) der symmetrischen Unabhängigen «,-fc, wodurch
mathematisch ausgedrückt ist, dass die StampfSchwingung (y) und
die Wiegeschwingung (J f) nicht gekoppelt sind.

In Gl. (109) sind die Glieder 1. Ordnung voll unterstrichen. Hier
war also die Wahl der zu richtig erfolgt, da in diesen Gliedern %und S31 nur bei ij und anderseits Z12, Z21 und Sa% nur bei £ und >//

vorkommen. Ungeschickt wäre es z. B. gewesen, wenn man beim
Teilsystem A-I die beiden Federdehnungen als Unabhängige gewählt hätte,
weil diese auf alle drei Grössen £, 17 und $ einen Einfluss 1. Ordnung
besitzen.

Will man bei den Bewegungsgleichungen die
Massenwirkung der Körper I und H mitberücksichtigen, so braucht
man die GJ. (4) entsprechenden Bedingungen für die
Schwerpunktskoordinaten dieser Körper, nämlich

(5) in in («11 «12 •

Vu vn («11 «12 •

$11—fu («fiUBffi

(6) ii ii («11 «12

vi vi («ìllSffit
fi fi («11 «i§&_

Diese Gleichungen lassen sich analog ableiten, wie die
Gl. (4), nur wird für S/jfltfo fu der Körper HI weggelassen
und für f/ i), fj beide Körper II und HI.

In unserem Beispiel erhält man (5) direkt aus (109), indem man
S31 Z32 0 setzt und Si durch »m ersetzt. Ebenso ist Qm und Qu
durch Qui und Qu« zu ersetzen, indem in Gl. (110) und (111) s«
durch s„2 ersetzt wirdSMni und Sn2 entsprechen Si und «2 auf den
Bildern 17 und 18, wenn S dann der Schwerpunkt des Körpers II ist.)
Damit wird

• «21 «22 • ¦

¦ «21 «22 •

• «21 «22 • ¦•)

•

•

¦)

in — S/71 «1 2 — - Qux «21

Vii «11 — % Sin «1 22 4

fu «12 +
G,<2

21

(112)

und nochmals analog mit «21 Z22

(113) ii S/i • «12

Vi «11 % S/i • «122

fi «12

(Ily «21* lllx -«12 «2

Schluss folgt

Wohnhaus «En Coulet» in St. Prex am Genfersee
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Gesamtansicht im Modell

Architekt Otto H. Senn, Basel

Baujahr: 1953

Situation. Das Grundstück liegt am westlichen Rande des
neuen Wohngebietes der Gemeinde. Es erstreckt sich vom
Seeufer, in zweflstufen ansteigend, bis zum 40 m höher
gelegenen Plateau. Das Haus ist so gestellt, dass es den auf
drei Seiten mauerumschlossenen, oberen Gaxten an der
Stelle begrenzt, wo das Gelände in den abfallenden Hang
übergeht. Das Hauptgeschoss ist von der Strasse ebenerdig
zugänglich. Nach Süden, wo sich der Blick auf den See und
die Savoyer Berge öffnet, lädt es um eine Stockwerkshöhe
aus über das Gelände. Hier nimmt das Sockelgeschoss das
Niveau der Umgebung auf (mit dem direkten Austritt von
der Halle).

Raumorganisation. Die Gemeinschafts- und Einzelräume
(Wohn- und Schlafzimmer) sind auf dem einen Boden des
Hauptgeschosses zusammengefasst. Sie schliessen sich je um
eine Halle, den Hauseingang und den Schrankvorplatz zu
zwei Gruppen zusammen mit den zugehörigen Nebenräumen.
Das Wohnzimmer greift in der Vertikalen über ein Galerie-
geschoss (Bibliothek) und mittels der äusseren Rampe auf
das tiefer gelegene Vorgelände. Im Sockelgeschoss befinden
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