Zeitschrift: Schweizerische Bauzeitung
Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 74 (1956)
Heft: 1
Artikel: Berechnung des elastischen Verhaltens und der Eigenschwingungen

von Eisenbahnfahrzeugen: erganzte Fassung der Antrittsvorlesung
Autor: Zweifel, Otto
DOl: https://doi.org/10.5169/seals-62555

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-62555
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

7. Januar 1956

SCHWEIZERISCHE BAUZEITUNG

Seite 1

74. JAHRGANG HEFT NR.1

Berechnung des elastischen Verhaltens und der Eigenschwingungen von Eisenbahnfahrzeugen

Erginzte Fassung der Antrittsvorlesung, die Prof. Otto Zweifel am 7. Dezember 1954 an der ETH gehalten hat

1. Einleitung

Die Grundlage der Schwingungslehre ist die Mechanik
der Eigenschwingungen, jener Schwingungen also, die ein
elastisches Gebilde ausfiihrt, wenn es, einmal aus dem Gleich-
gewicht gebracht, sich selbst iiberlassen bleibt. Da auch die
Laufruhe oder besser gesagt die Lauf-Unruhe ein Schwin-
gungsproblem ist, so spielen die Eigenschwingungen eines
Fahrzeuges fiir seine Fahreigenschaften eine grosse Rolle.
Wenn man von Dampfungseigenschaften und konstruktiv be-
dingten Schwingungserregungen absieht, so kann man sogar
soweit gehen, zu sagen, dass z. B. Eisenbahnwagen, die in
den Eigenschwingungen aller Freiheitsgrade nach Form und
Frequenz tibereinstimmen, gleiche Fahrqualititen aufweisen
miissen, auch wenn sie ganz verschieden konstruiert sind.

Die Kenntnis der Eigenschwingungen ist deshalb fir
Versuchsingenieur und Konstrukteur von eminenter Wich-
tigkeit. Fiir die Beurteilung von auf Versuchsfahrten aufge-
nommenen Messdiagrammen ist es unerldsslich, zu wissen,
wie sich die Frequenzen von Erregung und Eigenschwingung
zueinander verhalten und in welchem Masse die verschiedenen
Eigenschwingungsformen an der gemessenen Fahrzeugbe-
wegung beteiligt sind. Der Konstrukteur wird wiederum be-
wusst versuchen, die Eigenschwingungsfrequenzen so zu le-
gen, dass unter normalen Betriebsbedingungen keine stéren-
den Resonanzerscheinungen auftreten.

Wihrend jedoch der Versuchsingenieur in der Lage ist,
die Eigenschwingungen auf dem Versuchsstand zu bestim-
men, ist der Konstrukteur auf die Berechnung oder den Mo-
dellversuch angewiesen. Da ein solcher Modellversuch aus
Zeitmangel und der nicht zu unterschitzenden Kosten wegen
meistens nicht in Frage kommt, wird im Rahmen des vor-
liegenden Aufsatzes in erster Linie die Eigenschwingungs-
berechnung behandelt.

Zunichst sei aber einleitend das Fahrverhalten -eines
ganz einfachen Fahrzeuges beim Fahren iiber Bodenwellen
in Erinnerung gerufen, ohne allerdings in diesem Zusammen-
hang auf die mathematische Ableitung der angefiihrten Be-
ziehungen einzugehen, Dieses Fahrzeug (Bild 1) laufe auf
einem einzigen Rade, und seine vertikale Lage sei durch

D=0,5

Bild 2. Ausschwingversuch. Abklingen
der Eigenschwingungen bei verschiede-
nen Dampfungskonstanten D in Funk-
tion der Zeit.
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nichteingezeichnete mitbewegte Fiihrungen gesichert. Eine
Federung bestehe nur in vertikaler Richtung, und ihr paral-
lel sei ein geschwindigkeitsproportional wirkender Schwin-
gungsddmpfer angeordnet.

Dieser Schwingungsdiampfer soll verschieden stark ein-
gestellt werden koénnen, was z. B. im sog. Ausschwingversuch
(Bild 2) zum Ausdruck kommt. Bei diesem Versuch wird
das stillstehende Fahrzeug um ein bestimmtes Mass einmalig
in seiner Federung angehoben und dann losgelassen. Ist gar
keine Dampfung vorhanden (D = 0), so entsteht eine Schwin-
gung, deren Amplitude in Funktion der Zeit unveréndert
bleibt, wihrend sie im allgemeinen in der Weise abklingt,
dass das Verhiltnis zweier aufeinander folgender Gegen-
Ausschldge konstant bleibt und die Form

7« D
e T Ji=bpr
hat. Der Dadmpfungswert D ist eine dimensionslose Grosse,
die — wenigstens im periodischen Fall — recht gut mit den
Ausschwingdiagrammen auf Bild 2 veranschaulicht werden
kann. Bild 5 zeigt Ausschwingkurven, die an Eisenbahn-
fahrzeugen aufgenommen wurden. Solche Diagramme geben
auf einfache Weise Auskunft iiber den Zustand der Federung
und die Art der Dampfung, in diesem Falle fiir Vertikal-
schwingungen.

Wie in Bild 1 angedeutet, fihrt das Einrad-Fahrzeug
mit einer konstanten Geschwindigkeit v iiber sinusformige
Bodenwellen von der Amplitude @, Dann bewegt sich der
Fahrzeugkorper ebenfalls auf einer sinusféormigen Bahn, die
im allgemeinen eine andere Amplitude a aufweist. Die Be-
ziehung zwischen diesen beiden Grossen lautet dann

o 1t (21)%)’2 ]
w T e

und ist in Bild 3 graphisch dargestellt. Dabei ist v, die kri-
tische Fahrgeschwindigkeit, bei der die Bodenwellen grade
im Takt der Eigenschwingungsfrequenz auf das Fahrzeug
schlagen. Bei ganz langsamem Fahren oder bei weit aus-
cinanderliegenden Bodenwellen (man denke an eine Auto-
fahrt iiber eine Reihe von Pissen) ist a = a,, d. h. der Fahr-
zeugkorper folgt genau der Sinusform der Fahrbahn. Mit
wachsender Geschwindigkeit werden die Ausschlige grosser
und in Resonanznihe maximal, Wird v schliesslich wesent-
lich grosser als vy, so nimmt e wieder ab und geht fiir un-
endlich hohe Werte von v bei kleiner Dampfung gegen Null:
Die Fahrzeugmasse vermag dann den unendlich raschen

Stéssen nicht mehr zu folgen und bleibt in Ruhe.

Bild 5. Ausschwingversuche (Vertikalfederung). Oben: Personenwagen
AB4il 1162 gutes Diampfungsverhalten. Unten: AB4ii 1327 (kurz vor
Revision) unbefriedigendes Dimpfungsverhalten.
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Betrachtet man Bild 3 allein, so kénnte man versucht
sein, zu glauben, dass in allen Fillen eine mdoglichst wirk-
same Didmpfung anzustreben sei. Im Resonanzgebiet redu-
ziert eine solche die Ausschldge betridchtlich und die sicht-

liche Verschlechterung im Gebiet v > V2_ vy scheint nicht
ins Gewicht zu fallen. Sobald man aber nicht nur die Aus-
schldge untersucht, sondern beispielsweise auch die Kraft,
mit der ein Fahrzeugpassagier geschiittelt wird (Bild 4), so
verdndert sich das Bild wesentlich 1), Fiir den ddmpfungs-
freien Fall D = 0 ergibt sich zwar noch ein einigermassen
dhnliches Bild: Im Resonanzgebiet wird die Schiittelkraft un-
endlich gross, wihrend sie weiter oben in bescheidenen Gren-
zen bleibt. Betrachtet man aber die Kurve D = 0,5, so steigt
hier die Schiittelkraft fiir grosse Stosszahlen rapid an, wih-
rend sich die Diampfung im Resonanzgebiet sehr giinstig
auswirkt. Die Kurve fiir eine mittlere Didmpfung von D =
0,25 zeigt sowohl im Resonanzgebiet wie oberhalb desselben
einen verniinftigen Verlauf; tatséchlich wird fiir Fahrzeuge
ein Ddmpfungswert von D = 0,2 bis 0,3 empfohlen, der am
besten durch den Ausschwingversuch (Bild 2 bzw. 5) kon-
trolliert wird.

Bei einem wirklichen Fahrzeug liegen allerdings viel
kompliziertere Verhiltnisse vor. Einmal wird dem Wagen-
korper nicht mehr durch Fiihrungen eine rein translatorische
Auf- und Abbewegung aufgezwungen, sondern er kann sich
im allgemeinen allseitig verschieben und drehen und hingt
in einem komplizierten System von Pendellaschen, Fede-
rungselementen usw. Es tritt dann nicht nur eine, sondern
eine ganze Reihe von Eigenschwingungen auf, die in den
folgenden Abschnitten wenigstens zum Teil niher unter-
sucht werden sollen.

Bild 6 zeigt als Beispiel eines solchen wirklichen Fahr-
zeuges einen Eisenbahnwagen mit modernen Drehgestellen in
Torsionsstabbauart. Auf Bild 7 ist der Drehgestellrahmen

1) Bs sei hier nicht darauf eingegangen, ob der Mensch physio-
logisch mehr auf die Beschleunigungen aw? (w = Kreisfrequenz) oder
deren Ableitung, den Ruck, aw3 oder gar auf die verschiedentlich an-
gefithrte Grosse a2w3 reagiert. In Wirklichkeit ist némlich die Emp-
findlichkeit noch iiberdies von Form und Frequenz der Schwingung
abhidngig, wozu komplizierend kommt, dass der Mensch auf das gleich-
zeitige Auftreten mehrerer Schwingungen nicht unbedingt wie eine
Additionsmaschine reagiert: es ist z. B. moglich, dass die Wirkung
eines seekrankheitserregenden langsamen Wiegens durch eine iiber-
lagerte rasche Schiittelschwingung vermindert werden kann.

Bild 7. Torsionsstabdrehgestell Bauart SIG.

R S — =

Bild 6. Leichtstahlwagen
AB4li 1135 der SBB mit
modernen  Torsionsstab-
drehgestellen

deutlich sichtbar, der sich iibher acht Schraubenfedern auf
die vier Achslager abstiitzt. Auf Bild 8 ist dieser Dreh-
gestellrahmen mit D bezeichnet; die Abstiitzung des Wagen-
kastens L bzw. Q erfolgt iiber Gleitstiicke K, die auf Gleit-
bahnen (auch auf Bild 7 sichtbar) ruhen, die ihrerseits zum
Wiegebalken B geh6ren. An diesem sind zu beiden Seiten
des Drehgestelles je zwei parallele Torsionsstibe 7 mon-
tiert, deren innere Enden in den Fixpunkthebeln F (mit
Schrauben V einstellbar) eingespannt sind. An den Husseren
Enden der Torsionsstdbe greifen bewegliche und in Gleit-
lagern S gelagerte Hebel H an, die iiber die Pendellaschen
W am Drehgestellrahmen D héngen.

So verwickelt bei einem solchen Beispiel der kinema-
tische Mechanismus der Federaufhingung auf den ersten
Blick auch aussehen mag, so lassen sich doch immer verein-
fachte Prinzipskizzen (vgl. Bild 13) zeichnen, deren Ueber-
sichtlichkeit die Durchfiihrung der Eigenschwingungsrech-
nung betridchtlich erleichtert.

Auch die Erscheinungsformen von Erregung und Damp-
fung sind in Wirklichkeit wesentlich mannigfaltiger und
komplizierter als beim idealisierten Fall des Einrad-Fahr-
zeuges. Was die Dampfung anbetrifft, so wird man zwischen
den konstruktiv bedingten Dampfungen (wie innere Reibung
der Blattfedern, Gelenkreibungen usw.) und den eigentlichen
Zusatzdimpfern unterscheiden miissen; dabei miissen die
letztgenannten entsprechend den Schwingungsformen so an-
geordnet werden, dass sie wirksame Energievernichtungs-
arbeit leisten koénnen.

Bei der Erregung handelt es sich bei Eisenbahnfahr-
zeugen nicht nur um eine vertikale Welligkeit des Bodens wie
beim Einrad-Fahrzeug von Bild 1. Am nichsten kommt die-
ser Welligkeitswirkung die Erregung durch Schienenstdsse;
nur handelt es sich dabei nicht mehr nur um eine sinus-
férmige Erregung, sondern um ein ganzes Frequenzspektrum
solcher Erregungen und zudem wirken diese Schienenstdsse
sukzessive auf alle Radsitze, wobei Phase und Angriffspunkt-
lage eine Rolle spielen. Dazu kommt nun aber noch eine
ganze Reihe weiterer Erregungsarten, wie nicht ausgeglichene
Massenkrifte der Maschinen oder Radsitze, Unregelmiissig-
keiten der Rad-Laufflichen, Reibschwingungen zwischen Rad
und Schiene, sowie der Zickzack- oder Schlingerlauf der Rad-
sitze und Drehgestelle innerhalb des Spieles zwischen Spur-
kranz und Schiene.

Insbesondere die letztgenannte Erregungsart
ist sehr oft fiir den schlechten Lauf raschlaufender
Fahrzeuge verantwortlich. Dabel handelt es sich
um eine interessante Erscheinung, die als ein Ge-
misch von Fremd- und Selbsterregung angespro-
chen werden muss. Wenn es sich um ein neuver-
legtes Gleis handelt, so beruht dieser Schlingerlauf
auf reiner Selbsterregung; jedoch prigen sich dem
Gleis mit der Zeit infolge des Hin- und Herlaufens
mehr oder weniger periodische Unregelmissig-
keiten auf, die dann ihrerseits als additive Fremd-
erregung hinzukommen. Eine Didmpfung dieser
Laufunruhen ist hier auf zwei Arten moglich: ein-
mal durch Diémpfung der Wagenkastenschwin-
gung fir sich, dann aber auch -- und wohl wir-
kungsvoller -—— durch Dédmpfung des Drehgestell-
schlingerns selbst.
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2. Eigenschwingungsformen und Kennbilder

Die mathematische Behandlung der Eigen-
schwingungsbestimmung gestaltet sich einfacher,
wenn man schon von Anfang an auf allfdllige
Symmetrien Riicksicht nimmt. Fahrzeuge haben
in der Regel zumindest eine Symmetrieebene,
durch die das System in eine rechte und eine
spiegelbildlich gleiche linke Seite unterteilt wird.
Die meisten Eisenbahnfahrzeuge weisen sogar
zusitzlich eine zweite Symmetrieebene auf, was
ihre schwingungsrechnerische Erfassung wesent-
lich erleichtert.

Zunichst sei rein {iberlegungsmissig festge-
stellt, was fiir Eigenschwingungen ein Fahrzeug
mit einer Symmetrieebene — beispielsweise eine
Dampflokomotive — iiberhaupt ausfiihren kann,
wobei dieses Schwingungssystem aus einem ein-
zigen starren Korper bestehe, der irgendwie
federnd und pendelnd aufgehéngt ist. Dabei sollen
nur Schwingungen mit kleinen Ausschligen be-
trachtet werden.

Legt man zwei horizontale Achsen (die eine
lings, die andere quer) und eine vertikale durch
den Schwerpunkt, so kann man mit Hilfe dieses
Achsenkreuzes sechs elementare Schwingungs-
formen definieren, wie sie in Bild 9 eingezeich-
net sind. Es ergeben sich somit drei Drehschwin-
gungsformen, die meistens mit Wanken, Schlin-
gern und Nicken bezeichnet werden, sowie drei
translatorische Schwingungsformen mit den Be-
zeichnungen Zucken, Stampfen und Schwanken.
Drei dieser Elementarbewegungen, ndmlich das
Stampfen, Zucken und Nicken, konnen als sym-
metrisch bezeichnet werden, weil sich dabei alle
Punkte in Parallelebenen zur Symmetrieebene
bewegen, wihrend bei den «rein» asymmetrischen
Formen, nimlich beim Schlingern, Wanken und
Schwanken, die Bewegungen in Normalebenen zur
Symmetriebene stattfinden.

Entsprechend der Anzahl der Freiheitsgrade
treten sechs Eigenschwingungen auf, die, solange
es sich um kleine Ausschlige handelt, als Rota-
tionshewegungen 2) um ganz bestimmte Achsen,
namlich die Schwingungsachsen, aufgefasst wer-
den koénnen. Da diese Achsen in bezug auf die
Symmetrieebene ebenfalls symmetrisch liegen
miissen, konnen sie nur entweder in der Sym-
metrieebene selbst liegen oder senkrecht zu ihr
stehen. Ist das letztere der Fall, so sind die Eigen-
schwingungsbewegungen rein symmetrisch, und
sie miissen sich aus den drei symmetrischen Ele-
mentarbewegungen zusammensetzen. Wie in
Bild 10 eingezeichnet, ergeben sich damit drei
symmetrische Eigenschwingungen mit den
Schwingungsachsen Ajs3, Aggy und Age. Die In-
dizes 1, 2 und 3 deuten darauf hin, dass jede dieser
Eigenschwingungen eine Kopplung der Stampf-,
Nick- und Zuckbewegungen ist, die in Bild 9 mit
diesen Ziffern bezeichnet sind. Analog gibt es
drei rein asymmetrische Eigenschwingungen, bei
denen das Schlingern, Wanken und Schwanken
gekoppelt auftritt und deren Schwingungsachsen
Az, Asgq und Agy; in der Symmetrieebene liegen.

Handelt es sich um ein Fahrzeug mit zwei
senkrecht aufeinanderstehenden Symmetrieebenen
wie auf Bild 11, so miissen sich die Achsen von
Bild 10 in einer Weise ordnen, die beiden Sym-
metriebedingungen geniigt. Die Stampfbewegung
bleibt dabei als einzige symmetrisch zu beiden
Symmetrieebenen, die Schlingerbewegung eben-
falls als einzige asymmetrisch. Beide treten des-
halb vollstindig entkoppelt auf (Aig; wird zu A,
im unendlich Fernen; A4;¢ wird zu Ay durch S),
wihrend das Zucken und Nicken (Achsen Agy

2) Die allgemeinste kleine Bewegung eines starren
Kérpers ist zwar eine Schraubung, jedoch vertriigt sich
diese Bewegungsart nicht mit der hier vorausgesetzten
Symmetrie.

Bild 8.

Torsionsstabdrehgestell, Abstiitzung des Wagenkastens Q auf den Dreh-
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Kennbild der Fahreigenschaften, Die Lage der Schwingungsachsen und die

zugehtrigen Eigenfrequenzzahlen charakterisieren weitgehend das dynamische Ver-
halten eines Fahrzeuges.
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“ T& pt c Typ D
Bild 13. Beispiele von Drehgestellaufhdngungen.
Schematische Schnitte in Fahrrichtung gesehen.

und Ajo) einerseits und das Wanken und Schwanken (Achsen
Ass und Ag;) anderseits gekoppelt bleiben, Die Kopplungs-
schwingung von Schwanken und Wanken wird im folgenden
als «Wiegen» bezeichnet; sie besitzt eine derartige Wichtig-
keit bei Eisenbahnfahrzeugen, dass es gerechtfertigt erscheint,
ihr einen eigenen Namen zu 'geben.

Auf Bild 12 sind die rechnerisch ermittelten Lagen der
Schwingungsachsen sowie die zugehorigen Eigenschwingungs-
zahlen fiir einige der im letzten Jahrzehnt in der Schweiz
gebauten Personenwagen angegeben. Fiir den Wagen Typ
«C» 1109 (die Buchstaben «A», «C» und «D» beziehen sich
auf die Drehgestelltypen von Bild 13, die Zahlen 1109 usw.
sind Wagennummern der SBB) ist in der Mitte des Bildes ein
schematisches Profil eingezeichnet. Die Schwingungsachsen
der beiden Wiegeschwingungen sind mit den Eigenfrequenz-
zahlen n; = 30 und np, = 105 (Schwingungen pro Minute)
bezeichnet, die zugehodrigen Schwingungsformen sind links
daneben skizziert (Wiegen 1 und Wiegen 2). Beim Wie-
gen 1 befindet sich die Schwingungsachse unter dem Schwer-
punkt 8 und die entsprechende Eigenfrequenz liegt tief, wes-
halb diese Schwingung auch mit «unterer Wiegeschwingung»
bezeichnet werden kann. Das Wiegen 2 ist dann die «obere
Wiegeschwingung», die Eigenfrequenz ist hoher und die
Schwingungsachse liegt tiber dem Schwerpunkt. Diese obere
Wiegeschwingung kann bei Eisenbahnfahrzeugen oft beob-
achtet werden; sie ist dadurch gekennzeichnet, dass sich der
Wagenkasten so bewegt, als ob er um eine feste Achse in
Kopfhéhe der Passagiere hin- und herschaukle,

Eine dritte Eigenschwingung ist die des Schlingerns um
die vertikale Schwerachse. Die Skizze auf Bild 12 links oben
zeigt den Wagen von oben gesehen, wie der schwingende
Kasten iibers Kreuz nach beiden Seiten ausschligt. Die
Schlinger-Eigenfrequenz ist mit ng = 76 angegeben. Die
vierte Eigenschwingung ist die des Stampfens (Skizze links
unten). Die Eigenfrequenz dieser vertikalen Translations-
schwingung wurde zu n; = 84 berechnet,

Streng genommen sollten noch zwei gekoppelte Nick-
Zuckschwingungen vorhanden sein; hier wurde aber nihe-
rungsweise nur das reine Nicken um eine Querachse durch
den Schwerpunkt gerechnet. (Im Prinzip steht einer genaue-
ren Berechnung der Nick-Zuckschwingungen nichts entgegen,
vgl. Abschnitt 5). Die reine Nickfrequenz ergab sich mit
ny = 112.

Fiir drei andere Wagen sind in der rechten Hilfte von
Bild 12 ebenfalls Diagramme eingetragen, die nur noch aus
dem Skelett der Schwingungsachsen und Eigenfrequenzzah-
len bestehen. Diese Diagramme kann man als Kennbild der
Fahreigenschaften bezeichnen, da durch die darin enthaltenen
Angaben das dynamische Verhalten weitgehend charakteri-
siert ist. Zwei Eisenbahnwagen, die gleiche Kennbilder ha-
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Bild 14, Bild 156.

ben, besitzen mit gewissen Einschriankungen gleiche Fahr-
eigenschaften, Zu diesen Einschridnkungen gehort, dass ge-
wisse Konstruktionsunterschiede von Einfluss auf die schwin-
gungserregenden Krifte sein kénnen (man denke nur z. B.
an ein und denselben Wagen mit neuen oder abgenutzten Rad-
Lauffldchen), so dass trotz gleicher Kennbilder verschiedene
Fahreigenschaften resultieren. Auch das Dampfungsverhalten
ist in den Diagrammen nicht beriicksichtigt, immerhin kénn-
ten sie dadurch vervollstindigt werden, dass jeder Eigen-
schwingung Angaben iiber die zugehorige Dadmpfung beige-
fligt wiirden, die aus Versuchen bestimmt werden miissten

Die Kennbilder sind noch durch die Punkte S’ und 2
ergidnzt, die das Kurvenverhalten der Fahrzeuge kennzeich-
nen (vgl. Abschnitt 6).

3. Berechnung der Wiege- und Stampfeigenschwingungen

Wenden wir uns jetzt der eigentlichen Berechnung der
Eigenschwingungen zu, so sei zunidchst das rein zweidimen-
sionale Problem der Stampf- und Wiegeschwingungen fiir
Fahrzeuge mit zwei Symmetrieebenen behandelt. Bild 13
zeigt an vier Beispielen in schematischen Schnitten (in Fahr-
richtung gesehen) die Mannigfaltigkeit der méglichen Dreh-
gestellaufhédngungen, So einfach die Kinematik solcher Auf-
hédngungen auch aussehen mag, so erweist sie sich doch als
reichlich kompliziert, wenn man sie in der Eigenschwingungs-
rechnung beriicksichtigen will.

Alle vier gezeigten Typen setzen sich aus drei oder vier
gegeneinander beweglichen Korpern zusammen, wobei in
allen Fillen der unterste als ruhendes Absolutsystem (Schie-
nen, Radsétze, Achslager) angesprochen werden kann. Der
zweitunterste Korper ist der Drehgestellrahmen und der
oberste der Wagenkasten, Bei allen gewidhlten Beispielen ist
(zufdlligerweise) die Anzahl der System-Freiheitsgrade finf.

Um bei der Rechnung mit einem verniinftigen Zeitauf-
wand durchzukommen, werden folgende zwei Hauptpunkte be-
achtet:

1. Die Schwingungssysteme werden in Teil- oder Nach-
barsysteme auseinandergebrochen und die kinematischen Zu-
sammenhéinge jedes Teilsystems fiir sich untersucht. Einer-
seits ist dies eine betrdchtliche Arbeitsersparnis, weil sehr
oft gleiche Teilsysteme bei ganz verschiedenen Schwingungs-
systemen vorkommen, und anderseits ist der Rechnungsgang
an sich weniger langwierig, da sich eine einfache Super-
positionsmethode angeben lisst.

2. Jede Beziehung — auch wenn sie sich scheinbar noch
so einfach durch trigonometrische Funktionen exakt aus-
driicken liesse — wird unverziiglich in Potenzreihen ent-
wickelt und nach den Gréssen zweiter Ordnung abgebrochen.
Genauere Beziehungen mitzuschleppen belastet nicht nur den
Rechnungsgang in schliesslich prohibitivem Ausmass, son-
dern ist auch ganz {iiberfliissig, da am Schluss fiir kleine
Schwingungen doch nur noch (nach einer Differentiation)
Grossen erster Ordnung beriicksichtigt werden miissen.

Die Berechnungsmethode wird im folgenden zunichst
allgemein abgeleitet, jedoch erweist es sich als zweckmassig,
sie immer wieder an einem Anwendungsbeispiel zu erlidutern.
Daflir wird der Typ A von Bild 13 gewihlt, der in Bild 14
nochmals dargestellt ist, und zwar links in der Gleichge-
wichtslage, rechts in einer allgemeinen Stellung. A ist das
Absolutsystem, I, II und III sind die beweglichen System-
korper. Die allgemeine Lage des Korpers III sei bestimmt
durch seine horizontalen und vertikalen Schwerpunktsver-
schiebungen ¢ und » sowie den Drehwinkel y.

Jedem der drei Korper sowie dem Absolutsystem A wird
nun je ein mitbewegtes Koordinatenkreuz zugeordnet, In der
Gleichgewichtslage liegen alle Koordinatenkreuze {ibereinan-
der, mit dem Nullpunkt im Schwerpunkt S des Kérpers III;

Bild 14, Zweidimensionales,

symmetrisches Schwingungssy- 5:/
stem. Links: Gleichgewichtslage. | Ua =xe® yae ] I
Rechts: Allgemeine Schwin- | [Y2= Xt ¥y ‘+
gungslage. f

Bild 16. Mitbewegte Koordina-
tenkreuze der einzelnen System-
kérper von Bild 14 in allgemei-
ner Lage. —

Bild 16. Teilsystem I-II. Ver- |
schiebung des Korpers II ge- |
geniiber Korper I (Ausschnitt
aus Bild 15).

4 I

&
—~._1I
-

Bild 16.
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Federkonstante A,

Bild 17. Teilsystem A-I. Unteres Abfede-
rungssystem (vgl. Bild 14).

Bild 18.
gung (vgl. Bild 14).

in einer allgemeinen Lage haben sie sich jedoch facherartig
gegeneinander verschoben, wie in Bild 15 angedeutet ist. Die
horizontalen (absoluten) Verschiebungen der Nullpunkte
gegeneinander sind dann uq, uz und us, die vertikalen vy, v2
und vz, wihrend die relativen Drehwinkel mit ey, eo und e3
bezeichnet sind. Damit gelten die Beziehungen:

(1) ¢

n = vy + v2 + V3

Uq + U + ug

Yy = g+ eat e3

Darauf teilt man das Schwingungssystem in drei Teil-
systeme auf und fiihrt in jedem Relativkoordinaten ein. In
Bild 16 sind beispielsweise die Koordinatenkreuze des Teil-
systemes I—II (wie in Bild 15, aber vergrossert) herausge-
zeichnet. Die Lage des Kreuzes II im Koordinatensystem I
wird durch die Relativkoordinaten z, und y» sowie den rela-
tiven Drehwinkel e; bestimmt. Die Beziehungen zwischen den
absoluten und den relativen Verschiebungen lauten dann

Us = XoCOSey + ygSinel =
xo (1 — Yoe12 + ... )= Y2 (51—‘1/6513 s )
Vg = YoCOSey — XoSine; =

= yo(1—Yoes2+....) — %o (e1—1/ger® +...)

Wir vernachlidssigen nun vereinbarungsgemiss alle Glieder,
die von hoherer als von zweiter Ordnung sind. Da xzo und y»
genau wie &; erster Ordnung sind, bleibt nur noch

up = w2 T Y261
Vo = Y2— X261

Fiir die Teilsysteme A—I und II—III findet man analoge
Ausdriicke, so dass die Beziehungen zwischen den Relativ-
und Absolutverschiebungen gesamthaft lauten:

(2) Uy = &1
Up = T T Y2 €1

u3:x3+y-:~(:1+52)

V1= Y1
Vg = Y2 — X2 €1
vy = Y3 — ¥z (&1 + £2)

Der nichste Schritt besteht nun darin, die kinematischen
Abhingigkeiten der drei Teilsysteme abzuleiten.

Dem besseren Verstindnis zuliebe sei das gleich am gewiihlten
Beispiel durchgefiihrt. Bild 17 zeigt das unterste Teilsystem A—I des
Schwingungssystems von Bild 14. In der rechten Bildhilfte ist es
noch schematischer, sozusagen nur als Skelett gezeichnet, und zwar
sowohl in der Gleichgewichtslage wie in einer allgemeinen Stellung.
Die Nullpunkte der Koordinatenkreuze sind wie in Bild 15 durch A
bzw. I bezeichnet, die Verschiebungen von I gegeniiber A sind #; und
1, der Drehwinkel des Korpers I ist ey.

Diese drei Gréssen sind nicht unabhingig voneinander, da dieses
Teilsystem offensichtlich nur zwei Freiheitsgrade hat. Deshalb wiihlt
man zwei unabhingige Lagekoordinaten 2y und zy2. Mit 24 wird bei-
spielsweise die Vertikalverschiebung des Fiihrungspunktes bezeichnet,
mit zis der Drehwinkel g selbst. Jetzt driickt man die Grossen @y, ¥y
und gy durch zy; und z;2 aus, was in diesem Fall cinfach ist:

(101) xy = 8y 'sin 2419 =~ 81 * 212
Y1 =211 + 8 (oS z12-—1) =211 — Y2 81 2122
€1 = 212

Oft, inshesondere wenn verwickeltere Zusammenhiinge auszudrilk-
ken gind, kommt man mit Iilfe von Vektorziigen rasch zum Ziel, wie
beim Teilsystem I—IT auf Bild 18 gezeigt werden soll. Dort ergibt die

- >
Nullsetzung des geschlossenen Vektorzuges 1234 54' 3" 2' 1 =0 so-

fort alle wichtigen Zusammenhiinge der Kinematik dieses Systems,
~

und der Vektorzug 12371113 2 1=0 liefert die Gréssen @s und yo.
Dabei haben die einzelnen Vektoren folgende Komponenten:

Teilsystem I-II, Pendelnde Aufhén-

B_
= ®

Bild 19. Teilsystem II-III. Oberes Abfede-
rungssystem (vgl. Bild 14).

e

III: [ PLo Y2
Ty — [

23 = 34: ‘ o 0
— —> .
2'3" = 34’ g * COS €0 —p -+ Sin €9
ﬁ> ‘ 0 So
3’II>: : So * sin €9 [ So * COS €2
21:'> ‘ p

——>

21; \ p’ q
45: —p. q
—_>

25 —p" ‘ q’

—> —>
Die Komponenten p' q' p'* und g der Vektoren 2' 1 bzw. 4' 5 kon-
nen mit der Pendellinge I wie folgt ausgedriickt werden:

Es ist p’ = 1-sin (8 + a) = 1-sind cosa + I-coss - sina
anderseits ist l-sin§ =p und l-cosd =gq
womit p’ = p-cosa + q-sina
wird. Analog werden
q = q-cosa — p-Ssina
P p-cosB—q - sing
q’ = q-cosB + p-sing
Beriicksichtigt man diese Beziehungen und entwickelt man alle
sin- und cos-Glieder wieder in Potenzreihen, so erhdlt man fiir die
beiden Komponenten des Vektorzuges 1 2 3 4 5 4" 3 3l 13
(102) % p (a2 + B2) —q (a—B) —azex2 =0
Vg (a2—p2) +p (a+B)—2a2e2= 0
wenn man wiederum Glieder hdherer Ordnung weglisst.

Da dieses Teilystem einen Freiheitsgrad besitzt, darf eine unab-
hingige Lagekoordinate zo; gewdhlt werden. e eignet sich dazu nicht,
weil es die unangenehme Eigenschaft hat, fiir den Fall paralleler
Pendel zu verschwinden. Man wihlt deshalb (aus Symmetriegriinden)

(103) 291 = % (a + B)

Um o, B und e durch zey ausdriicken zu konnen, macht man die
quadratischen Ansiitze

"

Il

(104) &2 = Eq - 291 + Eo - 2912 £02 = E12 - 221'-’
a = Ay 2o T Ao 2242 a? = A42:20°
B = By 221+ Ba - 2e1? B2 = By? - 2212

Darauf setzt man diese Ausdriicke in (102) und (103) ein und er-
hilt die Koeffizienten Eq E» A1 usw. durch Identifikation, wenn man
berlicksichtigt, dass die so erhaltenen Gleichungen sowohl fiir die
Terme erster Ordnung als auch fiir diejenigen zweiter Ordnung allein
gelten miissen. Man findet dann:

2
(105) en = - 21 K= (L) o
D) o
14 P g
e e PO 2 — 2942
B =22 2q ( az) 21 B 21

Um schliesslich @a und ¥» anschreiben zu konnen, wird wie er-

wiithnt der Vektorzug 1 2 31 II 3 271 =10 gesetzt, und man findet
damit

(106) xp = Y2 pa?2—qa— Yo azex® + S22
Yo= 1o qa2+ pa— Yo Sgee?—aa" €2

Mit (105) wird dann schliesslich %)

p
(107) 2o = — ((1 So ! ) 2oy = — QxR
a2
— 1 p A p2 p Pl it 1 2
Yo 7[_51—82 (—(C) +T(1#72_)] 221 —-Z—Qu~'321
P
€2 Ra1
o
—_—
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Das Teilsystem II-III (Bild 19) sieht beinahe gleich aus wie das
unterste (Bild 17), und man findet deshalb nahezu gleiche Beziehungen
wie dort, ndmlich:

(108) =3 = (s3 + 231) 230
Ys = 2g1— Yo r Sy 230
€3 — 232

Driickt man allgemein aus, was hier am Beispiel durchgefiihrt
wurde, so ldsst sich das etwa wie folgt formulieren:

Man wéihlt » unabhédngige Lagekoordinaten z; (i =
laufende Nummer der Teilsysteme wie in (1) und (2), k =
laufende Nummer der Lagekoordinaten im gleichen Teil-
system) entsprechend den n Freiheitsgraden des Systems und
driickt sowohl die Relativverschiebungen z; x5 23 und Y1 Y2 Yz
als auch die Drehwinkel e; e ¢35 durch diese Zi, aus

(3) 21 = &1 (R11212-..)| %2 = @3 (221 222 . ..)| 3 = 3 (231232 ..)
Yi=yY1(R11212...) Y2 = Yo (221 Zao...)|Us = Yz (231 232...)
£1 = e1 (11212 ..) e = €2 (221202 ...)|e3 = e3 (231 232...)

Zusammen mit den Beziehungen (1) und (2) findet man fiir
den Korper III: "

(4) £=¢ (211”10 .. %21 222...231 232...)
7= (11 212... 221 Z22... 231 232...)
v=v¢ (211 212... 221 R20. .. 231 230...)

Fiir das Beispiel ergibt sich somit aus (1) (2) (101) (107) und (108)
fir die kinematischen Zusammenhinge in bezug auf den Korper IIT

(109) &= s1212— Q. 221 + S3 230 + 23y 230 - (2’12 + a£221 \) 231

N =R11 + 231 — /2 81 2122 — /o 83 2302 + /2 Q, 2212

4
+ @Qr 212 2oy — (zrz + 20 %21 | S3 %32
2

Y =212+ gzm + 232
Ao

worin nach (107) speziell bedeuteten 3) :

(110) Q,=g—ss, 2

Ao

2 2
1) @=q—s:(2) +2(1—2)

Wiéhrend (101), (107) und (108) dig Kinematik jedes Teilsystems
fiir sich umschrieben, sind in (109) noch neue Glieder (gestrichelt unter-

3) Die Ausdriicke Qx und Qy gehen fiir p = 0 (parallele Pendel) in
die Pendelldnge iiber; sie sind eine Art dquivalente Pendelldngen.

Wohnhaus «<En Coulet» in St. Prex am Genfersee

Gesamtansicht im Modell

strichen) hinzugekommen, die den gegenseitigen Einfluss der Teil-
systeme aufeinander enthalten. Dieser Einfluss war in (2) in denjenigen
Gliedern enthalten, die dort ebenfalls gestrichelt unterstrichen waren.

Bei der Wahl der Unabhingigen z;. soll so vorgegangen
werden, dass diese entweder wie 7 rein symmetrisch oder
wie ¢ und y rein asymmetrisch sind. In erster Niherung sind
dann ¢ und ¢ in (4) nur eine Funktion der asymmetrischen
und 7 der symmetrischen Unabhéngigen z;, wodurch mathe-
matisch ausgedriickt ist, dass die Stampfschwingung () und
die Wiegeschwingung (¢y) nicht gekoppelt sind.

In Gl (109) sind die Glieder 1. Ordnung voll unterstrichen. Hier
war also die Wahl der zix richtig erfolgt, da in diesen Gliedern 211
und zg1 nur bei 7 und anderseits 212, 2zo; und zs» nur bei £ und v vor-
kommen. Ungeschickt wire es z. B, gewesen, wenn man beim Teil-
system A-T die beiden Federdehnungen als Unabhiingige gewidhlt hitte,
weil diese auf alle drei Gréssen £, 7 und ¢ einen Einfluss 1. Ordnung
besitzen.

Will man bei den Bewegungsgleichungen die Massen-
wirkung der Kérper I und II mitberiicksichtigen, so braucht
man die GIl. (4) entsprechenden Bedingungen fiir die
Schwerpunktskoordinaten dieser Korper, nidmlich

(5) &t =& (211212, .. 221 200...)
nr=mnr (211212 . .. 221 222. ..)
Y=y (Z11 212. .. 221 292 . . .)

(6) & = & (211212...)
= (211212 . .)
v = yr (211 212...)

Diese Gleichungen lassen sich analog ableiten, wie die
Gl. (4), nur wird fiir &; »; ¢, der Korper III weggelassen
und fiir & », ¢; beide Korper IT und III.

In unserem Beispiel erhdlt man (5) direkt aus (109), indem man
231 = 232 = 0 setzt und s; durch sq; ersetzt. Ebenso ist Q. und Quy
durch Qu- und @Qnu, zu ersetzen, indem in Gl. (110) und (111) s»
durch sps ersetzt wird. (spp und sp2 entsprechen s; und s» auf den
Bildern 17 und 18, wenn S dann der Schwerpunkt des Korpers II ist.)
Damit wird

(112) &; = sp1- 212 — Quux - 221
= 211 — Yo sinzie? + YL @y 212 T Quur  R12 201
_ P
Y = 212 t— 2,
g

und nochmals analog mit 22y = 200 =0
(113) & = 811212
= R — Y2 Spc2i2?

Yr = Ri12 Schluss folgt

Hierzu Tafeln 1/6

Architekt Otto H. Senn, Basel DK 728.37

Baujahr: 1953

Situation. Das Grundstiick liegt am westlichen Rande des
neuen Wohngebietes der Gemeinde. Es erstreckt sich vom
Seeufer, in zwei Stufen ansteigend, bis zum 40 m hdher ge-
legenen Plateau. Das Haus ist so gestellt, dass es den auf
drei Seiten mauerumschlossenen, oberen Garten an der
Stelle begrenzt, wo das Gelinde in den abfallenden Hang
tibergeht. Das Hauptgeschoss ist von der Strasse ebenerdig
zuginglich. Nach Siiden, wo sich der Blick auf den See und
die Savoyer Berge offnet, lidt es um eine Stockwerkshohe
aus tliber das Geldnde, Hier nimmt das Sockelgeschoss das
Niveau der Umgebung auf (mit dem direkten Austritt von
der Halle).

Raumorganisation. Die Gemeinschafts- und Einzelrdume
(Wohn- und Schlafzimmer) sind auf dem einen Boden des
Hauptgeschosses zusammengefasst. Sie schliessen sich je um
eine Halle, den Hauseingang und den Schrankvorplatz zu
zwei Gruppen zusammen mit den zugehdrigen Nebenrdumen.
Das Wohnzimmer greift in der Vertikalen {iber ein Galerie-
geschoss (Bibliothek) und mittels der #Husseren Rampe auf
das tiefer gelegene Vorgeldnde. Im Sockelgeschoss befinden
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