Zeitschrift: Schweizerische Bauzeitung
Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 74 (1956)

Heft: 41

Artikel: Der exzentrisch gedrickte und querbelastete, prismatische Druckstab
Autor: Basler, Konrad

DOl: https://doi.org/10.5169/seals-62716

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-62716
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

13. Oktober 1956

SCHWEIZERISCHE BAUZEITUNG

Seite 627

74. JAHRGANG HEFT NR. 41

Der exzentrisch gedriickte und querbelastete, prismatische Druckstab

Von Dipl. Ing. Konrad Basler, in Firma Wartmann & Cie. AG., Brugg

4. Eine graphische Interpretierung des nichtlinearen Span-
nungsproblems

Um die Genauigkeit der unter Abschnitt 3 angegebenen
Nidherungsformel {iberpriifen zu konnen, war der Verfasser
genotigt, die strengen Losungen fiir die einfachsten Fiélle
zu kennen. Bei der geschlossenen Losung fiir eine Einzellast
fillt auf, wie das Biegemoment durch einen einzigen Term,
bestehend aus Kreisfunktionen, dargestellt werden kann. Da-
mit war auch der Fingerzeig gegeben, dass eine Interpre-
tierung der von mehreren Variablen abhéngigen Losung in
Polarkoordinaten erfolgreich sein kann. Die Konstruktion
soll nachstehend beschrieben werden. Um dabei die Verhélt-
nisse nicht unnétig zu komplizieren, wollen wir die Losung
vorerst ohne Beweis erkldren.

a) Die graphische Darstellung

Wir stellen uns vorerst folgende Grundaufgabe: Gege-
ben sei ein mit einer konzentrierten Einzellast querbelasteter
Druckstab (Bild 3). Die Einzellast H greife im Abstand a
vom unteren Stabende an. Gesucht ist das durch Léngs- und
Querbelastung verursachte Biegemoment I/ an der Stelle .
Es ist zweckmissig, dieses in die Last H und einen Hebel-
arm 7 aufzuteilen. 5 ist dann eine Lénge, die in demselben
Masstab aus der Figur herauszumessen ist, in welchem der
Stab als Kreisbogen aufgezeichnet wurde. Der Spannungs-
nachweis lautet demnach

P Hnq
F +T < ozl

Wie bereits einleitend erwédhnt, soll der Stab bei der
Abbildung nicht mehr als gerade Strecke (karthesische Koor-
dinaten), sondern als Stiick eines Kreisbogens (Polarkoordi-
naten) erscheinen. Die Abbildungsgesetze lauten nun: 1. Die
Metrierung soll erhalten bleiben und damit auch die Stab-
linge. — 2. Der Oeffnungswinkel des Kreisbogens soll durch
den «Grad des Forminderungsproblemes» nach folgender Be-
ziehung gewdahlt werden:

P = 7‘/ i = 180° 7P Hierin sind:
Pp

n = Sicherheitsgrad

P = effektive Léngskraft

P; = Eulersche Knicklast

Zur Vervollstindigung der Ausgangsfigur gehoren zwei
Punkte Py und Py, die auf denjenigen Radien liegen, die den
Kreisausschnitt begrenzen.

Im Falle einer Einzellast H erhalten wir den Punkt P
auf der einen Sektorbegrenzungsgeraden, indem wir vom An-
griffspunkt der Last die Parallele zur andern Begrenzungs-
geraden ziehen. Dadurch wird ein charakteristisches Paral-
lelogramm aufgespannt (Bilder 5 und 6). Mit dem Festlegen

Bild 6.

DK 624.075.22

Schluss von S. 589

dieser beiden Punkte P; und P, ist die Abbildungsarbeit be-
endet, und es gilt folgende Aussage: Die Absténde des Fahr-
strahles von den beiden Punkten Py und P, stellen Hebel-
arme der Momente am Ort des Fahrstrahles im Léngenmass-
stab I dar. Das kiirzere der beiden Lote ist reell. Dieser Satz
besagt also, dass aus der beschriebenen Figur sofort jedes
mogliches Moment am Stab abgelesen werden kann, und be-
merkenswert ist, dass die Darstellung zugleich aussagt, wo
das Moment effektiv auftritt.

In Bild 7 z. B. ist der Fall dargestellt, in dem nP =
0,174 Py und die Stérkraft H im Punkt 4 steht. Wenn wir an
der Stabstelle 2 das Moment kennen wollen, so fillen wir von
den Punkten Py und P, das Lot auf den Fahrstrahl durch 2.
Das kiirzere hat die Linge 0,15 I, das Moment betrdgt dem-
nach 0,15 HI. Die gesamte Momentenfliche ist fiir H = 1 in
Bild 7 rechts aufgezeichnet.

Aus Bild 5 erkennen wir, dass im charakteristischen Pa-
rallelogramm das Lot von einem der beiden Punkte Py oder
P, auf die Diagonale H den gesuchten Hebelarm g, fiir das
Biegemoment unter der Last darstellt. Dieses Moment ist das
grosste am Stab, wenn der Hoéhenfusspunkt noch innerhalb
des Parallelogrammes liegt, fillt er aber ausserhalb, so exi-
stieren noch gréssere Momente. Der grosste iiberhaupt mog-
liche Wert 7,,.. wird dargestellt durch die kiirzere Parallelo-
grammseite; und der Ort, an welchem dieses Maximum auf-
tritt, zeigt der Radiusvektor, der senkrecht auf dieser Seite
steht (s. Bild 6).

Man beachte, wie dieses Maximum aus dem Wert unter
der Last hervorgeht, wenn nP/Pp oder a/b variiert. Fur
Bruchlasten, die kleiner als ein Viertel der Eulerschen Knick-
last sind, ist also der Forméindei‘ungseinfluss so klein, dass
er die Giiltigkeit des aus der Baustatik bekannten Satzes,
wonach das Moment am einfachen Balken unter einer Ein-
zellast stets am Angriffspunkt der Last den grdssten Wert
annimmt, nicht umzustossen vermag.

Die Grenze zwischen diesen beiden Bereichen ldsst sich
aus Bild 6 direkt ablesen:

b T Z/P,.'
= = ——L___ Db 3 — = =
Yy aw. b 21 nP
/l|*——Pi;

Da an diesem Stab auch fiir Querbelastung das Super-
positionsgesetz gilt — was wir, wie die ganze Methode selbst
noch zu beweisen haben — so ist die dargestellte Momenten-
linie nach dem Satz von Maxwell zugleich die Einflusslinie
fiir das Stabmoment im Punkte 4, wenn der Stab unter der
Last n P = 0,174 P steht (Bild 7). Aus diesem Grunde bietet
es keine Schwierigkeit, den beliebig querbelasteten, prismati-
schen Druckstab zu bemessen.
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In den bheschriebenen Kreissektor lassen sich aber noch
weitere Deutungen hineinprojizieren. Wenn man den Radien
des Kreisbogens einen Kriftemasstab auferlegt, so dass die
Storkraft H durch die Lidnge des Kreisradius dargestellt wird,
dann gilt folgender Satz: die Strecken vom Kreiszentrum
zu den Fusspunkten des Lotes von P; bzw. P, auf den Fahr-
strahl stellen die Querkrifte am Ort des Fahrstrahles dar.
Nach unserer Vorzeichenkonvention iiber die Querkrifte sind
diese auf der rechten Seite der Last H positiv, auf der andern
negativ zu messen.

In Bild 7 ist die Querkraftfliche ebenfalls dargestellt.
Man beachte, dass wiederum beim Durchlaufen ecines Fahr-
strahles durch den Kreissektor sdmtliche Querkraftwerte er-
zeugt werden, und zwar tritt dann, wenn der Fahrstrahl durch
den Vektor H hindurch geht, ein Sprung in der Querkraft-
fliche von der Grosse H auf.

b) Beispiele

In Bild 5 haben wir folgendes Beispiel berechnet: Auf
einer Eisenbetonstiitze aus hochwertigem Beton von der
Lénge I = 5,00 m und dem Querschnitt 30 X 30 cm? ruht eine
zentrische Last von P = 46 t. Ausserdem besteht die Mog-
lichkeit, dass die Stiitze von Fahrzeugen gestreift oder ange-
fahren wird. Aus diesem Grunde ist vereinbart worden, eine
zusétzliche Stosskraft H = 3 t im Abstand 1 m iiber Boden
flir die Bemessung einzufiihren.

Die Eulersche Knicklast 3) betrigt:

., BEJ _ 9,87-200-67000
Pp=m2 = =002 = 534 t

somit der Zentriwinkel

nP /2‘467
=w = 180° = ©
v= | = w0 2 = o

und der Kreisradius

b
—_—= 5,00 = 3,82 m
arc ¢

1,309

Die Figur ist im Masstab 1:100 abgebildet, und daraus
lesen wir ab
7, = 89 cm
Myax = Hny, = 3-89 = 266 cmt
M 46000 266 000
W 900 T T 4500
=110 kg/cm?2 = 0.,

P
Omar — T =+ =51 4 59 =

; . b2
mit A = 58 ist ya < 0} zur = T0 kg/cm?

In Bild 6 ist erneut der unter Abschnitt 3 beschriebene
Fachwerkpfosten berechnet.

Aus jenen Daten: 1 = 5,00 m Profil DIE 10
a= 1,00 m Py = 79t
b= 4,00 m Hyupe = 05 ¢t

errechnen wir

3) Die neue S. I. A.-Norm 162 schreibt bei cher hoherem Sicherheits-
grad noch wesentlich kleinere fiktive Elastizititsmoduli fiir die Be-
rechnung von Formidnderungsproblemen vor.

5 2 R

|
’ s
\/MM“I‘T‘

Bild 8.

, 2100- 327

Pp=mro o =21t
7,
n =154 25 72,;’ = 273
P :180°l/ﬁ‘;7’97: 145°
,00
= _2.2_3 = 1,98 m

womit sich Bild 6 zeichnen ldsst, aus dem wir ablesen
Mnaz — 1,67 m

P Hy 7,9 0,5-167 .

Tmar = W 208 + 60T 0,38 + 1,20 =
= 1,58 t/cm?2
o = 1,60 t/cm?2

c¢) Beweise

Vorerst wollen wir die beiden Grenzfédlle zentrisches
Knicken und reine Biegung diskutieren. Sie sind dadurch ge-
kennzeichnet, dass der Zentriwinkel ¢ unserer Stababbildung
gegen 180 ° bzw. 0 ° geht. Bei der Diskussion des ersten Grenz-
tiiberganges: lim 7 (@) zeigt die Konstruktion ein Abwandern

P->Pp
der Punkte P; und P, gegen unendlich. Simtliche Lote wer-
den ebenfalls unendlich gross und bei noch so kleiner Quer-
belastung H kann doch ein beliebig grosser Hebelarm 7 ent-
stehen und damit ein beliebig grosses Biegemoment, was in
unserm Fall das Signal fiir Instabilitit bzw. Knicken dar-
stellt.

Der zweite Grenziibergang lim 5 (¢) zeigt uns einen ver-

P->0
schwindenden Zentriwinkel ¢, und wir erkennen aus Bild 8,
dass das unter a) beschriebene Abbildungsverfahren fihig
ist, die Kraft- und Seilecke des Biegetrégers zu vereinen. Der
Ingenieur hat damit auch die Moéglichkeit, zu entscheiden, ob
praktisch ein Forménderungsproblem vorliegt oder nicht. Um
zwischen linearem wund nichtlinearem Spannungsnachweis
Unterschiede von mehr als 5 9 zu bewirken, muss ein Zentri-
winkel stets grosser als 35° sein.

Um nun mit dem allgemeinen Beweis der Konstruktion
gleichzeitig die Giiltigkeit des Superpositionsgesetzes nach-
weisen zu konnen, wollen wir die Berechnung fiir zwei Ein-
zellasten H; und H, durchfiihren (Bild 9).

Die Differentialgleichung des Problems:

M

BJ

kann fiir Einzellasten nur feldweise geschlossen angeschrie-
ben werden und lautet mit den in Bild 9 eingetragenen Be-
zeichnungen:

yn:_

1. Feld: y” — P g Hy ,
I P A W
—, P _ Hy —
(1) ! 2.Feld: y" = — 57 Y — T x
L P 10 Ms—M;
3.Feld: y ;—ijfyﬁﬁifliM,+ Ci(l-a,l)]

3.Feld

Bild 9. P M(H)
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Da:
Hy = Hli; + Hb—l‘
Hp = H, EZL + Hp al._»
My My oy be @
c l 1

so konnen wir mit den Abkiirzungen:

1 b b
KJ:-I—;(HlT]-FHQ 2)

1 _H,
,_ P 1 a, as TP
2) ) * =75 “”‘?(H‘T+HQ z) H,
Ko =
. 1 bs ay - P
e = ‘P“(H'Z—Z_H‘T)
die Differentialgleichungen (1) auch so schreiben:
J 1. Feld: Y+ 02y = — w2k
(3) ! 2.Feld: ¥ + o2y = — 02xp2
' 3.Feld: ¥ + 02y = — 02k — 02Kx1 Q1

Fiir Feld 1 lautet die allgemeine Losung der linearen,
aber inhomogenen Differentialgleichung zweiter Ordnung:

y = Asinwx + Bcosw® — k1 &
und aus den Randbedingungen

y(x=0)

sin w a4

—— [ B=0
olg I A— 1+ rka

Yy (x=ay)

Analoge Ausdriicke finden wir fiir Feld 2.

Die Losung fiir das Feld 3 lautet:
y = Asinwx + BCOS 0wt — K, & — Ky Ay

Die Integrationskonstanten ergeben sich aus:
y(x = a) = fi—>Asinwa, + Bcoswa; =
=f1+r a1+ ke =1+ k1
y(x = ag) = fo—> Asinwas + Bcoswas=
= fo + K1 @1 + ke @2 = fo + kp b2

und mit
A = sin w @y COS w Ao — COS w @y SIN was =
= sin (wa; —wag) = —Sinwc
zZu:
L [(fy + kaan) i 3 o B |
= —— T Ky Q COS w Ao — . K g CoOsSwa
T 1 A Q1 2 (Ja B D2 1
(4) i
Be=a—— + kg by) sinway — Ky @) Sinw as]
smmc[(h 5 b2) 1 — (f1 + k1 a1) o]

Mit diesen Abkiirzungen entstehen folgende Losungen:

_ htrkaar
1. Feld: Yy = L .
Yy 0o 0y sinwxr —«k,
(8) 1 2. Feld: y = Msin Py p——
sin w be
3. Feld: y = Asin wx + B COS o0& — K, & — K1 Uy

Die Bedingung, dass an den Feldiibergéngen keine Knicke
in der Biegelinie vorkommen diirfen, bestimmt uns die beiden
Unpekannten fi und fo

=y (a1)

Feld3 Feld1

"(aq) |
© Y

— — Y (ba)

Feld 3 Feld 2

( Y@

(6') wA coswty—wBsinwd; — k. =

_ hhitraa

=2 © COS Wy — K
sin w a4

(7") wA cos wly—wB sin way — rx, =

_ Jatrpbe

= : wCoS wbo + xkp
sin w be

Setzen wir in (6)’ und (7)’ die Ausdriicke (4) ein und
ordnen nach den Unbekannten (fi + k4 @) bzw. (fa + kpba),
so finden wir nach einigen goniometrischen Umformungen

(6”) (f1+x4aq) sin was— (fo + kp be) sinwa; =

K1 . -
= —Slnl way Sl wC
w

(7")  (f1 + k4 @y) sin wbs — (fo + kg ba) SiNwby =

Ko . .
= —_"sinwbs sinwc
w
Die Determinante dieses Systems:
— sin @ (ay + ¢) sinw (b + ¢) + sinwa; sin o be

kann auf die Form: — sinw ¢ sin ol gebracht werden.

Somit ergibt sich

(fi +raar) =
1

K1 . Y K2 5 %
—_— "~ |— " sinwa; sinwb;— —=sin w @y sin v by
sin wl! ® )

Nach (5) finden wir demnach folgenden Ausdruck fiir
das Biegemoment im ersten Feld:
M(x) =H,x+ Py wobeli

sin w a4 . . i
y=———— (k1 Sinwby + reSinwbs) SiNwX — Ky
wSsinwl-sin w ay

damit wird

Sil’lwbg
wsinwl

sinwby y
sinwax + Hp sinwx

(8y M=) =Hi—orry

womit das Superpositionsgesetz bewiesen ist.

Um die beschriebene Konstruktion beweisen zu konnen,
miissen wir die Biegemomente infolge einer Einzellast H ken-
nen. Wir gewinnen diese Werte aus (8) durch Nullsetzen von
H, und fiir das Feld 2 durch Vertauschen der Buchstaben «
und b:

IH._Z_. Msinwx n=s=x<a)
wl sin wl
(9) M(x) = )
L (0=7T=b)
wl sinwl = =

Aus Bild 10 geht die Herleitung der Konstruktion un-
mittelbar hervor. Als Oeffnungswinkel des Kreissektors ist

wi=]/_P 1 .1/ FE __.|/E
wJ EJ 72 Py
zu deuten.

Die Querkridfte erhalten wir aus (9):

i b
—Sl.—nw— coswr (0=x<a)
d M(x) sin wl =
Qle)= “ax .
I —H %%‘;fcou:(l—x) (a< 2=l)
_R/r"—‘\
\
\
\
\
\
\
2‘-6\
\
\\ )
\ iy
L sinwb g yx
\ wl sinwl
rwl &—— S|
L . L sinwb i
Bild 10. wl sin wl
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\\ P“/,’ 19
S g / B P
Defail A
Bild 11.
F ; . M,=Pe,

Bild 12.

Bild 13.

Bild 15.

n

e) Der exzentrisch gedriickte Stab

Nachdem wir nun die Gililtigkeit des gezeigten Verfahrens
flir zwei gleichzeitig wirkende Querlasten bewiesen haben,
bieten dessen Erweiterung auf den exzentrisch gedriickten
Stab keine Schwicrigkeiten mehr. Wir lassen Hy und H. je
gegen ein Stabende hin wandern und sehen aus Bild 11 schon
bildlich, dass im Grenziibergang Identitdt zwischen den Stab-
endmomenten Hy by und Pey bzw. Hs by und Pe, besteht, und
somit fiir die Momentenzerlegung in Kraftanteil und Hebel-
arm die Kraft P zu wihlen ist. Die Figur wird uns als Summe
von 711 und 7.9 direkt die Exzentrizitdt an der Stelle z lie-
fern.

Die Konstruktion ist filir die eine Last H; ebenfalls in
Bild 11 angedeutet. Wir erkennen, dass fiir 5(z) nur der
Punkt P;; eine Bedeutung hat, da im Grenziibergang keine
Fahrstrahlen mehr zwischen dem Vektor Hy und der oberen
Sektorbegrenzungsgeraden liegen konnen. Die Zeichnung
wird, so wie sie in Bild 11 dargestellt ist, undeutlich, da alle
Lote in der Nidhe des Kreiszentrums auftreten. Nachdem wir
aber wissen, wie die Exzentrizitdten in die Figur eingehen,
konnen wir diese in einem beliebigen, grosseren Masstab auf-
tragen. Bildlich gesprochen heisst das, dass wir nur das De-
tail A von Bild 11 in einem bequemen Masstab in die Haupt-
figur hineinzeichnen. Die Konstruktion fiir die Bestimmung
der Biegemomente am exzentrisch gedriickten Stab ist daher
analog zu derjenigen der Grundaufgabe. Man trage den Be-
trag der Exzentrizitdt in beliebigem Masstab in den entspre-
chenden Stabenden und in Tangentenrichtung gemessen in die
Figur ein. Von dort aus lassen sich die Punkte Py und P, be-
stimmen (Bild 12).

Da hier zwei Storkréfte vorhanden sind, gibt die Summe
der beiden Lote von P;(1) und Pssy auf einen Fahrstrahl
die Exzentrizitdt am Ort des Fahrstrahles an. Auch hier ldsst
sich die Frage nach Betrag und Ort des maximalen Biege-
momentes ebenso leicht beantworten. Wenn wir den Fahr-
strahl zur Stabstelle # wandern lassen, erkennen wir sofort,
dass die Summe der beiden Lote nicht grosser werden kann
als die Verbindungsstrecke der beiden Punkte P; und P..
Sie stellt somit den gesuchten Extremalwert dar, und die
Normale dazu gibt den Ort dieses Maximums an.

Selbstverstédndlich gelten obige Aussagen auch, wenn an
Stelle der Exzentrizitdten direkt die Stabendmomente in
einem Momentenmasstab eingetragen werden. Man liest dann
nicht den Hebelarm, sondern direkt das Moment aus der
Figur heraus.

In Bild 12 sind flir nP = Py = 0,65 Pp und es = % ey
der Momentenverlauf und die dazu gehorige Biegelinie
aufgezeichnet. Das grosste Moment tritt an der Stabstelle
0,56 1 auf und betrdgt 2,26 Pe;. Die grosste Ausbiegung ist
1,53 eq. Bild 13 zeigt, dass die Konstruktion auch fiir ver-
schrinkte Exzentrizititen gilt. Die «negative» Exzentrizitét
es ist vom Kreissektor weg, also negativ aufzutragen. Dem-
entsprechend sind auch die Lote, die von P, ausgehen, nega-
tiv zu rechnen. Fiir diesen Fall, da es = 1% e; und ebenfalls
Pp = 0,65 Pp, ist das grosste Biegemoment nur noch
1,1 e4 Py und es tritt an der Stelle 0,8 1 auf.

Es gibt querbelastete Druckstdbe, bei denen das grosste
Biegemoment unter der Last auftritt, und andere, bei denen
ein Feldmoment grdsser sein kann. Diese Unterscheidung gilt
auch flr exzentrisch gedriickte Stédbe. In jenem Falle ist das
extremale Biegemoment um so eher an der Stelle des Last-
angriffspunktes zu erwarten, je gedrungener der Stab ist und
je mehr sich die Storstelle dem Stabzentrum n&hert. Hier
gilt etwas dhnliches. Die Wahrscheinlichkeit, dass das grosste
Biegemoment an einem der beiden Stabenden auftritt, ist um so
grosser, je gedrungener der exzentrisch gedriickte Stab ist
und je ndher der Schnittpunkt der Kraftwirkungslinie mit
der Stabaxe an die Stabmitte herankommt (verschrinkte
Exzentrizititen). In der aufgezeigten Darstellungsweise dus-
sert sich das sehr schén. Wenn die Normale zur Verbindungs-
geraden der Punkte Py und P, die den Ort des grossten Mo-
mentes beschreibt, ausserhalb des Stabes zu liegen kommt,
so haben wir kein reelles Maximum, und die echten Extrem-
werte entstehen an den Réndern des Giiltigkeitsbereiches
(S. Bild 14: PB - ]/lli Pl',‘y €2 = ]/{.Z €1, Cmax — el)-

Aus dieser Figur kann man auch unschwer ein analy-
tisches Kriterium herauslesen, das die beiden Fille trennt.
Das grosste Biegemoment liegt innerhalb der Stabenden,
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wenn ¢ > f3, wobei cos 8 = ei/es ist, oder nach der Last auf-

gelost

e\ 2
arc cos ——
nP < PH( = e-)

a

Schliesslich konnen auch Biegemomente, die den Stab
nicht an den Enden belasten, diskutiert werden, wie uns
Bild 15 zeigt. Der Grenziibergang entsteht hier aus den beiden
Einzellasten dadurch, dass wir sie in entgegengesetzter Rich-
tung und in unmittelbarer Ndhe der Storstelle wirken lassen.
Alle Ueberlegungen sind dieselben wie beim exzentrisch ge-
driickten Stab.

e) Erweiterungen

In dem Verfahren, wie es in diesem Beitrag entwickelt
worden ist, schlummern noch viele Moglichkeiten, die er-
schlossen werden kénnen. Es ldsst sich z. B. aus der Form
der Differentialgleichung erkennen, dass auch eine einfache
Konstruktion fiir Stdbe existieren muss, bei denen das Trag-
heitsmoment sprunghaft dndert. Der wesentliche graphische
Unterschied gegeniiber dem Fall mit konstanter Biegesteifig-
keit wird sich darin Hussern, dass Kreisbogen mit verschie-
denen Kriimmungsradien aneinandergesetzt werden miissen.

Dem Verfasser sind nachtriiglich folgende Arbeiten be-
kannt geworden, die ebenfalls auf graphischem Weg die Be-
anspruchung in querbelasteten Druckstédben aufzeigen:

Ernst Meissner: Graphische Analysis mittels des Li-
nienbildes einer Funktion, SBZ Bd. 98 und 99, 1931. In dieser
Arbeit wird eine sehr allgemeine Losungsmethode entwickelt,
die querbelastete Druckstdbe als Sonderproblem einschliesst.

H. B. Howard: The stresses in aeroplane structures, Ver-
lag Sir Isaac Pitman & Sons, Ltd., London 1933.
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Klimakonvektoren in einem Biirogebiude

Mitgeteilt von der Firma Gebriider Sulzer, Aktiengesellschaft,

Bei der Projektierung des auf Bild 1 dargestellten Biiro-
gebdudes der Firma W. Oertli AG,, Diibendorf bei Ziirich, sah
man urspriinglich den Einbau einer Radiatorenheizung vor.
Es zeigte sich dann aber, dass flir das Konferenzzimmer, das
Direktions- und das Empfangsbiiro eine Liiftungsanlage
zweckmissig wire, da in diesen Réumen erfahrungsgeméiss
viel geraucht wird. Das Gebdude liegt an einer stark befah-
renen Ueberlandstrasse. Die Fenster sollten wegen dem star-
ken Strassenlirm und der Beldstigung durch Auspuffgase wo-
moglich geschlossen bleiben. Direkt hinter dem Biirogebédude
befindet sich der Fabrikationstrakt mit Verladerampen fiir den
ziemlich umfangreichen, werkeigenen Verkehr, der ebenfalls
eine betrdchtliche Stérquelle bedeutet. Unter Beriicksichtigung
dieser Umstinde sowie der Tatsache, dass die im Zentrum des
Gebidudes befindlichen Garderoben und Toiletten durch ge-
trennte Abluftgruppen kiinstlich entliiftet werden mussten, er-
gab sich die Zweckmissigkeit einer kiinstlichen Liiftung des
ganzen Gebdudes.

Die Arbeitsriume sind nach allen vier Himmelsrichtungen
orientiert. Zur einwandfreien Kompensation der sich im
Laufe des Tages indernden Aussenverhiltnisse der einzelnen
Zonen wire die Unterteilung einer Zentralanlage in verschie-
dene, relativ kleine Gruppen notwendig gewesen. Da zudem
die Befeuchtung der Luft im Winter und eine angemessene
Raumkiihlung im Sommer erwiinscht war und das Gebdude in
zahlreiche einzelne Biirordume unterteilt ist, wurde von der
Firma Gebriider Sulzer, Winterthur, eine moderne Klimakon-
vektoranlage als giinstigste Losung vorgeschlagen. Die aus-
gefiihrte Anlage ist so bemessen, dass sie im Winter bei einer
Aussentemperatur von —15° C (im Tagesmittel) in den Réu-
men eine Temperatur von -+20°C aufrecht erhalten kann,
wihrend im Sommer bei einer Aussentemperatur von +30°C
und 40 9 relativer Feuchtigkeit im Innern 26° C und 50 % ein-
gehalten werden kénnen. Dabei ist vorausgesetzt, dass das Ge-
biaude gegen den Einfall direkter Sonnenstrahlen durch vor-
handene #Aussere Storen geschiitzt wird.

Differentialgleichung von querbelasteten Druckstdben mit
jener des gekriimmten Bogens verglichen werden kann.
Die Bedeutung des Biegemomentes bei den querbelasteten
Stdben iibernimmt dabei die Normalkraft am Bogen, wihrend
die Querkrifte sich entsprechen. Aus der Bedingung, dass
am Auflager das Biegemoment gleich null sein soll, also an
der entsprechenden Bogenstelle nur Querkréfte wirken diir-
fen, lassen sich letztere bestimmen (charakteristisches Pa-
rallelogramm!). Ihre Komponente senkrecht auf den Fahr-
strahl ergibt die Normalkrifte, die als Biegemomente zu
interpretieren sind.

Wir diirfen also abschliessend die erfreuliche Feststel-
lung machen, dass es nicht erforderlich ist, die analytische
Losung der Integration zu kennen, um die Punkte Py und Py
erstmalig bestimmen zu konnen, sondern, dass dies mit den
elementarsten Mitteln der Baustatik moglich ist.

Zusammenfassung

In dieser Arbeit wird eine graphische Losung des nicht-
linearen Spannungsproblemes beschrieben. Der Vorzug der
dargestellten Methode gegeniiber dem analytischen Verfahren
liegt vor allem darin, dass die Frage nach dem Ort und dem
Betrag des grossten Biegemomentes gleichzeitig und daher
sehr anschaulich beantwortet wird, wihrend die analytische
Formulierung dieser Extremwertaufgabe in allen jenen Féllen
miihsam wird, in denen die Lage des grossten Momentes nicht
mit Sicherheit an singuliren — oder Randpunkten voraus-
gesagt werden kann.

Berichtigung: In der Tabelle 1 auf Seite 589 soll im
Nenner des Wurzelausdruckes fiir den Naherungswert der
Fliche 1 das Zeichen nP an Stelle von Pj stehen.

Adresse des Verfassers:
strasse 1047, Windisch AG.

Konrad Basler, Dipl. Ing. ETH, Berg-

DK 628.8

Winterthur

Die erforderliche Heizleistung der Klimakonvektoren im
Winter betrdgt rd. 100000 kcal pro h. Im Sommer (bei
+ 30° C und 40 %) sind von der Klimaanlage insgesamt
31000 kcal/h als effektive Kéilteleistung abzufiihren.

Die grundsitzliche Arbeitsweise von Luftkonditionie-
rungs-Anlagen mit Klimakonvektoren ist hier schon beschrie-
ben worden!). Die in einer Frischluftzentrale vorbehandelte
Frischluft wird durch ein Kanalsystem unter héherem Druck
auf die in den Fensternischen der einzelnen R#ume einge-
bauten Klimakonvektoren verteilt und tritt dort durch Diisen
mit grosser Geschwindigkeit aus. Die Diisen sind so ausge-
bildet, dass sie als Ejektoren wirken und dabei eine mehrfache

1) SBZ 1954, Nr. 24, Seite 354

Bild 1. Biirogebiude der Firma Oertli AG. in Diiberdorf
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