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Der exzentrisch gedrückte und querbelastete, prismatische Druckstab

Von. Dipl. Ing. Konrad Basler, in Firma Wartmann & Cie. AG., Brugg

DK 624.075.22

Schluss von S. 589

4. Eine graphische Interpretierung des nichtlinearen
Spannungsproblems

Um die Genauigkeit der unter Abschnitt 3 angegebenen
Näherungsformel überprüfen zu können, war der Verfa^^s
genötigt, die strengen Lösungen für die einfachaten Fälle
zu kennen. Bei der gesclHössenen Lösung für eine Einzellast
fällt auf, wie das Biegemoment durch einen einzigen Term,
bestehend aus Kreisfunktionen, dargestellt werden kann. Damit

war auch der Fingerzeig '
gegeben, dass eine Interpretierung

der von mehreren Variablen abhängigen Lösung in
Polarkoordinaten erfolgreich sein kann. Die Konstruktion
soll nachstehend beschrieben werden. Um dabei die Verhält-

amisse nicht unnötig zu komplizieren, wollen wir die Lösung
vorerst ohne Beweis erklären.

a) Die graphische Darstellung
Wir stellen uns vorerst folgende Grundaufgabe:|||ïege-

ben sei ein mit einer konzentrierten Einzellast querbelasteter
Druckstab (Bild 3). Die Einzellast H greife im Abstand a

vom unteren Stabende an. Gesucht ist das durch Längs- und
Querbelastung verursachte Biegemoment M an der Stelle sc.

Es ist zweckmässig, dieses in die Last H und einen Hebelarm

17 aufzuteilen. 77 ist dann eine Länge, die in demselben
Masstab aus der Figur herauszumessen ist, in welchem der
Stab als Kreisbogen aufgezeichnet wurde. Der Spannungsnachweis

lautet demnach

Pt H-n
W < "zu!

Wie bereits einleitend erwähnt, soll der Stab bei der
Abbildung nicht mehr als gerade Strecke (karthesische
Koordinaten), sondern als Stück eines Kreisbogens (Polarkoordinaten)

erscheinen. Die Abbildungsgesetze lauten nun: 1. Die
Metrierung soll erhalten bleiben und damit auch die
Stablänge. ¦— 2. Der Oeffnungswinkel des Kreisbogens soll durch
den «Grad des FormSderungsproblemes» nach folgender
Beziehung gewählt werden:

¦v
I nP

PÏ"
180°

nP
P7

Hierin sind:

n Sicherheitsgrad
P — effektive Längskraft
P% Eulersche Knicklast

Zur Vervollständigung der Ausgangsfigur gehören zwei
Punkte Pi und P2, die auf denjenigen Radien liegen, die den
Kreisausschnitt begrenzen.

Im Falle einer Einzellast H erhalten wir den Punkt P
auf der einen Sektorbegrenzungsgeraden, indem wir S>m
Angriffspunkt der Last die Parallele zur andern Begrenzungsgeraden

ziehen. Dadurch wird" ein charakteristisches
Parallelogramm aufgespannt (Bilder 5 und 6). Mit dem Festlegen

dieser beiden Punkte P± und P2 ist die Abbildungsarbeit
beendet, und es gilt folgende Aussage: Die Abstände des
Fahrstrahles von den beiden Punkten PA und P2 stellen Hebelarme

der Momente am Ort des Fahrstrahles im Längenmass-.
stab l dar. Das kürzere der beiden Lote ist reell. Dieser Satz
besagt also, dass aus der beschriebenen Figur sofort "jedes

mögliches Moment am Stab abgelesen werden kann, und
bemerkenswert ist, dass die Darstellung zugleich aussagt, wo
das Moment effektiv auftritt.

In Bild 7 z. B. ist der Fall dargestellt, in dem nP
0,174 PB und die Störkraft H im Punkt 4 steht. Wenn wir an
der Stabstelle 2 das Moment kennen wollen, so fällen wir von
den Punkten Px und P2 das Lot auf den Fahrstrahl durch 2.

Das kürzere hat die Länge 0,15 l, das Moment beträgt demnach

0,15 Hl. Die gesamte Momentenfläche ist für H 1 in
Bild 7 rechraa aufgezeichnet.

Aus Bild 5 erkennen wir, dass im charakteristischen
Parallelogramm das Lot von einem der beiden Punkte Pi oder

|jli|ja-uf die Diagonale H den gesuchten Hebelarm t\l für das

Biegemoment unter der Last darstellt. Dieses Moment ist das

grösste am Stab, wenn der Höhenfusspunkt noch innerhalb
des Parallélogrammes liegt, fällt er aber ausserhalb, so
existieren noch grössere Momente. Der grösste überhaupt mögliche

Wert Vmax wird dargestellt durch die kürzere Parallelo-
grammseit®Bund der Ort, an welchem dieses Maximum
auftritt, zeigt der Radiusvektor, der senkrecht auf dieser Seite
steht (s: Bild 6).

Man beachte, wie dieses Maximum aus dem Wert unter
der Last hervorgeht, wenn nP/PB oder a/b variiert. Für
Bruchlasten, die kleiner als ein Viertel der Eulerschen Knicklast

sind, ist also der Formänderungseinfluss so klein, dass

er die Gültigkeit des aus der Baustatik bekannten Satzes,
wonach das Moment am einfachen Balken unter einer
Einzellast stets am Angriffspunkt der Last den grössten Wert
annimmt, nicht umzustossen vermag.

Die Grenze zwischen diesen beiden Bereichen lässt sich
aus Bild 6 direkt ablesen:

bzw. b
nP
Pb

vil]/ nP

Da an diesem Stab auch für Querbelastung das
Superpositionsgesetz gilt — was wir, wie die ganze Methode selbst
noch zu beweisen haben — so ist die dargestellte Momentenlinie

nach dem Satz von Maxwell zugleich die Einflusslinie
für das Stabmoment im Punkte 4, wenn der Stab unter der
Last nP 0,174 PE steht (Bild 7). Aus diesem Grunde bietet
es keine Schwierigkeit, den beliebig querbelasteten, prismati-
schen Druckstab zu bemessen.

6

av 2

0 0
QlxMIX]

M -kl-H
X\hr-

a=XH

Bild 5. Bild 6. Bild 7.
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In den beschriebenen Kreissektor lassen sich aber noch
weitere Deutungen hineinprojizieren. Wenn man den Radien
des Kreisbogens einen Kräftemasstab auferlegt, so dass die
Störkraft H durch die Länge des Kreisradius dargestellt wird,
dann gilt folgender Satz: die Strecken vom Kreiszentrum
zu den Fusspunkten des Lotes von Px bzw. P2 auf den
Fahrstrahl stellen die Querkräfte am Ort des Fahrstrahles dar.
Nach unserer Vorzeichenkonvention über die Querkräfte sind
diese auf der rechten Seite der Last H positiv, auf der andern
negativ zu messen.

In Bild 7" ist die Querkraftfläche ebenfalls dargestellt.
Man beachte, dass wiederum beim Durchlaufen eines
Fahrstrahles durch den Kreissektor sämtliche Querkraftwerte
erzeugt werden, und zwar tritt dann, wenn der Fahrstrahl durch
den Vektor H hindurch geht, ein Sprung in der Querkraftfläche

von der Grösse H auf.

b) Beispiele
In Bild 5 haben wir folgendes Beispiel berechnet: Auf

einer Eisenbetonstütze aus hochwertigem Beton von der
Länge l 5,00 m und dem Querschnitt 30 X 30 cm? ruht eine
zentrische Last von P 46 t. Ausserdem besteht die
Möglichkeit, dass die Stütze von Fahrzeugen gestreift oder
angefahren wird. Aus diesem Grunde ist vereinbart worden, eine
zusätzliche Stosskraft H — 3 t im Abstand 1 m über Boden
für die Bemessung einzuführen.

Die Eulersche Knicklast 3) beträgt:
EJ 9,87-200-67000Pb

Z2 5002

somit der Zentriwinkel

f4r '»-V
und der Kreisradius

b 5,00r arc 1,309

2-46
534

3,82 m

534 t

75'

Die Figur ist im Masstab 1:100 abgebildet, und daraus
lesen wir ab

vl 89 cm
MmcLX H VL 3 • 89 266 cmt

P M
"max T + ~w

46000 266 000
900 4500

51 59

110 kg/cm2 ar

mit X 58 ist — < ak 2„, 70 kg/cm2lr
In Bild 6 ist erneut der unter Abschnitt 3 beschriebene

Fachwerkpfosten berechnet.

Aus jenen Daten: l

errechnen wir

5,00 m
a 1,00 m
b 4,00 m

Profil DIE 10
Pmax 7.9 t
Hmax 0,5 t

D s
2100-327

— 27 tE " 5002

7 9
n 1,5 4- 2,5 —^ ' 27

2,23

„„„„1/2,23-7,9
* - 180° ]/ 27

145°

5,00r 2,53
1,98 m

: sich Bild 6 zeichnen lässt, aus dem wir ablesen
Vmax 1,67 m

P BV 7,9 0,5 • 167

-m + ^wr- °'38 + |1,58 t/cm«

"zui 1,60 t/cm«
c) Beweise

Vorerst wollen wir die beiden Grenzfälle zentrisches
Knicken und reine Biegung diskutieren. Sie sind dadurch
gekennzeichnet, dass der Zentriwinkel <p unserer Stababbildung
gegen 180 ° bzw. 0 ° geht. Bei der Diskussion des ersten
Grenzüberganges: lim -i) (<p) zeigt die Konstruktion ein Abwandern

P->PS
der Punkte P% und P2 gegen unendlich. Sämtliche Lote werden

ebenfalls unendlich gross und bei noch so kleiner Qg|S
belastung H kann doch ein beliebig grosser Hebelarm r/
entstehen und damit ein beliebig grosses Biegemoment, was in
unserm Fall das Signal für Instabilität bzw. Knicken
darstellt.

Der zweite Grenzübergang lim ij (ç>) zeigt uns einen ver-
P->0

schwindenden Zentriwinkel <p, und wir erkennen aus Bild 8,
dass das unter a) beschriebene Abbildungsverfahren fämia!
ist, die Kraft- und Seilecke des Biegeträgers zu vereinen. Der
Ingenieur hat damit auch die Möglichkeit, zu entscheiden, ob
praktisch ein Formänderungsproblem vorliegt oder nicht. BflffiS
zwischen linearem und nichtlinearem Spannungsnachweis
Unterschiede von mehr als 5 % zu bewirken, muss ein Zentriwinkel

stets grösser als 35 ° sein.
Um nun mit dem allgemeinen Beweis der Konstruktion

gleichzeitig die Gültigkeit des Superpositionsgesetzes
nachweisen zu können, wollen wir die Berechnung für zwei
Einzellasten Hi und H% durchführen (Bild 9).

Die Differentialgleichung des Problems:
M

y =-w
kann für Einzellasten nur feldweise geschlossen angeschrieben

werden und lautet mit den in Bild 9 eingetragenen
Bezeichnungen:

HA

(1)

1. Feld: y"

2. Feld: y"

3. Feld: y"

P
EJ
P

nur
p

EJ

y EJ

' J

y-nrr Mx+-
Mn Mi

(x—ai)

S) Die neue S. I. A.-Norm 162 schreibt bei eher höherem Sicherheitsgrad
noch wesentlich kleinere fiktive Elastizitätsmoduli für die

Berechnung von Formänderungsproblemen vor.

s s nui
Hl

Slorkrafr H

y

-^rrmmTmTÏÏTlTffnTTIlIllIllillli -• I —-

poMisranz HBild

—î

i 2. Feld

c 3. Fed

Hn

I.Feld

M HBild 9
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Da:

H_,

HE

Hi

Ha

bi

Ol

H2

Ho

I

a<2

Mv—M-l
Haff ai

c l
so können wir mit den Abkürzungen:

(2)

KA H».

EJ H.H.*)

1 (h bl

1 /„ «
-jriH-

Ht
P

H2
~"P~

die Differentialgleichungen (1) auch so schreiben:

1. Feld: y" -f u« 3/ — u2 k4 »
(3) J 2. Feld: y" + u2y — u2Kax

[ 3. Feld: y" + a2y =— u^kcx— w2kiOi

Für Feld 1 lautet die allgemeine Lösung der linearen,
aber inhomogenen Differentialgleichung zweiter Ordnung:

y A sin a x + B cos a a; — k,i a?

und aus den Randbedingungen

y(x 0)

y(x-a-i) folgt
f B 0

h + «A at
l sin a et!

Analoge Ausdrücke finden wir für Feld 2.

Die Lösung für das Feld 3 lautet:

y A sin a x + B cos ax — kc x — «i ai

Die Integrationskonstanten ergeben sich aus:

y (x — ai) /i —>- A sin io ai + B cos a ai

/i + «i «i + kc ai /i -f- Kyl ax

2/ (a: Ou) /2 —>- A sin u a2 + B cos u a2

fm + «i ai + "c a2 /2 + Kb b2

und mit
A sin <o a% cos a a2 — cos u ai sin aOi

sin (<o ai — a a2) — sin a c

(4)
sin u c

—1

[ (/i + ka ai) eos u a2 — (/» + Kß b2) cos u ai]

[ (h + kb b2) sin u ai — (/i -f- ka ai) sin w a^
sin w c

Mit diesen Abkürzungen entstehen folgende Lösungen

/i + KA »1

(5)

1. Feld: y sin u a i

/2 +KB b2

sin u— ka x

2. Feld: y sin o> b-2

3. Feld: 2/ A sin ax + B cos ua; Kc X Kl Ol

Die Bedingung, dass an den Feldübergängen keine Knicke
in der Biegelinie vorkommen dürfen, bestimmt uns die beiden

Unbekannten fx und /2

(6)

(7)

y' (ai)

y' (Oü

y' (a-\)

2/'(b2)
PeldS Feld 2

(6') «Acosuai — uB sin uai — Kr

/l + KA dx_—' u cos « ai — K/i
sin u aj

(7') u A cos u Ou — <oB sin «a2— xr

fi + KB b2

sin u b2
I COS U ?>2 + KB

Setzen wir in (6)' und (7)' die Ausdrücke (4) ein und
ordnen nach den Unbekannten (fx + kao-i) bzw. (/2 + KBbn),
so finden wir nach einigen goniometrischen Umformungen

(6") (fx + ka ai) sin u a2 — (/2 + kb b2) sin « ai
Kl

— — sin a ai sin <o c
(0

(7") (/i + ka a,x) sin u b2 — (/2 + kb &2) sin «6i
K2

sm u o2 sin « c
(0

Die Determinante dieses Systems:

— sin a (ai + c) sin u (62 + c) + sin a ai sin u 62

kann auf die Form: —Sinuc sinuï gebracht werden.

Somit ergibt sich

(fx + KAat)

sin a l
sin u ai sin ab-i sin u ai sin a b2 ]

Nach (5) finden wir demnach folgenden Ausdruck für
das Biegemoment im ersten Feld:

M(x) HAx + Py
sin w ai

Ï/— : î :
u sm a l • sin a ai

damit wird

wobei

(«i sin a bx + K2sin u b2) sin ux — kaX

m., „ sin u bi _ sina)b2
(8) M(«) Hi : - sin a x 4- He •—; r sm a x

i sin a Z u sin u 2

womit das Superpositionsgesetz bewiesen ist.

Um die beschriebene Konstruktion beweisen zu können,
müssen wir die Biegemomente infolge einer Einzellast H kennen.

Wir gewinnen diese Werte aus (8) durch Nullsetzen von
H2 und für das Feld 2 durch Vertauschen der Buchstaben a
und b:

(9) M(x)
H- l

sin u l

„ l sin <o a —H —=- • — —5- sm a x
a l sm u

(05? »^a)

(0<âT<b)

Aus Bild 10 geht die Herleitung der Konstruktion
unmittelbar hervor. Als Oeffnungswinkel des Kreissektors ist

wi —

zu deuten.
EJ

PV-
EJ TT*

P
P~K

Die Querkräfte erhalten wir aus (9)

>(X):
dM(x)

d x

„ sin ab ,„ -r,';;-,;
H —; ,- cos a x (0 < x < a)

sm a I

sin a a ..•¦•

-H—; —cosu (Z—x) (a<ar<ì)
sin a l

r
sin iJh

oA

^ l sjnabsin6)x
\Ci)l sincol

|:0]l
_Jl sin ub

Bild 10.
col sin cui
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e,= a

n

Derail A

Bild 11.

' \ M,=Pe
e, io —

VE

2-'i|r'l22

M2=Pe2

Bild 12.

e, io - M,=Pe

M2=Pe2

Bild 13.

VI,=Pe,

M,=Pe2~. c2

Bild 14.

(,Me=Pe

s~-

4 —

Kid 15.

e) Der exzentrisch gedrückte Stab

Nachdem wir nun die Gültigkeit des gezeigten Verfahrens
für zwei gleichzeitig wirkende Querlasten bewiesen haben,
bieten dessen Erweiterung auf den exzentrisch gedrückten
Stab keine Schwierigkeiten mehr. Wir lassen Hi und H2 je
gegen ein Stabende hin wandern und sehen aus Bild 11 schon
bildlich, dass im Grenzübergang Identität zwischen den
Stabendmomenten Hi bx und Pei bzw. H2 b2 und Pe2 besteht, und
somit für die Momentenzerlegung in Kraftanteil und Hebelarm

die Kraft P zu wählen ist. Die Figur wird uns als Summe
von t;ii und ?722 direkt die Exzentrizität an der Stelle x
liefern.

Die Konstruktion ist für die eine Last Hi ebenfalls in
Bild 11 angedeutet. Wir erkennen, dass für -o(x) nur der
Punkt Pxx eine Bedeutung hat, da im Grenzübergang keine
Fahrstrahlen mehr zwischen dem Vektor Hi und der oberen
Sektorbegrenzungsgeraden liegen können. Die Zeichnung
wird, so wie sie in Bild 11 dargestellt ist, undeutlich, da alle
Lote in der Nähe des Kreiszentrums auftreten. Nachdem wir
aber wissen, wie die Exzentrizitäten in die Figur eingehen,
können wir diese in einem beliebigen, grösseren Masstab
auftragen. Bildlich gesprochen heisst das, dass wir nur das Detail

A von Bild 11 in einem bequemen Masstab in die Hauptfigur

hineinzeichnen. Die Konstruktion für die Bestimmung
der Biegemomente am exzentrisch gedrückten Stab ist daher
analog zu derjenigen der Grundaufgabe. Man trage den
Betrag der Exzentrizität in beliebigem Masstab in den entsprechenden

Stabenden und in Tangentenrichtung gemessen in die
Figur ein. Von dort aus lassen sich die Punkte Pi und P2
bestimmen (Bild 12).

Da hier zwei Störkräfte vorhanden sind, gibt die Summe
der beiden Lote von Pi(i> und P2<2> auf einen Fahrstrahl
die Exzentrizität am Ort des Fahrstrahles an. Auch hier lässt
sich die Frage nach Betrag und Ort des maximalen
Biegemomentes ebenso leicht beantworten. Wenn wir den
Fahrstrahl zur Stabstelle x wandern lassen, erkennen wir sofort,
dass die Summe der beiden Lote nicht grösser werden kann
als die Verbindungsstrecke der beiden Punkte Pi und P2.
Sie stellt somit den gesuchten Extremalwert dar, und die
Normale dazu gibt den Ort dieses Maximums an.

Selbstverständlich gelten obige Aussagen auch, wenn an
Stelle der Exzentrizitäten direkt die Stabendmomente in
einem Momentenmasstab eingetragen werden. Man liest dann
nicht den Hebelarm, sondern direkt das Moment aus der
Figur heraus.

In Bild 12 sind für nP PB 0,65 PB und e2 % ex
der Momentenverlauf und die dazu gehörige Biegelinie
aufgezeichnet. Das grösste Moment tritt an der Stabstelle
0,56 l auf und beträgt 2,26 Pei. Die grösste Ausbiegung ist
1,53 ei. Bild 13 zeigt, dass die Konstruktion auch für
verschränkte Exzentrizitäten gilt. Die «negative» Exzentrizität
e2 ist vom Kreissektor weg, also negativ aufzutragen.
Dementsprechend sind auch die Lote, die von P2 ausgehen, negativ

zu rechnen. Für diesen Fall, da e2 % ei und ebenfalls
Pb — 0,65 Pe, ist das grösste Biegemoment nur noch
1,1 ei Pb und es tritt an der Stelle 0,8 l auf.

Es gibt querbelastete Druckstäbe, bei denen das grösste
Biegemoment unter der Last auftritt, und andere, bei denen
ein Feldmoment grösser sein kann. Diese Unterscheidung gilt
auch für exzentrisch gedrückte Stäbe. In jenem Falle ist das
extremale Biegemoment um so eher an der Stelle des
Lastangriffspunktes zu erwarten, je gedrungener der Stab ist und
je mehr sich die Störstelle dem Stabzentrum nähert. Hier
gilt etwas ähnliches. Die Wahrscheinlichkeit, dass das grösste
Biegemoment an einem der beiden Stabenden auftritt, ist um so
grösser, je gedrungener der exzentrisch gedrückte Stab ist
und je näher der Schnittpunkt der Kraftwirkungslinie mit
der Stabaxe an die Stabmitte herankommt (verschränkte
Exzentrizitäten). In der aufgezeigten Darstellungsweise äussert

sich das sehr schön. Wenn die Normale zur Verbindungsgeraden

der Punkte Px und P%, die den Ort des grössten
Momentes beschreibt, ausserhalb des Stabes zu liegen kommt,
so haben wir kein reelles Maximum, und die echten Extremwerte

entstehen an den Rändern des Gültigkeitsbereiches
(s.Bild 14: PB VxoPb, e2 Y2 ex, emax ei).

Aus dieser Figur kann man auch unschwer ein
analytisches Kriterium herauslesen, das die beiden Fälle trennt.
Das grösste Biegemoment liegt innerhalb der Stabenden,
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wenn <p > ß, wobei cos ß — ei/e2 ist, oder nach der Last
aufgelöst

ei\2
nP < PE

arc cos

Schliesslich können auch Biegemomente, die den Stab

nicht an den Enden belasten, diskutiert werden, wie uns

Bild 15 zeigt. Der Grenzübergang entsteht hier aus den beiden

Einzellasten dadurch, dass wir sie in entgegengesetzter Richtung

und in unmittelbarer Nähe der Störstelle wirken lassen.

Alle Ueberlegungen sind dieselben wie beim exzentrisch
gedrückten Stab.

e) Erweiterungen
In dem Verfahren, wie es in diesem Beitrag entwickelt

worden ist, schlummern noch viele Möglichkeiten, die
erschlossen werden können. Es lässt sich z. B. aus der Form
der Differentialgleichung erkennen, dass auch eine einfache

Konstruktion für Stäbe existieren muss, bei denen das

Trägheitsmoment sprunghaft ändert. Der wesentliche graphische
Unterschied gegenüber dem Fall mit konstanter Biegesteifig-
keit wird sich darin äussern, dass Kreisbogen mit verschiedenen

Krümmungsradien aneinandergesetzt werden müssen.

Dem Verfasser sind nachträglich folgende Arbeiten
bekannt geworden, die ebenfalls auf graphischem Weg die

Beanspruchung in querbelasteten Druckstäben aufzeigen:

Ernst Meissner: Graphische Analysis mittels des

Linienbildes einer Funktion, SBZ Bd. 98 und 99, 1931. In dieser
Arbeit wird eine sehr allgemeine Lösungsmethode entwickelt,
die querbelastete Druckstäbe als Sonderproblem einschliesst.

H. B. Howard: The stresses in aeroplane structures, Verlag

Sir Isaac Pitman & Sons, Ltd., London 1933.

Ernst Amstutz: Graphische Statik der Formänderungsprobleme,

SBZ Bd. 122, 1943. Hier wird gezeigt, dass die

Differentialgleichung von querbelasteten Druckstäben mit
jener des gekrümmten Bogens verglichen werden kann.
Die Bedeutung des Biegemomentes bei den querbelasteten
Stäben übernimmt dabei die Normalkraft am Bogen, während
die Querkräfte sich entsprechen. Aus der Bedingung, dass

am Auflager das Biegemoment gleich null sein soll, also an
der entsprechenden Bogenstelle nur Querkräfte wirken dürfen,

lassen sich letztere bestimmen (charakteristisches
Parallelogramm!). Ihre Komponente senkrecht auf den
Fahrstrahl ergibt die Normalkräfte, die als Biegemomente zu

interpretieren sind.
Wir dürfen also abschliessend die erfreuliche Feststellung

machen, dass es nicht erforderlich ist, die analytische
Lösung der Integration zu kennen, um die Punkte Pi und P2

erstmalig bestimmen zu können, sondern, dass dies mit den

elementarsten Mitteln der Baustatik möglich ist.

Zusammenfassung

In dieser Arbeit wird eine graphische Lösung des
nichtlinearen Spannungsproblemes beschrieben. Der Vorzug der
dargestellten Methode gegenüber dem analytischen Verfahren
liegt vor allem darin, dass die Frage nach dem Ort und dem

Betrag des grössten Biegemomentes gleichzeitig und daher
sehr anschaulich beantwortet wird, während die analytische
Formulierung dieser Extremwertaufgabe in allen jenen Fällen
mühsam wird, in denen die Lage des grössten Momentes nicht
mit Sicherheit an singulären — oder Randpunkten vorausgesagt

werden kann.

Berichtigung: In der Tabelle 1 auf Seite 589 soll im
Nenner des Wurzelausdruckes für den Näherungswert der
Fläche 1 das Zeichen nP an Stelle von PB stehen.

Adresse des Verfassers:
strasse 1047, Windisch AG.

Konrad. Basler, Dipl. Ing. ETH, Berg-

Klimakonvektoren in einem Bürogebäude

Mitgeteilt von der Firma Gebrüder Sulzer, Aktiengesellschaft, Winterthur

DK 628.1

Bei der Projektierung des auf Bild 1 dargestellten
Bürogebäudes der Firma W. Oertli AG., Dübendorf bei Zürich, sah

man ursprünglich den Einbau einer Radiatorenheizung vor.
Es zeigte sich dann aber, dass für das Konferenzzimmer, das

Direktions- und das Empfangsbüro eine Lüftungsanlage
zweckmässig wäre, da in diesen Räumen erfahrungsgemäss
viel geraucht wird. Das Gebäude liegt an einer stark befahrenen

Ueberlandstrasse. Die Fenster sollten wegen dem starken

Strassenlärm und der Belästigung durch Auspuffgase
womöglich geschlossen bleiben. Direkt hinter dem Bürogebäude
befindet sich der Fabrikationstrakt mit Verladerampen für den

ziemlich umfangreichen, werkeigenen Verkehr, der ebenfalls
eine beträchtliche Störquelle bedeutet. Unter Berücksichtigung
dieser Umstände sowie der Tatsache, dass die im Zentrum des

Gebäudes befindlichen Garderoben und Toiletten durch
getrennte Abluftgruppen künstlich entlüftet werden mussten,
ergab sich die Zweckmässigkeit einer künstlichen Lüftung des

ganzen Gebäudes.
Die Arbeitsräume sind nach allen vier Himmelsrichtungen

orientiert. Zur einwandfreien Kompensation der sich im
Laufe des Tages ändernden Aussenverhältnisse der einzelnen
Zonen wäre die Unterteilung einer Zentralanlage in verschiedene,

relativ kleine Gruppen notwendig gewesen. Da zudem
die Befeuchtung der Luft im Winter und eine angemessene
Raumkühlung im Sommer erwünscht war und das Gebäude in
zahlreiche einzelne Büroräume unterteilt ist, wurde von der
Firma Gebrüder Sulzer, Winterthur, eine moderne
Klimakonvektoranlage als günstigste Lösung vorgeschlagen. Die
ausgeführte Anlage ist so bemessen, dass sie im Winter bei einer
Aussentemperatur von ¦—15" C (im Tagesmittel) in den Räumen

eine Temperatur von +20° C aufrecht erhalten kann,
während im Sommer bei einer Aussentemperatur von +30° C

und 40 % relativer Feuchtigkeit im Innern 26° C und 50 %
eingehalten werden können. Dabei ist vorausgesetzt, dass das
Gebäude gegen den Einfall direkter Sonnenstrahlen durch
vorhandene äussere Stören geschützt wird.

Die erforderliche Heizleistung der Klimakonvektoren im
Winter beträgt rd. 100000 kcal pro h. Im Sommer (bei
4- 30 ° C und 40 % sind von der Klimaanlage insgesamt
31 000 kcal/h als effektive Kälteleistung abzuführen.

Die grundsätzliche Arbeitsweise von Luftkonditionie-
rungs-Anlagen mit Klimakonvektoren ist hier schon beschrieben

worden1). Die in einer Frischluftzentrale vorbehandelte
Frischluft wird durch ein Kanalsystem unter höherem Druck
auf die in den Fensternischen der einzelnen Räume
eingebauten Klimakonvektoren verteilt und tritt dort durch Düsen
mit grosser Geschwindigkeit aus. Die Düsen sind so ausgebildet,

dass sie als Ejektoren wirken und dabei eine mehrfache

1) SBZ 1954, Nr. 24, Seite 354

m
HU m

Bild 1. Bürogebäude der Firma Oertli AG. in DUberdorf
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