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sekundidrer Bedeutung sei. Die wesentliche Ursache diesbe-
ziiglicher Schidden ist das Gleiten der Léingsarmierung vom
Auflager her. Das Problem der Schubsicherung wird damit
zu einem Problem der Haftung.

Es ist klar, dass ein solches Gleiten zu grossen Ver-
formungen fiihrt und damit die kleinen, meist schréigen

Haarrisse, die an und fiir sich nicht schaden, ja sogar bei
guter Haftung am hdufigsten auftreten, zu klaffenden Spal-
ten aufgeweitet werden. Die Schrigeisen behindern nun wie
gesagt diese Verformungen, und zwar eben auch dann, wenn
gar keine schiefen Hauptzugspannungen und daher auch
keine schrigen Risse vorhanden waren. Schluss folgt

Berechnung des elastischen Verhaltens und der Eigenschwingungen von Eisenbahnfahrzeugen

Erginzte Fassung der Antrittsvorlesung, die Prof. Otto Zweifel am 7.Dezember 1954 an der ETH gehalten hat DK 625.2.034

Was weiter bestimmt werden muss, ist die potentielle
Energie des Systems in einer allgemeinen Lage; es handelt
sich dabei einerseits um das Potential der Schwerkraft und
anderseits um die in den Federungen aufgespeicherte Defor-
mationsarbeit. In beiden Fillen wird das Potential fiir die
Gleichgewichtslage Null gesetzt. Unter dieser Voraussetzung
wird das Schwerkraftpotential Vg

(7) Vs = mg -7

worin m die Masse des Wagenkastens (Korper III) ist und g
die Erdbeschleunigung. Sollen die Massen der Korper II und
III mitberiicksichtigt werden, so ist genauer:

(7Ta) Vg = mg-n + myg-ny + mpg-n

Das Potential einer Feder wird gerechnet, indem zumin-
dest in einem Kkleinen Gebiet in N#dhe der Gleichgewichtslage
Linearitdt vorausgesetzt wird, Die Federkraft P ist dann
nach Bild 20

P = B & N
worin P, die Federkraft in der Gleichgewichtslage, \ die Fe-

derkonstante und f die Federdehnung ist. Das Potential der
Feder ist dann

(8) Vg =P, f+ %A\ f?

Dabei ist zu beachten, dass nach Bild 20 bei wachsendem f
eine Zunahme der Federbelastung eintritt. Handelt es sich
um eine Entlastung der Feder, so wird

(8a) Vp=—P,-f+ % A-f2

Das Potential der gesamten Federung ist die Summe der
einzelnen Federpotentiale
Vet = 3 Vri
Das Gesamtpotential V ist dann
9) V =Vs + Vpar = mg-n + Vg

wenn die Massen m; und m;; gegeniiber m vernachlidssigt

werden konnen.

Zunichst sei im Teilystem A-I (Bild 17) das Federpotential be-

stimmt. Zur Bestimmung der Federverlangerung der linken Feder
_ >

setzt man den Vektorzug 1 2' 3' 4'4 3 2 1 = 0. Die einzelnen Vektoren

haben hier folgende Komponenten:

—>
12 : 0 Cy
>
An28 C, ¢y
—>
23 : Ly 0
> N
2080 ¢ @y COS 212 — @y Sin 219
—>
3 4 0 — by
’ x .
34 : —— by sin 242 by cos z2
Die Komponentengleichungen ergeben dann (mit den gleichen Anniihe-

rungen wie bisher)

Bild 20. Federpotential V,; P = Federkraft,
{ = Federdehnung. In der Nihe der Gleich-
gewichtslage (f = O; P = P,) wird ein linearer
Verlauf der Federcharakteristik angenommen

Schluss von Seite 6

(114) ¢, = by -2z12 + Y2 " @y - 2122
cy = c¢1 T 211 T @y 212 — Yo - by - 2102

Macht man fiir die gesuchte Verldngerung f; der linken Feder den all-
gemeinsten Ansatz 2. Ordnung

(115) f, = Ay 21 + Ao~ 212 + Br 21?2 + Ba - 2122 +

+ By 211 212
so muss fiir die Gesamtlidnge ¢y + f; der Feder die Beziehung gelten
(116) (c1 + fL)2 =c.2 + ¢

Setzt man in Gl. (116) die Werte fiir ¢x, ¢y und f; aus (114) und (115)
ein, so findet man durch Identifikation (auch in [116] diirfen dann
Glieder 3. und horerer Ordnung ausser Betracht fallen) fiir die linke
Feder

b
(117) f, =211+ a1 212 + % - by (c—l—l) 2122

1
Da die allgemeine Lage von Bild 17 durch Ersatz von 212 durch —2;2
in eine symmetrische Lage iibergeht, wird fiir die rechte Feder

b
(118) fr = 211—0a; - 212 + % - by (C_l_1>zmz

1
Nach (8a) gilt flir das Federpotential Vp; dieses Teilsystems (fiir
beide Federn zusammen)

(119) Vpr = — Py (fp + fr) + % N (f1.2 T+ fr?)

worin P, = Ybmg (m ist die gesamte Kastenmasse, \; die Federkon-
stante aller parallelwirkenden Federn der linken Seite an beiden Dreh-
gestellen zusammen), Daraus ergibt sich dann mit den Gliedern bis
zur 2. Ordnung

" by
(120) Vp1 = —mg l:zn + 1/o by (C—wl) 21902 I -

1
+ M (212 + ai? 2122)

Berechnet man das Federpotential Vg des Teilsystems II-III, so er-
gibt sich bis zur zweiten Ordnung wieder derselbe Ausdruck, so dass
das totale Potential V des gesamten Systems nach (9) wie folgt ange-
schrieben werden kann:

(121) V = mg (y — 211 — 231) +

b
+ M2 + |\>\1 a;2 — /o mg by (C—l—1>
1

be }
+ Az 2312 + [M az® — /o mg by (C—J—l) l 230
3

Als letzte Grosse wird noch die kinetische Energie T
des Systems benotigt:

(10) T — ; m (é2+,}2+ ,\.2‘.;2)

worin « der Massentrigheitsradius des Korpers III ist. Beil
Beriicksichtigung der Massen m; und m,; der Korper I und Il
kdamen noch mehr Glieder hinzu:

(10a) 1 % T ! P9 ) o'a
T — g M (i' + 92 + &2 552) P = Mr <§u~ + 2? +

. 1 . . g
+ Kk yn® ) + 5 M <tl"’ + m? + &2 -,’//‘3)

Die Gleichungen (4), (9) und (10) enthalten alle Zusam-
menhiinge des Systems, die fiir die Aufstellung der Bewe-
gungsgleichungen nach Lagrange notig sind, Diese lauten
flir jede Unabhingige =z

|
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(11) d [T oT oV B
dt (32}1: ) dzy  dmmk

Stimmen 7 wie V bis zu den Grdssen 2. Ordnung, so sind
nach erfolgter Differentiation die Ausdriicke noch bis zur
1. Ordnung korrekt, was filir Differentialgleichungen kleiner
Schwingungen geniigt.

Im folgenden sollen die T enthaltenden Terme dieser La-
grange Beziehung (11) in eine filir unsere Zwecke glinstigere
Form gebracht werden. Dabei sei das immer nur fiir die
Glieder mit ¢ gezeigt (fiir diejenigen mit » und v gilt selbst-
verstandlich dasselbe) und zwar der Einfachheit halber mit
Hilfe von Reihenentwicklungen der Unabhédngigen 21, 22 23...
Sei:

(12) $:A12’1+Blzlﬂ+01-_)212‘2+C'132[z3+...
+ f(2ezs...)

worin z; flir z; gesetzt ist und f (29 z3...) alle Glieder ohne
z1 enthdlt, Durch verschiedene Differentiationen erhidlt man

J&
(13) O A+ 2Bz + Crose+ Cizes + ...

4
(T7§ ) = 2By % + Ci222 + Cizzs + ...
g‘:A12:1+ZB1212.1 +012(2.12‘_’+zlz‘2) e

— 2By 2y + Cia2e + Ci323 + ...

= A, +231:’.’[ + Cio20 + C13zg + ...

£ = A2 + 2By (2121 + 212) + C1o (2120 +
+ 22120+ 2122) + ...

Insbesondere ergeben sich daraus folgende drei Be-
ziehungen:

(14) 2 _ 2t .
1) — =3 {gleiche Reihenentwicklung)
Ezl 021
(15) oo AEN: s <
2.) ¢ (Az ~ 0 (unendlich klein 2. Ordnung)
071
(16) . (0 & ; ;
3.) ¢ (A - ) ~ 0 (unendlich klein 2. Ordnung)
dzq
d T
Untersucht man zunidchst den Term — ( T ) von (11),
dt \ oz
d. h. nur flir das Glied Ty = '/a m £2 | so wird fiir z;; = 2,
o T .08 0¢
g t L mg_;):i méi—ﬁ =
dt \ 9z, dt 22 dt 0z
- 0§ RS 0¢
—_— & —_— ~
=mg 321 4+ m ¢ (8z1) =~ M § 921

wenn man zuerst (14) und dann (15) beriicksichtigt. Mit
anderen Worten lidsst sich analog schreiben

(17) d [0 T . 0 . On .0y
) _.(—,]):m(g:s—}—ﬂ——{—,ﬁ% U)

dt \? zj. 02 02 0Zik

oT :
Was den zweiten Term o der Lagrangegleichung (11)
O&ik

anbetrifft, so wird (wieder nur fiir das Glied mit ¢) nach (16)

1 .
0 —mc'l) ;

) T ’(- s § 0 ¢

_.i'——d—:')nng x =0

024 021 021

>

In bezug auf Grossen 1.Ordnung ist also auch analog der
ganze Ausdruck

0T
(18) ): —0

0Zik
Mit den Beziehungen (17) und (18) geht somit die Lagrange-
gleichung (11) in die Form

(19) DL s B LBPY , BV
m — 2 =10
( 0 ik o 0 Zik et Ez,-;,) 0Zik

iiher. (Wollte man die Massen der Korper I und II beriick-
sichtigen, kdmen analog zu (10 a) noch sechs weitere Glieder
hinzu). Fiir jede der m Unabhidngigen z; erhidlt man eine
Lagrangegleichung, ferner hat man noch die drei Beziehun-
gen (4), so dass sich n -+ 3 Gleichungen fiir n + 3 Unbe-
kannte (ndmlich die n Unabhidngigen z; und ¢7y) ergeben.
Jetzt werden in allen Gleichungen die Glieder zweiter und
0t 91

~

02k 02k

hoherer Ordnung gestrichen; das bedeutet, dass in

und aa%’ sogar nur Glieder endlicher Grésse stehengelassen
werden diirfen, da £ 7 und ¢ bereits von 1. Ordnung sind, wie
man aus (13) sieht.

Diese Gleichungen zerfallen automatisch in zwei Grup-
pen: die eine enthdlt neben ¢ und ¢ nur die asymmetrischen
Unabhéngigen z;,, die andere  und die symmetrischen z;.
Die erste Gruppe beschreibt somit die Wiegeschwingungen,
die zweite die Stampfschwingungen. Fiir jede dieser Gruppen
liessen sich dann nach bekannten Methoden die Eigenwerte
bzw. die Eigenschwingungszahlen bestimmen. Hier sollen
aber erst noch einige Umformungen vorgenommen werden,
damit gleichzeitig die elastischen Eigenschaften der Aufhin-
gung abgeleitet werden koénnen, die man u.a. fiir die Be-
stimmung der Eigenschwingungen des Nickens und Schlin-
gerns bendtigt.

Eliminiert man aus den n + 3 Gleichungen alle z;,, dann
verbleiben drei Gleichungen, die in ihrer allgemeinsten Form
lauten:

(20) Lmy +73=0
(21)  JymE + Jome2y — Jgt —J4p = 0
Klmé'ﬁ- K-zmxﬂgj — K3t —Jq =0

Die Grossen Jy Jo J3 J4 Ky Ks K3 K4 und L sind Konstanten,
die in der Regel noch in geschlossener Form angeschrieben
werden konnen, ohne dass die Ausdriicke allzu kompliziert
werden.

Wegen der Einfachheit von (20) sei sofort die Kreis-
frequenz o, der Eigenschwingung des Stampfens ange-
schrieben:

(22) / 1
oy — | =
] m L

Um in unserem Beispiel die Lagrangegleichungen (19) anschreiben
zu kinnen, bendtigen wir noch alle partiellen Ableitungen von ¢ 3 ¢

¢ ©
und V nach allen zix. Dabei werden, wie erwihnt, bei —— ,,—7] und
Rk 0Rik
oy oV
— nur endliche Grossen stehengelassen, bel — die Grossen
0 Zik ik
1. Ordnung. Nach (109) und (121) werden diese partiellen Ableitungen:
(122) - 0¢ a7 oy A%
ik Y ~— et =
| %z | 02 | 2k 02k
211 0 1l 0 2 )\1 211
210 S 0 il —mg & + [2 A a2 —
b
— mg by (_1 — 1)" 212
Cq
p
21| — Qx| O ag | ™9 |@eR12 + QyRa1 —
- = S3 332)
ag
231 0 1 0 2 N3 Ryt
2a0| Sa 0 1 —mg Sy ¢ + [2 A3 ag? —
by
— my by —_—1 232
e (C:l )] .

Mit diesen Werten schreibt man jetzt zuerst die Lagrangegleichungen
(19) filr die symmetrischen Unabhiingigen 213 und =2g; an:
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(123) my + 2M\21y =

my + 2Xg2z1 = 0

Dazu gehort von (109)

(124) 7 =21 + 25

Durch Elimination von 2j; und =2z wird

M+ N3 -
—_— _——m =0
2% s n+7

woraus aus Vergleich mit (21) folgt:

A+ A3
125 = =
( Pl 2 N N3

und mit (22) wird:
2 N\ N3
(126) wy, = |/ —————— (vertikales Stampfen)
’ m (M + \3)
Die drei restlichen Lagrangegleichungen nach (19) fiir zjs, 221 und
232 lauten:
(127) 210: miésy + ma2) — mgé +
b
-+ [2}\1a,‘2—mgb1 (c—' —1)] 210 =0
1

2301 miész + 'nuc‘l{,i —mgssy +

b
+ [2 A3 az2 — mg by (C—‘ —1>] 232 = 0
3
e AL
Zo1: — MEQ, + Mmr2Y — +
a2

+ mg (Q.l- 212 + @y B21 — % S3 zag) =0

Dazu kommen von (109)
(128) & = sy 212 — Q@ 221 1 Sz 232

Y = 212 + P 2o + 2s2
a2

Man eliminiert aus diesen fiinf Gleichungen zj2, 221 und z3s und
erhilt so zwei Gleichungen von der allgemeinen Form (21). Je nach
dem Vorgehen bei der Elimination werden die Koeffizienten dieser
Gleichungen verschieden ausfallen, sie lassen sich beispielsweise fol-
gendermassen anschreiben (die Ausdriicke in eckigen Klammern von
(127) sind nur noch mit [ Ji bzw. [ ]2 bezeichnet):

251+ Qx 2 sy + Q.
(129) J, = T T s + T ],;783
g ésl-i-Q.r ﬁs.s —1—7@;
- [ T [ 1s
5 4 $1 + Q. P
3= e S s
L s34+ Q.
Jy= i i myg sy — Q.
o Qll—angY Qy + (——2)283 P Q'._
Bl [ T &1 [ 1a % 4y myg
» D\
o Q!/"EQn Q”+(ﬂ—.‘) Sy +(L)-’- 1
| 14 [ 1s as ] mg
Qy— 2
Ky = ! o my
[ 1
P2,
Kqy— ——QN +———(T’) % mgs; — @
i 13 o A

Fiir die eigentliche Rechnung ist es im allgemeinen besser, die
Werte Jy... Jy; Ky... K4 als Zwischenwerte zu behandeln und nur
zahlenmissig in die spiteren Gleichungen einzusetzen, da die alge-
braischen Ausdriicke sonst zu verwickelt wiirden. Dagegen lassen sich
Spezialfidlle (z. B. unendlich harte Federung oder unendlich kurze
Pendel usw.) sehr einfach bis zu den Eigenschwingungszahlen formel-
missig ausdriicken,

Um zu den elastischen Eigenschaften der Wagenkasten-
aufhdngung zu kommen, sei voriibergehend angenommen,
dass alle Elastizititen bekannt seien. Unter dem Einfluss

¥\ Schwingungsaxe

Bild 21. Statisch-elastische Aus-
lenkung des Wagenkastens in sei-
ner Aufhdngung unter dem Ein-

Bild 22. Wiegeschwin-
gung. Die Schwingungs-
achse befindet sich im

fluss einer Horizontalkraft H, Abstand w unter dem
einer Vertikalkraft W und einem Schwerpunkt des Wagen-
Drehmoment M. kastens

einer Horizontalkraft H (vgl. Bild 21), einer Vertikalkraft W
und einem Drehmoment M wird der Wagenkasten in seiner
Gleichgewichtslage ganz bestimmte Lagekoordinaten £7
und ¢ haben, die in erster Nidherung folgende Abhédngig-
keiten aufweisen miissen 4):

(23) n = Cco2a W
53611‘H+C]3'M

¢ =c31 H +c33- M

Es heisst das, dass eine Vertikalkraft aus Symmetriegriinden
keinen Einfluss auf ¢ und ¢ haben kann. Umgekehrt ist 9
aus den gleichen Griinden nicht abhéngig von H und IM.

Von diesen Gleichungen ausgehend, kann man zu den Be-
wegungsgleichungen der Eigenschwingungen kommen, indem
man die D’Alembertschen Triagheitskrafte einfiihrt:

(24) H=—mt W=—mnq M = — mk2y
Damit ergeben sich die Differentialgleichungen
(25)

(26)

“mny+9=0

Ca2
Cy1-m & + cg3-m !\‘2-’[/ + \l_’; =0,

cir-mét ey me2y+ £=0

Vergleicht man diese Gleichungen mit (20) und (21),
so ergibt sich zundchst unmittelbar
(27) co2 =L

Die Beziehungen fiir ¢ und ¢ miissen erst umgeformt
werden, bevor sie verglichen werden konnen. Indem man
aus den Gleichungen (21) einmal ¢ und einmal y eliminiert,
erhdlt man:

J1 K.l = J.[K1 p

Jy Ky — Jy K3

Ji Ky — J3 K4
Jy Ky — Jy K3

n Jo Ky — J1 Ko ma2y +£= 0
Bl = aks |
J-z 1{3 — J:l K‘.’

T3 Ky — J. Ky

(28)

mé + mr2y +y=0

Aus dem Vergleich mit Gl. (26) folgt sofort:

Ji Ky — J4 K
(29) 1= — 1y 1 £

Jy Ky — J3 K,y

C: e el e
b SRl Ui

AT e T Ci3 = —
T3 K: — JuFa 18

C33 —

Jo Ky — J4 Ko
Js Ky — J1 Ky
Jo Ky — J3 Ko
J3 Ky — J4 Ky

Damit ist durch unsere Rechnung iiber diese Koeffizienten
von (23) auch das statisch-elastische Verhalten des Wagen-
kastens in seiner Aufhingung bestimmt.

Bei dieser Gelegenheit sei noch eine weitere Kombination
¢, dieser Grossen definiert:

Jy Ko — Jo Ky
Jy Ky — Jy4 Ky

C11 C13
C31 Cy3

(30) ¢, = = €11 C33 — C13 C31 =

wobei die Richtigkeit der letzten Form mit Hilfe der Be-
ziehungen von (29) leicht verifiziert werden kann. Nachdem
die Grossen ¢y . ..css einerseits durch Jy...Jy und Ky... K4
ausgedriickt sind, und sie zudem anderseits eine anschauliche
physikalische Bedeutung haben (z.B. ist ¢y, der Neigungs-
winkel y, der durch die horizontale Einheitskraft bewirkt
wird), wird nur noch mit diesen Grossen weitergerechnet, ins-

4y W enthilt das Eigengewicht mg nicht. Wirkt nur mg (W = 0),
ist 9 =0. W ist eine zusiitzliche Kraft; sie allein bewirkt den Aus-
schlag 7.
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Bild 23. Schlingerschwingung,
Drehung um vertikale Schwer-
achse

Bild 24. Nickschwingung, Ideali-
sierte Anordnung, keine Kopplung
mit Zuckschwingung

besondere aber auch deswegen, weil alle Beziehungen dann we-
sentlich einfachere Formen bekommen.

Die Auflésung von (26) ergibt filir die beiden Eigen-
schwingungen des Wiegens bzw. deren Kreisfrequenzen w;
und wa.

/c 2 2 P o
11 + «2¢33 = |/(c11 + x2¢€33)2 — 4 k20,
(31) w12 = ]/ V

2m«k2e,

wobei der Abstand w; bzw. w, (= §{/¢) der Schwingungsachse
(vgl. Bild 22) vom Kastenschwerpunkt wird:

1 1
Wy = — | ——
C31 (mw-;_‘-’

(32) w; = ( L

5 .
— |=—= —«Zca3 — k% C33
C31 \Mw;i? )

4. Eigenschwingung des Schlingerns

Bei der Schlingerbewegung (Bild 23) dreht sich der Wa-
genkasten um die vertikale Schwerachse. Wird der horizon-
tale Ausschlag iliber der Drehgestellmitte in Anlehnung an
den vorhergehenden Abschnitt mit ¢ bezeichnet, so ist ¢/t der
Drehwinkel der Schlingerbewegung, wenn t der halbe Ab-
stand der Drehgestelle ist. Das D’Alembertsche Moment der

der beim

Tragheitskrdafte ist dann — m kg2 i , worin kg

Schlingern wirksame Massentrdgheitsradius ist. Statt dieses
Momentes kénnen auch im Abstand ¢t zwei Trigheitskrifte

von der Grosse — % % I3
elastischen Drehgestellkriaften entgegenwirken. Man Kkann
deshalb wieder Gl. (23) fiir £ und ¢ beniitzen, wenn man fiir

ein Drehgestell allein anschreibt:

angenommen werden, die den

33) ¢=2c¢1H+2c13- M
=2c¢31-H +2c¢33- M

-

Mit

m o kg2 ..

—_—

2 t2 °

ergeben sich zwei Gleichungen fiir ¢ und M, wobei M das
iiber den Wagenkasten libertragene Torsionsmoment ist. Nach
einfacher Umrechnung ergibt sich dann bei Beachtung der
Beziehung (30) fiir die Schlingereigenschwingung die Kreis-
frequenz: '

v =0 und H=—

(34) oy — i C33

ks c,m

5. Eigenschwingungen des Nickens und Zuckens

Wie bereits friiher erwihnt, treten Nicken und Zucken
streng genommen als gekoppelte Schwingungen auf. Die Be-
rechnung dieser gekoppelten Schwingungen ldsst sich im
Prinzip wie die Wiegeschwingung in Abschnitt 3 behandeln:

Bild 25. Kurvenverhalten.
Unter dem Einfluss der
Cy 20 v s N :
% Zentrifugalkraft H neigt
,Z sich der Wagenkasten

beides sind zweidimensionale Probleme mit einer Symmetrie-
ebene. Vernachldssigt man hier wie dort die Drehgestell-
massen, so wird die Rechnung filir die Nick-Zuck-Schwin-
gung wegen der einfacheren Kinematik sogar weniger kom-
pliziert. Die vertikale Elastizitdt wird dabei aus Abschnitt 3,
Gl. (20) bzw. (27) lbernommen. Bei einer genaueren Rech-
nung wire dann allerdings noch der Einfluss der wéhrend
der Schwingung hin- und herrollenden Drehgestelle zu be-
riicksichtigen.

Hier soll nur noch der Fall des reinen Nickens fiir den
freistehenden Wagen (ohne Pufferkrédfte) nach der ideali-
sierten Anordnung von Bild 24 behandelt werden. Analog Ab-
schnitt 4 konnen im Abstand t zwei Trigheitskrifte

m ky2.. . .
7 angenommen werden, wobei 75 der Vertikalaus-

2 2
schlag an dieser Stelle ist und xy der zur Nick-Achse ge-
horende Massentriagheitsradius.

Fiir ein einzelnes Drehgestell schreibt sich analog (23):
(35) 7 = 2¢Coa W
worin

m kx? ..

W=
2 2 7

Damit ergibt sich fiir die Nick-Eigenschwingung die
Kreisfrequenz:

KN m Coo

6. Kurvenverhalten und Kippsicherheit

Bewegt sich ein Eisenbahnfahrzeug stationir auf einer
kreisformigen, aussen nicht iiberhohten Bahn, so wirkt die
Zentrifugalkraft wie eine &dussere Horizontalkraft H %) auf
Bild 21. Da M und W = 0 sind, schreiben sich die Gleichun-
gen (23):

37) 9 =0
¢ =ocnH
v = c3 - H

Auf Bild 25 ist der Wagenkasten in der Gleichgewichts-
lage in einer solchen Kurve gezeichnet. Bezeichnet man mit
S’ den Schnittpunkt der Resultierenden R aus dem Gewicht
mg und der Zentrifugalkraft H mit der Symmetrieebene des
nicht ausgelenkten Wagenkastens, so liegt 8’ um hg hoher
als der Schwerpunkt S. Fiir hg gilt dann (rein geometrisch):

(38) hs = 7:1’ mg und mit GL (37): hs = ¢y mg

hg ist unabhingig von der Grosse von H, die Resultie-
rende R dreht sich deshalb bei zunehmendem H um einen
festen Punkt, ndmlich um S’. Man sieht hieraus, dass es
grundsitzlich falsch ist, die Kippsicherheit eines Fahrzeuges
dadurch beurteilen zu wollen, dass man die Resultierende im
Schwerpunkt des unausgelenkten Fahrzeugkastens einzeich-
net und untersucht, wo sie die Standfldche schneidet. Da sich
der Schwerpunkt S in Wirklichkeit wegen der Seitenelasti-
zitit unter dem Einfluss von H nach aussen bewegt, ist die
beschriebene Konstruktion mit dem Punkt S’ durchzufiihren,
der deshalb «Kippschwerpunkty genannt werden soll. hg
kann daher als scheinbare Schwerpunktserhohung bezeichnet
werden.

Es ist iibrigens eine bekannte Erscheinung, dass gefe-
derte Fahrzeuge leichter kippen als ungefederte. Je grosser
die seitliche Weichheit ¢y, einer Aufhidngung ist, um so hoher
liegt S” und um so grosser ist die Kippgefahr des Fahrzeuges.
Ein Fahrzeug, bei dem ¢y, bzw hg unendlich gross ist, kippt
von selbst, ebenfalls ein solches, bei dem ¢yy negativ ist, d. h.
bei dem S’ unter S liegt.

Unter dem Einfluss der Zentrifugalkraft neigt sich das
Fahrzeug auch um den Winkel y zur Seite. Der Abstand wq
des zugehorigen Drehzentrums Z von S errechnet sich aus

durch  Drehung um das
lis| €=0 Zentrum Z zur Seite. Die

128 [t o X S (39) § Cy

| Resultierende R aus Ge- W, = —

) wicht mg und H geht 12 Cy
Cy<0 durch den Kippschwer-

\ punkt 8'; hg = scheinbare 5) Die Verhiiltnisse bei Ueberhthung werden hier nicht behandelt,
! Schwerpunktserhthung weil es sich dabei im Prinzip um dasselbe Problem handelt.

N ——— —
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Da ¢y, fiir stabil aufgehingte Fahrzeuge immer positiv ist,
bestimmt das Vorzeichen von ¢z, ob sich das Fahrzeug in
der Kurve nach aussen oder nach innen neigt (vgl Bild 25
rechts).

Normalerweise liegt das Drehzentrum Z unter dem
Schwerpunkt, d. h. praktisch lehnen alle Fahrzeuge in den
Kurven nach aussen. Durch gewisse Massnahmen kann aber
7 iiber den Schwerpunkt S gelegt werden, so dass sich das
Fahrzeug gegen innen lehnt, was dem Fahrgast ein grosseres
Sicherheitsgefiihl gibt. Im Idealfall fdllt Z mit S’ zusammen;
die einfachste Verwirklichung ist die Einschienen-Hénge-
bahn, wo das Fahrzeug um die Laufschiene als Aufhénge-
punkt hin- und herpendelt.

Oft glauben die Konstrukteure, durch Schrégstellen der
gewohnlichen Aufhingependel ein hidngebahnéhnliches Ver-
halten von Bahnwagen erzwingen zu konnen. Leider erweist
sich das fiir vertikal gut gefederte Fahrzeuge als ein beinahe
untaugliches Mittel: Das Nach-Aussen-Lehnen der Fahrzeuge
wird dadurch vielleicht um 10 bis 20 9 verringert, aber
keinesfalls verhindert oder gar in ein Nach-Innen-Lehnen
verwandelt.

Zusammenfassend sei festgestellt, dass die Punkte S’
und Z fiir das Kurvenverhalten von Eisenbahnfahrzeugen als
kennzeichnende Punkte anzusprechen sind, weshalb sie in den
Kennbildern von Bild 12 ebenfalls eingetragen sind. Die
Punkte 8’ und Z bestimmen natiirlich nur die Gleichgewichts-
lage in der Kurve. In Wirklichkeit werden bei einer Kurven-
einfahrt die zwei Eigenschwingungen des Wiegens und die
des Schlingerns angestossen, so dass ein Ausschwingen von
drei tiiberlagerten Schwingungsformen um diese Gleichge-
wichtslage stattfindet. (Auch die Eigenschwingungen des
Stampfens und Nickens werden wegen der Schieneniiber-
hohung angestossen, jedoch handelt es sich dabei um Sekun-
dédrerscheinungen).

7. Zusammenfassung und Schlussbemerkung

Fiir Fahrzeuge — beispielsweise Eisenbahnfahrzeuge mit
Drehgestellen — mit zwei Symmetrieebenen wird eine Me-
thode entwickelt, die erlaubt, die verschiedenen Eigen-
schwingungen des starr gedachten Wagenkastens in seinen
Federaufhdngungen mit einem verantwortbaren Zeitaufwand
zu herechnen. Diese Berechnungsart beruht in der Haupt-
sache darauf, dass einerseits kinematisch komplizierte Ab-
federungssysteme in Teilsysteme zerlegt werden und ander-
seits alle Beziehungen in Potenzreihen der unabhingigen
Lagekoordinaten entwickelt werden, wobei man nur Terme
1. und 2. Ordnung beriicksichtigt, was filir kleine Schwin-
gungen zuldssig ist, Der Rechnungsgang wird an einem Bei-
spiel bis in alle Einzelheiten erldutert, so dass es auf Grund
dieser Darstellung ohne weiteres moglich sein sollte, auch
andere Fille durchzurechnen.

Die verschiedenen Eigenschwingungen lassen sich in
einem sog. Kennbild darstellen, in welchem die Lage der
Schwingungszentren (bzw. Schwingungsachsen) und die zu-
gehorigen Eigenfrequenzen eingetragen sind. Das dyna-
mische Verhalten eines Fahrzeuges ist durch ein solches
Kennbild weitgehend charakterisiert. Es kommt also fiir die
Fahreigenschaften nicht auf die Einhaltung einzelner Kon-
struktionsmasse (z. B. Linge und Neigung von Pendel-
laschen) an, sondern auf das kinematische Zusammenspiel
aller Konstruktionsteile, wie es im Kennbild zum Ausdruck
gebracht wird. ¢)

Die Berechnung der Eigenschwingungen liefert nebenbei
auch die statisch-elastischen Eigenschaften des Aufhinge-
systems, so dass gleichzeitig auf das Verhalten beim statio-
niren Kurvenlauf geschlossen werden kann. Auch die durch
die Federung reduzierte Kippsicherheit kann rechnerisch er-
fasst werden.

Die Vorausberechnung der Eigenschwingungen auf
Grund der Konstruktionszeichnungen ist fiir den Konstruk-
teur von grosster Wichtigkeit, insbesondere wenn es gilt,
durch Verlegung von Eigenschwingungszahlen gewisse Re-
sonanzerscheinungen zu vermeiden. Dabei sollte der Kon-
strukteur wissen, welchen Einfluss die Aenderung einzelner

6) In den auf Bild 12 gezeigten Kennbildern sind nur die wichtig-
sten Eigenschwingungen enthalten. Je nachdem miissten weitere Fak-
toren mitberiicksichtigt werden, wie z. B. die Elastizitit des Wagen-
kastens oder die Massenwirkung des Drehgestellrahmens.

ny ny
Ny N Ng Wiegen
Stamp-|Nicken | Schlin- /Q‘ \9/
fen gern
Einfluss der Federnweichheit _ [12em ]100% |100% |100% |100% 100%
(Einfederung unter Eigengewicht) ¥ 21 em 76% | 76% 98% | 60% | 99%
Einfluss der (looem | 100% | 100%
2a0:¢
Federbosis |A50 cm 349, 939%
Einfluss der e e | |feehs |l
Pendelneigung ‘ 0° |1e% | 92%
26,5cm |100% |100%
Einfluss der
B lp= ¢13,2cm |104% |144%
Pendelldnge 6,6 cm |106% |[188%

Bild 26. Beispielsweiser Einfluss einzelner Konstruktionselemente auf
die Eigenfrequenzen, insbesondere auf die beiden Wiegeschwingungen

Konstruktionsdaten auf die verschiedenen Eigenschwingun-
gen hat. In Bild 26 sind die Ergebnisse einer Durchrechnung
fiir einen ganz bestimmten Fall dargestellt, wo insbesondere
versucht wurde, diejenigen Grossen zu suchen, die die obere
Wiegeschwingung am meisten beeinflussen. Eine Aenderung
der Federweichheit wirkte vor allem auf das Stampfen, das
Nicken und die untere Wiegeschwingung, aber kaum auf
das Schlingern und die obere Wiegeschwingung. Auch die
Federbasis 2a und der Pendelwinkel § erwiesen sich nicht
als geeignete Grossen, dagegen zeigte es sich, dass in diesem
Fall (Verallgemeinerungen sind unzuldssig) die Pendelldnge
Ip einen Einfluss erster Ordnung auf die obere Wiegeschwin-
gung besitzt. Selbstverstdndlich muss immer kontrolliert
werden, ob wegen der in Aussicht genommenen Aenderung
nicht eine andere Eigenschwingung in ein kritisches Gebiet
gerdt.

Es diirfte von Vorteil sein, bei Neukonstruktionen alle
Eigenschwingungen im voraus zu berechnen, um sich einiger-
massen vor Ueberraschungen zu schiitzen. Nach Fertig-
stellung des Prototypen sollte diese Rechnung auf dem Ver-
suchsstand kontrolliert werden; gleichzeitig miissten die
Dampfungswerte bestimmt und gegebenenfalls Kkorrigiert
werden.

Die Durchfiihrung von Fahrversuchen mit verschiedenen
Fahrzeugen wird in der Regel auf dem selben Streckenstiick
mit der selben Fahrgeschwindigkeit durchgefiihrt. So ein-
wandfrei ein solches Vorgehen auf den ersten Blick auch
aussieht, so muss man sich bewusst sein, dass solche Ver-
suche nur ganz spezielle Aussagen fiir ganz bestimmte Ver-
hiltnisse machen konnen. Will man aber Schliisse allge-
meiner Art ziehen, so muss man die engen Beziehungen zwi-
schen dem Fahrzeuglauf und der Eigenschwingungsmechanik
beachten. Hierfiir braucht man das Kennbild des Fahrzeuges,
aus dem die Frequenzen und Formen der verschiedenen
Eigenschwingungen ersichtlich sind.

Man wird dann bei den Fahrversuchen zusétzlich ver-
suchen, bewusst in den Resonanzgebieten der Eigenschwin-
gungen zu fahren und ebenso bewusst ausserhalb derselben.
Mindestens ist es fiir die Beurteilung des Fahrzeuglaufes un-
erlisslich, iiberall den Quotienten aus Erregerfrequenz und
Bigenfrequenz zu kennen, (Die Erregerfrequenz ergibt sich
unmittelbar aus den Messdiagrammen.) Nur so wird sich ein
einwandfreies Gesamtbild des Fahrzeuglaufes ergeben und
nur so kann man mit der Zeit Richtlinien fiir anstrebenswerte
Kennbilder von Neukonstruktionen erhalten.

Wichtigste Bezeichnungen

X Bild Gleichung
1. Eigenschwingung Allge-| Bei-
mein |spiel
w we | Kreisfrequenz ( Wiegen (22) 31
Wy der Eigen- Nicken (24) 36
g schwingung Schlingern (23) 34
oy ’hoim lstnmpt‘un (vertikal) 22 | 126
ny ne ny ng N, entspr. Bigenfrequenzen 12
w, wy Abstiinde der Schwingungsachsen 22 32
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T4. Jahrgang Nr. 2

Bild Gleichun_g
2. Kurvenverhalten adiger [Bel:
mein |spiel
w, Abstand Drehzentrum 25 39
hg scheinbare Schwerpunktserhéhung 25 38
3. Koeffizienten
C11 C13 C31 C33 l Elastizitidts- ‘ 23 29
Coo koeffizienten der 23 27
Co J Federaufhingung ] 30
JyJodgdy | Koeffizienten der Diff, 21| 129
K, Ks K3 K, | gl. der Wiegeschwingung
L Koeff. der Diff. gl. der Stampfschw. 20 125
4. Konstruktionsdaten
a1 @z a3 by bz ey c3pqsyS2s3d J |17 18
\ 19
Q. Q, kennzeichn. Lingen der Pendel- | 110
aufhingung \ 111
A A2 Federkonstanten (Kraft/Lénge) 1719
t halber Drehgestellabstand 23 24
K Massentriagheits- | Langsrichtung 10
Ky l radius des KOor- | Querrichtung
- pers IIT*) bezo- (Nicken) 24
Kg l gen auf Schwer- | Vertikalrichtg.
achse in (Schlingern) 23
m  Masse des Korpers III*)
5. Krifte, Deformationen, Energien
mg  Gewicht (g = Erdbeschleunig.) 25
HW ?ussere Krifte \ 21 23
M dusseres Moment |
P P, Federkraft 20
i Federdehnung 20
b Federkonstante (Kraft/Ldnge) 20
Vy  Federpotential 20 8| 120
Vs Schwerkraftpotential 7
v Gesamtpotential 9| 121
og kinetische Energie 10
6. Koordinaten
E o ¥ lIII 14 |1 14| 109
&1 1 Y Koordinaten der Korper ; II 5| 112
&g m Y lI 6| 113
w1 w2 w3 vy V2 v3 Absolutverschiebungen 15 16 2
xy 2 3 Y1 Y2 Yys Relativverschiebg. l l 1’? 16 3 J ig;
_— 17 18
€1 €9 €3 Relativwinkel ] | 19 l 108
a BB Pendelwinkel 18 105
211 212 -+ . l Unabhéngige A-I 17
291 209 . .. Lagenkoordinaten { I-II 18
231 239 . . ] im Teilsystem II-I11 19

*) Fiir die Korper I und II werden die Indizes I und II immer aus-
driicklich beigefiigt.

Adresse des Verfassers: Prof.
Neuhausen am Rheinfall.

0. Zweifel, Sonnenbergstrasse 2,

Neubau des Schweizerischen Bankvereins

Ziirich Architekt Dr. Roland Rohn, Ziirich DK 725.24

Am 13. Dezember 1955 lud die Direktion des Schweize-
rischen Bankvereins die ziircherische Presse zur Besichti-
gung der bisher ausgefiihrten Bauetappen ein. Seither ist
der uns allen vertraute Altbhau am Paradeplatz mit dem
etwas gewalttitigen Monumentaleingang bereits gerdumt wor-
den. Dieses Gebédude soll in nichster Zeit abgebrochen und
durch die dritte Bauetappe ersetzt werden. In dieser Bau-
periode befindet sich die Bank in einem ausserordentlichen
«Engpass». Verschiedene Provisorien mussten daher ein-
gerichtet werden, die dazu beitragen, den Betrieb in den
niachsten drei Jahren aufrecht zu erhalten. So sind vor allem
ein provisorischer Eingang (Bild 1) mit dahinterliegender
provisorischer Schalterhalle erstellt worden, die nach Fertig-
stellung der dritten Bauetappe wieder entfernt und umgebaut
werden miissen,

Dem Bericht, welcher den Pressevertretern iibergeben
worden ist, entnehmen wir die stddtebaulich-architektoni-
schen Gesichtspunkte:

«Innerhalb des Paradeplatzes kommt dem Neubau des
Bankvereins in Anbetracht seiner direkten Frontlage zur
Bahnhofstrasse eine ganz besondere Bedeutung zu. Die
Schaffung einer engen rdumlichen Beziehung zum Parade-
platz war deshalb von grosser Wichtigkeit. Aus diesem
Grunde wurde der Haupteingang — nachdem er in fritheren
Projekten axial zur Schalterhalle und damit etwa in die
Mitte des Baukorpers zu stehen gekommen wire — an die
Ecke Paradeplatz-Bleicherweg geriickt, Dort wird er, pla-
stisch stark hervorgehoben, zusammen mit dem am Bleicher-
weg projektierten Erker, der die Flucht des zurilickgesetzten
Dachgeschosses aufnehmen wird, die stddtebauliche Domi-
nante des Neubaues bilden. Eine leichte Schwingung der
Hauptfassade gegen den Bleicherweg zu diirfte die enge Be-
ziehung zum Paradeplatz weiter unterstreichen.

Diese asymmetrische Gestaltung diirfte zusammen mit
der symmetrisch durchgebildeten Front der Kreditanstalt
einerseits und der kleinmasstdblichen Siidfront des Parade-
platzes (Spriinglihaus usw.) eine stddtebaulich abgewogene
Gesamterscheinung gewéhrleisten.

Die Fassaden selbst gliedern sich in einen etwas hdohern,
flachig gehaltenen Erdgeschoss-Sockel mit Gitterfenstern und
eine viergeschossige Fensterzone mit stark plastisch gestal-
teter Detail-Ausbildung, welche ihren Abschluss in einem
breit ausladenden Dachgesimse findet. An der Ecke Bleicher-
weg-Paradeplatz ist eine in der Flucht des Erdgeschoss-
Sockels entwickelte geschlossene Mauerzone vorgesehen,
welche einen kriftigen Gegensatz zu den plastischen Fen-
sterzonen bilden wird.

Das zuriickgesetzte Dachgeschoss ist als durchgehendes
Glashand bewusst gegen die Architektur der Obergeschosse
abgesetzt. Vor den Dachgeschossrdumen ist ein breiter
Dachgarten, der auch vom Paradeplatz aus gesehen ein will-
kommenes Element darstellen diirfte, in Aussicht genommen.»

Fiir die Beurteilung der stddtebaulichen Wirkung dieses
grossen Bauvorhabens ist die Lage des zuklinftigen Haupt-
einganges am Paradeplatz von besonderer Bedeutung. Man
wird also warten miissen, bis der Bau im Jahre 1959 fertig
ist.

Bild 1.
gang am Talacker

Der 1955 bezogene Bautrakt mit dem provisorischen Hauptein-
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