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sekundärer Bedeutung sei. Die wesentliche Ursache
diesbezüglicher Schäden ist das Gleiten der Längsarmierung vom
Auflager her. Das Problem der Schubsicherung wird damit
zu einem Problem der Haftung.

Es ist klar, dass ein solches Gleiten zu grossen
Verformungen führt und damit die kleinen, meist schrägen

Haarrisse, die an und für sich nicht pphaden, ja sogar bei
guter Haftung am häufigsten auftreten, zu klaffenden Spalten

aufgeweitet werden. Die Schrägeisen behindern nun wie
gesagt diese Verformungen, und zwar eben auch dann, wenn
gar keine schiefen Hauptzugspannungen und daher auch
keine schrägen Risse vorhanden waren. Schluss folgt

Berechnung des elastischen Verhaltens und der Eigenschwingungen von Eisenbahnfahrzeugen

Ergänzte Fassimg der Antrittsvorlesung, die Prof. Otto Zweifel am 7. Dezember 1954 an der ETH gehalten hat DK 625.2.034

Schluss von Seite 6

Was weiter bestimmt werden muss, ist die potentielle
Energie des Systems in einer allgemeinen Lage; es handelt
sich dabei einerseits um das Potential der Schwerkraft und
anderseits um die in den Federungen aufgespeicherte
Deformationsarbeit. In beiden Fällen wird das Potential für die
Gleichgewichtslage Null gesetzt. Unter dieser Voraussetzung
wird das Schwerkraftpotential Vs

(7) Vs — mg ¦ v

worin m die Masse des Wagenkastens (Körper m) ist und g
die Erdbeschleunigung. Sollen die Massen der Körper H und
HI mitberücksichtigt werden, so ist genauer:

(7a) mg-y + mn g-vu + mj g • in

Das Potential einer Feder wird gerechnet, indem zumindest

in einem kleinen Gebiet in Nähe der Gleichgewichtslage
Linearität vorausgesetzt wird. Die Federkraft P ist dann
nach Bild 20

P - P0 + \-f
worin P„ die Federkraft in der Gleichgewichtslage, X die
Federkonstante und / die Federdehnung ist. Das Potential der
Feder ist dann

(8) V» ¦/ + VzX-P

Dabei ist zu beachten, dass nach Bild 20 bei wachsendem /
eine Zunahme der Federbelastung eintritt. Handelt es sich
um eine Entlastung der Feder, so wird

(8a) V, — P0-f + y2\-p
Das Potential der gesamten Federung ist die Summe der
einzelnen Federpotentiale

VFtot 2 VFl

Das Gesamtpotential V ist dann

(9) v Vs + VPtot rng-n + 2 Ym.

wenn die Massen mt und mn gegenüber m vernachlässigt
werden können.

Zunächst sei im Teilystem A-I (Bild 17) das Federpotential
bestimmt. Zur Bestimmung der Federverlängerung der linken Feder

y
setzt man den Vektorzug 1 2' 3' 4' 4 3 2 1 0. Die einzelnen Vektoren

haben hier folgende Komponenten:

1 2 : 0 Cl

1 2* : Cx c»
y

2 3 : «i 0
>•

2'3' : a 1 COS Z | 2 — Oi sin «i2

3 4 : 0 -bi
—?3'4' : b i sin «is — bl COS «12

Die Komponentenglelchungen ergeben dann (mit den gleichen Annäherungen

wie bisher)

Bild 20. FederpgBntial VF; P Federkraft,
f Federdehnung. In der Nähe der
Gleichgewichtslage (/ 0; P Po) wird ein linearer
Verlauf der Federcharakteristik angenommen

k-f

m$

(114) cx bi • «i2 + V* ¦ «i • «i22

Cy Cl + «û + ffll • «12 % &i

Macht man für die gesuchte Verlängerung fm der linken Feder den
allgemeinsten Ansatz 2. Ordnung

(115) fL Ai «ii Ao Bt • «u* + Bi ¦ «is2

so muss für die Gesamtlänge c\ -\- fL der Feder die Beziehung gelten

(116) (Ci + /L)2 C*2 + c„2

Setzt man in Gl. (116) die Werte für cx, c, und fL aus (114) und (115)
ein, so findet man durch Identifikation (auch in [116] dürfen dann
Glieder 3. und hörerer Ordnung ausser Betracht fallen) für die linke
Feder

bi «122(117) fL «ii + O! • z12 + % • bi 12
\Cl

wir

+ %-bi(^_l)«i22
Nach (8a) gilt für das Federpotential Vn dieses Teilsystems (für
beide Federn zusammen)

Da die allgemeine Lage von Bild 17 durch Ersatz von »12 durch —«12

in eine symmetrische Lage übergeatf wird für die rechte Feder

(118) fR «11~ Ol -«12

(119) Vn Po ¦ (fL + /«) + % Xl • (fL2 + /ß2)

worin Po Vzmg (m ist die gesamte Kastenmasse, \± die Federkonstante

aller parallelwirkenden Federn der linken Seite an beiden
Drehgestellen zusammen). Daraus ergibt sich dann mit den Gliedern bis
zur 2. Ordnung

(120) V, mg «11 + Vsbi (^ — l)
Xl («ll2 + O12 «12»)

«12* +

Berechnet man das Federpotential Vp3 des Teilsystems II-III, so
ergibt sich bis zur zweiten Ordnung wieder derselbe Ausdruck, so dass
das totale Potential V des gesamten Systems nach (9) wie folgt
angeschrieben werden kann:

(121) V mg (i) — «u

+ X

«Sl) +
2ll2 + Xl Oi2

Xs oss

bi

+ Xs «sia +

V2 mg bi —
V Ci

1/2 mg bs

«ias

bs
Ca

Als letzte Grösse wird noch die kinetische Energie T
des Systems benötigt:

(10) g v2 +

worin k der Macsenträgheitsradius des Körpers HI ist. Bei
Berücltisichtigung der Massen m/ und mn der Körper I und U
kämen noch mehr Glieder hinzu:

(Wa) T | 1
2

+ «I.

I + Ym"

+ Ss mir 2 '

€/;a + vii* +

VIs + K;a fl* I

Die Gleichungen (4), (9) und (10) enthalten alle
Zusammenhänge des Systems, die für die Aufstellung der
Bewegungsgleichungen nach Lagrange nötig sind.- Diese lauten
für jede Unabhängige z^
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(11) d f dT ar zv
h — =o

3 2,-fc 0 zik

(19)

Stimmen T wie V bis zu den Grössen 2. Ordnung, so sind
nach erfolgter Differentiation die Ausdrücke noch bis zur
1. Ordnung korrekt, was für Differentialgleichungen kleiner
Schwingungen genügt.

Im folgenden sollen die T enthaltenden Terme dieser
Lagrange Beziehung (11) in eine für unsere Zwecke günstigere
Form gebracht werden. Dabei sei das immer nur für die
Glieder mit { gezeigt (für diejenigen mit y und f gilt
selbstverständlich dasselbe) und zwar der Einfachheit halber mit
Hilfe von Reihenentwicklungen der Unabhängigen «i, «2 «3
Sei:

(12) i — Ai «1 + ßi«i2 + O12 «1 «2 + Ci3 «i «3 +
+ /(«2 «3 • • •)

worin «i für «^ gesetzt ist und / («2 «3 alle Glieder ohne
«i enthält. Durch verschiedene Differentiationen erhält man

(13) dt
3iT

m
3«!

Ai + 2Bi «i + C12 «2 + C13 «3 + • • •

2Bi «i + C12 «2 + C13 «3 + • •

Ai «1 + 2B\ «i «1 + C12 («1 «2 + «1 «2) +

2Bi «i + C12 «2 + G13 «3 + • • •

—1 Ai + 2Bi «i + Ci2 «2 + C13 23 + • • •

3«i

ï A{- «i + 2BX («i si + «i2) + C12 (z\ «2 +

+ 2«i «2 + «1 «2 + •

Insbesondere ergeben sich daraus folgende drei
Beziehungen:

(14) 3 i
3«t

à i
3«i

(15)

(16)

2.)

[gleiche Reihenentwicklung)

0 (unendlich klein 2. Ordnung)

0 (unendlich klein 2. Ordnung)

d i dT \
Untersucht man zunächst den Term — —:— von (11),

dt \dZikl

d. h. nur für das Glied Tj Va m j2 so wird für zik «1

dl .di±d-lL)=±lmi
dt \ 3«i / dt

mi - f- m3«i

3«i

di
* U«l)

dt \ * d«i

Zi
5 3«!

wenn man zuerst (14) und dann (15) berücksichtigt. Mit
anderen Worten lässt sich analog schreiben

(17) d (d T\

dt\d Zih J
m f ILdZik

Was den zweiten Term dT
3 «ft

dy 3 f
V 5 V iPf x—dZik a Zik

der Lagrangegleichung (11)

anbetrifft, so wird (wieder nur für das Glied mit £) nach (16)

3Tj d(-mj*
3«i % 3«i [U-j*0

In bezug auf Grössen 1. Ordnung ist also auch analog der
ganze Ausdruck

(18) fjgjf"
3 «it

Mit den Beziehungen (17) und (18) geht somit die Lagrangegleichung

(11) in die Form

0

"Ü **_
;3«ik "t"' 3«ifc

dy df \
*Tt

dV
dZik

über. (Wollte man die Massen der Körper I und H
berücksichtigen, kämen analog zu (10 a) noch sechs weitere Glieder
hinzu). Für jede der n Unabhängigen Zik erhält man eine
Lagrangegleichung, ferner hat man noch die drei Beziehungen

(4), so dass sich n + 3 Gleichungen für n + 3
Unbekannte (nämlich die n Unabhängigen z,k und iyf) ergeben.
Jetzt werden in allen Gleichungen die Glieder zweiter und

höherer Ordnung gestrichen; das bedeutet, dass in
d i d y

dZik ' 3 «ft

und sogar nur Glieder endlicher Grösse stehengelassen

werden dürfen, da i y und f bereits von 1. Ordnung sind, wie
man aus (13) sieht.

Diese Gleichungen zerfallen automatisch in zwei Gruppen:

die eine enthält neben £ und f nur die asymmetrischen
Unabhängigen «ik, die andere y und die symmetrischen «,•&.
Die erste Gruppe beschreibt somit die Wiegeschwingungen,
die zweite die Stampfschwingungen. Für jede dieser Gruppen
Hessen sich dann nach bekannten Methoden die Eigenwerte
bzw. die Eigenschwingungszahlen bestimmen. Hier sollen
aber erst noch einige Umformungen vorgenommen werden,
damit gleichzeitig die elastischen Eigenschaften der Aufhängung

abgeleitetgwerden können, die man u. a. für die
Bestimmung der Eigenschwingungen des Nickens und Schlin-
gerns benötigt.

Eliminiert man aus den n + 3 Gleichungen alle Zg,, dann
verbleiben drei Gleichungen, die in ihrer allgemeinsten Form
lauten:

(20) Lm'y + y 0

(21) Jim'i + J&mi&f— Jai — J±f 0

Rimi + K2W1.K2 Kai —Jtf 0

Die Grössen <7*i J2 Ja J4 Ki K% K-a K± und L sind Konstanten,
die in der Regel noch in geschlossener Form angeschrieben
werden können, ohne dass die Ausdrücke allzu kompliziert
werden.

Wegen der Einfachheit von (20) sei sofort die
Kreisfrequenz w„ der Eigenschwingung des Stampfens ange-
schrieben:

(22)

m L

Um in unserem Beispiel die Lagrangegleichungen (19) anschreiben
zu können, benötigen wir noch alle partiellen Ableitungen von i) ^

di 3t;und V nach allen ei*. Dabei werden, wie erwähnt, bei ~ und
3 «ft 3 «ft

dff die Grössen
3V*

nur endliche Grössen stehengelassen, bei ^3 «ft 3 «ft
1. Ordnung. Nach (109) und (121) werden diese partiellen Ableitungen:

(122)
«ft IL

3 «ft
3i)

3 «ft
df

3 «ft
dV
3«ft

«11 0 1 0 2 Xi Zu

«12 Si 0 1 — mg i + 2 Xi ai2 —

-mgb^ (|l_l)"| «i2

«21 -Qx 0
P
a-2 mg (qx «12 + Qy «21 -

P
» ~ \

«ai 0 1 0 2 Xs «si

«82 ss 0 1 — mg Sa f -f- 2 Xs Osa —

-m0b* (If-1) «82

Mit diesen
(19) für d

Werten schreibt man jetzt zuerst die Lagrangegletchungen
le symmetrischen Unabhängigen »11 und 031 an:
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(123) ma&& 2Xi«u 0

my + 2X3«3i 0

Dazu gehört von (109)

(124) „ «!! + «S1

Durch Elimination von su und sai wird
Xi + X3

2X1X3
m y + y

woraus aus Vergleich mit (21) folgt:

(125) L 1 Xl+ X3

2 \i XS

und mit (22) wird:

(126) av
2XXX3

(vertikales Stampfen)
m Xi + X3)

Die drei restlichen Lagrangegleichungen nach (19) für Z12

«32 lauten:
(127) «12: mjsi + m/c2^ —mgi +

+ 2 Xi Oi2 — mg bi I — — 1 «12

232: misa + miflf—mgsaf +
>b3

21 und

+ I 2 X3 032 — mg ba M — l)l
«2i : — miQx + m/e2^

o2
P

wjr Qx 212 + Q» 221 — — s3 2s(<

Dazu kommen von (109)

(128) i Si «ia|| Qj 221 + S3 «32

«12 si!!!«- + «s2
o2

Man eliminiert aus diesen fünf Gleichungen 212, Z21 und 3s« und
erhält so zwei Gleichungen von der allgemeinen Form (21). Je nach

dem Vorgehen bei der Elimination werden die Koeffizienten dieser

Gleichungen verschieden ausfallen, sie lassen sich beispielsweise
folgendermassen anschreiben (die Ausdrücke in eckigen Klammem von

(127) sind nur noch mit [ ]i bzw. [ ]2 bezeichnet) :

V

(129) J*i

Ki

Si + Qx

M TT

-^Si + Qx

~i TT

-£* + o-
[ Ji

¦^•ss + Qx

mÊr4-Q*

v S3

-Si +

[+

mg

m g sa

Si

[ Is

S3 + Qx

¦S3

]î

V

02

V \2
S3 P Q*

02 mg

K„
h +

\a*J mi

Ka
Qy-^-Qx

mg

m
Qy + m2«*

[ h
¦ mg S3 • Qy

Für die eigentliche Rechnung ist es im allgemeinen besser, die
Werte J\ </.]*; K\ K4 als Zwischenwerte zu behandeln und nur
zahlenmässig in die späteren Gleichungen einzusetzen, da die
algebraischen Ausdrücke sonst zu verwickelt würden. Dagegen lassen sich

Spezialfälle (z. B. unendlich harte Federung oder unendlich kurze
Pendel usw.) sehr einfach bis zu den Eigenschwingungszahlen formel-
mässlg ausdrücken.

Um zu den elastischen Eigenschaften der Wagenkastenaufhängung

zu kommen, sei vorübergehend angenommen,
dass alle Elastizitäten bekannt seien. Unter dem Einfluss

Vm

-nn
H

Bild 21. Statisch-elastische
Auslenkung des Wagenkastens in seiner

Aufhängung unter dem
Einfluss einer Horizontalkraft H,
einer Vertikalkraft W und einem
Drehmoment M.

Schwingungsaxe

Bild 22. Wiegeschwingung.

Die Schwingungsachse

befindet sich im
Abstand 10 unter dem
Schwerpunkt des Wagenkastens

einer Horizontalkraft H (vgl. Bild 21), einer Vertikalkraft W
und einem Drehmoment M wird der Wagenkasten in seiner
Gleichgewichtslage ganz bestimmte Lagekoordinaten i y

und f haben, die in erster Näherung folgende Abhängigkeiten

aufweisen müssen ¦*) :

(23) y C22 • W

i Cu • H + ci3 • M

f c31-H + c3S-M

Es heisst das, dass eine Vertikalkraft aus Symmetriegründen
keinen Einfluss auf £ und f haben kann. Umgekehrt ist i;

aus den gleichen Gründen nicht abhängig von H und M.
Von diesen Gleichungen ausgehend, kann man zu den

Bewegungsgleichungen der Eigenschwingungen kommen, indem
man die D'Alembertschen Trägheitskräfte einführt:

(24) ff =—m'i W — —m'y M —mi&f

Damit ergeben sich die Differentialgleichungen

(25) Cm ¦ m'y + y 0

(26) csi • m £* + C33 • m K-f'+ f 0

C11 • w £ + C13 • m K2f + i 0

Vergleicht man diese Gleichungen mit (20) und (21),
so ergibt sich zunächst unmittelbar

(27) L
Die Beziehungen für £ und f müssen erst umgeformt

werden, bevor sie verglichen werden können. Indem man
aus den Gleichungen (21) einmal £ und einmal f eliminiert,
erhält man:

(28)
J1K4 JaK
J3K4

JiKa -

- JiKa
«"'s Ki

J2K4 — J*4K2

JaKi - JiKa

+ J2K3 -Ja K.
Ja Ki — JiKa Ja Ki — J4 K3

Aus dem Vergleich mit Gl. (26) folgt sofort:

Jt Ki — Ji Ki

0

0

(29)
J*K.

csi

JaKi
J1K3 -

- JiKa
JaK-L

JaKi JiKs

eis-

C-.Ï.Î

J4K2
JaKi

JiKa -
— JiK3
J3K2

JaK JiKa

Damit ist durch unsere Rechnung über diese Koeffizienten
von (23) auch das statisch-elastische Verhalten des Wagenkastens

in seiner Aufhängung bestimmt.
Bei dieser Gelegenheit sei noch eine weitere Kombination

c„ dieser Grössen definiert:

(30)
Cll Cis
C-.i 1 Ca-.;

Cll C33 • ¦ Cis Csi
JiK« Ja Ki
Ja Ki — Ji Ka

wobei die Richtigkeit der letzten Form mit Hilfe der
Beziehungen von (29) leicht verifiziert werden kann. Nachdem
die Grössen cu... C33 einerseits durch J t J und K\... K.\

ausgedrückt sind, und sie zudem anderseits eine anschauliche
physikalische Bedeutung haben (z. B. ist csi der Neigungswinkel

f, der durch die horizontale Einheitskraft bewirkt
wird), wird nur noch mit diesen Grössen weitergerechnet, ins-

4) w enthält das Eigengewicht mg nicht. Wirkt nur ing (W 0),
1st ?; 0. W ist eine zusätzliche Kraft; sie allein bewirkt den
Ausschlag 7;.
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j. -«

Bild 23. Schlingerschwingung,
Drehung um vertikale Schwer-
achse

Bild 24. Nickschwingung. Idealisierte

Anordnung, keine Kopplung
mit Zuckschwingung

besondere aber auch deswegen, weil alle Beziehungen dann
wesentlich einfachere Formen bekommen.

Die Auflösung von (26) ergibt für die beiden
Eigenschwingungen des Wiegens bzw. deren Kreisfrequenzen ui
und wo.

(31)
"l/cii + K2C33 ± V (Cu + K2C^

"1,2 1/
y 2 m k2 c0

4 k2 c„

wobei der Abstand tox bzw. to2 Uf) der Schwingungsachse
(vgl. Bild 22) vom Kastenschwerpunkt wird:

(32) wi= — k2 C33Ì
C31 \mai* ] C31 \mu2

k* C33

4. Eigenschwingung des Schlingerns

Bei der Schlingerbewegung (Bild 23) dreht sich der
Wagenkasten um die vertikale Schwerachse. Wird der horizontale

Ausschlag über der Drehgestellmitte in Anlehnung an
den vo|$iergehenden Abschnitt mit £ bezeichnet, so ist £/t der
Drehwinkel der Schlingerbewegung, wenn t der halbe
Abstand der Drehgestelle ist. Das DAlembertsche Moment der

Trägheitskräfte ist dann m ks* worin Kg der beim

Schlingern wirksame Massenträgheitsradius ist. Statt dieses
Momentes können auch im Abstand t zwei Trägheitskräfte

von der Grösse angenommen werden, die denm Ks*
~2 W

elastischen Drehgestellkräften entgegenwirken. Man kann
deshalb wieder Gl. (23) für £ und f benützen, wenn man für
ein Drehgestell allein anschreibt:

Illlr
Mit

y 2 t2

ergeben sich zwei Gleichungen für £ und M, wobei M das
über den Wagenkasten übertragene Torsionsmoment ist. Nach
einfacher Umrechnung ergibt sich dann bei Beachtung der
Beziehung (30) für die Schlingereigenschwingung die
Kreisfrequenz:

2 cu • ff + 2 ci3 ¦M
2 C31 • ff + 2 C33 • M

0 und ff - n

(34) as —
t y C33

Kg y c0 m

5. Eigenschwingungen des Nickens und Zuckens

Wie bereits früher erwähnt, treten Nicken und Zucken
streng genommen als gekoppelte Schwingungen auf. Die
Berechnung dieser gekoppelten Schwingungen lässt sich im
Prinzip wie die Wiegeschwingung in Abschnitt 3 behandeln:

Bild 25. Kurvenverhalten.
Unter dem Einfluss der
Zentrifugalkraft H neigt
sich der Wagenkasten
durch Drehung um das
Zentrum Z zur Seite. Die
Resultierende R aus
Gewicht mg und H geht
durch den Kippschwerpunkt

8' ; hs — scheinbare
Schwerpunktserhöhung

6 H

i m9

fi' 1

beides sind zweidimensionale Probleme mit einer Symmetrieebene.

Vernachlässigt man hier wie dort die Drehgestellmassen,

so wird die Rechnung für die Nick-Zuck-Schwin-
gung wegen der einfacheren Kinematik sogar weniger
kompliziert. Die vertikale Elastizität wird dabei aus Abschnitt 3,
Gl. (20) bzw. (27) übernommen. Bei einer genaueren Rechnung

wäre dann allerdings noch der Einfluss der während
der Schwingung hin- und herrollenden Drehgestelle zu
berücksichtigen.

Hier soll nur noch der Fall des reinen Nickens für den
freistehenden Wagen (ohne PufferkraBe) nach der
idealisierten Anordnung von Bild 24 behandelt werden. Analog
Abschnitt 4 können im Abstand t zwei TrägheitskrajJU

y angenommen werden, wobei y der Vertikalaus-

schlag an dieser Stäle ist und kn der zur Nleg-Achse
gehörende Massenträgheitsradius.

Für ein einzeln^ Drehgestell schreibt sich analog (23):

(35) y 2c22- W

W sd
t2

Damit ergibt sich für die Nick-Eigenschwingung die
Kreisfrequenz :

(36)
«if WIC22

6. Kurvenverhalten und Kippsicherheit

Bewegt sich ein Eisenbahnfahrzeug stationär auf einer
kreisförmigen, aussen nicht überhöhten Bahn, so wirkt die
Zentrifugalkraft wie eine äussere Horizontalkraft ff5) auf
Bild 21. Da M und W 0 sind, Schreiben sich die Gleichungen

(23):
(37) y 0

Cll
C31

ff
¦ff

Auf Bild 25 ist der Wagenkasten in der Gleichgewichtslage
in einer solchen Kurve gezeichnet. Bezeichnet man mit

S' den Schnittpunkt der Resultierenden B aus dem Gewicht
mg und der Zentrifugalkraft ff mit der Symmetrieebene des
nicht ausgelenkten Wagenkastens, so liegt S' um hs höher
als der Schwerpunkt S. Für hs gilt dann (rein geometrisch):

(38) hs ï=-mg und mit Gl. (aro: hs — Cumgff
hs ist unabhängig von der Grösse von H, die Resultierende

R dreht sich deshalb bei zunehmendem ff um einen
festen Punkt, nämlich um S'. Man sieht hieraus, dass es

grundsätzlicht falsch ist, die KippajüEherheit eines Fahrzeuges
dadurch beurteilen zu wollen, dass man die Resultierende im
Schwerpunkt des unausgelenkten Fahrzeugkastens einzeichnet

und untersucht, wo sie die Standfläche schneidet. Da sich
der Schwerpunkt S in Wirklichkeit wegen der Seitenelastizität

unter dem Einfluss von ff nach aussen bewegt, 1st die
beschriebene Konstruktion mit dem Punkt S' durchzuführen,
der deshalb «Kippschwerpunkt» genannt werden soll, hs
kann daher als scheinbare Schwerpunktserhöhung bezeichnet
werden.

Es ist übrigens eine bekannte Erscheinung, dass
gefederte Fahrzeuge leichter kippen als ungefederte. Je grösser
die seitliche Weichheit Cu einer Aufhängung ist, um so höher
liegt S' und um so grösser ist die Kippgefahr des Fahrzeuges.
Ein Fahrzeug, bei dem en bzw lis unendlich gross ist, kippt
von selbst, ebenfalls ein solches, bei dem cu negativ ist, d. h.
bei dem S' unter S liegt.

Unter dem Einfluss der Zentrifugalkraft neigt sich das
Fahrzeug auch um den Winkel f zur Seite. Der Abstand wo
des zugehörigen Drehzentrums Z von S errechnet sich aus

(39)
_ J_ _ cu' f ' Cai

n) Die Verhältnisse bei Ueberhöhung werden hier nicht behandelt,
well es sich dabei im Prinzip um dasselbe Problem handelt.
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Da cifipür stabil aufgehängte Fahrzeuge immer positiv ist,
bestimmt das Vorzeichen von csi, ob sich das Fahrzeug in
der Kurve nach aussen oder nach innen neigt (vgl. Bild 25

rechts).
Normalerweise liegt das Drehzentrum Z unter dem

Schwerpunkt, d. h. praktisch lehnen alle Fahrzeuge in den

jglplven nach aussen. Durch gewisse Massnahmen kann aber
Z über den Schwerpunkt S gelegt werden, so dass sich das

Fahrzeug gegen innen lehnt, was dem Fahrgast ein grösseres
Sicherheitsgefühl gibt. Im Idealfall fällt Z mit 8' zusammen;
die einfachste Verwirklichung ist die Einschienen-Hänge-
bahn, wo das Fahrzeug um die Laufschiene als Aufhängepunkt

hin- und herpendelt.
Oft glauben die Konstrukteure, durch Schrägstellen der

gewöhnlichen Aufhängependel ein hängebahnähnliches
Verhalten von Bahnwagen erzwingen zu können. Leider erweist
sich das für vertikal gut gefederte Fahrzeuge als ein beinahe
untaugliches Mittel: Das Nach-Aussen-Lehnen der Fahrzeuge
wird dadurch vielleicht um 10 bis 20 % verringert, aber
keinesfalls verhindert oder gar in ein Nach-Innen-Lehnen
verwandelt.

Zusammenfassend sei festgestellt, dass die Punkte S'
und Z für das Kurvenverhalten von Eisenbahnfahrzeugen als
kennzeichnende Punkte anzusprechen sind, weshalb sie in den
Kennbildern von Bild 12 ebenfalls eingetragen sind. Die
Punkte S' und Z bestimmen natürlich nur die Gleichgewichtslage

in der Kurve. In Wirklichkeit werden bei einer Kurven-
einfah|||die zwei Eigenschwingungen des Wiegens und die
des Schlingerns angestossen, so dass ein Ausschwingen von
drei überlagerten Schwingungsformen um diese
Gleichgewichtslage stattfindet. (Auch die Eigenschwingungen des

Stampfens und Nickens werden wegen der Schienenüberhöhung

angestossen, jedoch handelt es sich dabei um
Sekundärerscheinungen

7. Zusammenfassung und Schlussbemerkung

Für Fahrzeuge — beispielsweise Eisenbahnfahrzeuge mit
Drehgestellen — mit zwei Symmetrieebenen wird eine
Methode entwickelt, die erlaubt, die verschiedenen
Eigenschwingungen des starr gedachten Wagenkastens in seinen
Federaufhängungen mit einem verantwortbaren Zeitaufwand
zu berechnen. Diese Berechnungsart beruht in der Hauptsache

darauf, dass einerseits kinematisch komplizierte
Abfederungssysteme in Teilsysteme zerlegt werden und anderseits

alle Beziehungen in Potenzreihen der unabhängigen
Lagekoordinaten entwickelt werden, wobei man nur Terme
1. und 2. Ordnung berücksichtigt, was für kleine Schwingungen

zulässig ist. Der Rechnungsgang wird an einem
Beispiel bis in alle Einzelheiten erläutert, so dass es auf Grund
dieser Darstellung ohne weiteres möglich sein sollte, auch
andere Fälle durchzurechnen.

Die verschiedenen Eigenschwingungen lassen sich in
einem sog. Kennbild darstellen, in welchem die Lage der
Schwingungszentren (bzw. Schwingungsachsen) und die
zugehörigen Eigenfrequenzen eingetragen sind. Das
dynamische Verhalten eines Fahrzeuges ist durch ein solches
Kennbild weitgehend charakterisiert. Es kommt also für die
Fahreigenschaften nicht auf die Einhaltung einzelner
Konstruktionsmasse (z. B. Länge und Neigung von
Pendellaschen) an, sondern auf das kinematische Zusammenspiel
aller Konstruktionsteile, wie es im Kennbild zum Ausdruck
gebracht wird. 8)

Die Berechnung der Eigenschwingungen liefert nebenbei
auch die statisch-elastischen Eigenschaften des Aufhängesystems,

so dass gleichzeitig auf das Verhalten beim stationären

Kurvenlauf geschlossers|jrerden kann. Auch die durch
die Federung reduzierte Kippsicherheit kann rechnerisch
erfasst werden.

Die Vorausberechnung der Eigenschwingungen auf
Grund der Konstruktionszeichnungen ist für den Konstrukteur

von grösster Wichtigkeit, insbesondere wenn es gilt,
durch Verlegung von Eigenschwingungszahlen gewisse
Resonanzerscheinungen zu vermeiden. Dabei sollte der
Konstrukteur wissen, welchen Einfluss die Aenderung einzelner

") In den auf Bild 12 gezeigten Kennbildern sind nur die wichtigsten

Eigenschwingungen enthalten. Je nachdem mussten weitere
Faktoren mitberücksichtigt werden, wie z. B. die Elastizität des Wagenkastens

oder die Massenwirkung des Drehgestellrahmens.

Einfluss der Federnweichheit j 12 cm

(Einfederung unter Eigengewicht) 1 21 cm
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76%

100%
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Bild 26. Beispielsweiser Einfluss einzelner Konstruktionselemente auf
die Eigenfrequenzen, insbesondere auf die beiden Wiegeschwingungen

Konstruktionsdaten auf die verschiedenen Eigenschwingungen
hat. In Bild 26 sind die Ergebnisse einer Durchrechnung

für einen ganz bestimmten Fall dargestellt, wo insbesondere
versucht wurde, diejenigen Grössen zu suchen, die die obere
Wiegeschwingung am meisten beeinflussen. Eine Aenderung
der Federweichheit wirkte vor allem auf das Stampfen, das

Nicken und die untere Wiegeschwingung, aber kaum auf
das Schlingern und die obere Wiegeschwingung. Auch die
Federbasis 2 a und der Pendelwinkel S erlesen sich nicht
als geeignete Grössen, dagegen zeigte es sich, dass in diesem
Fall (Verallgemeinerungen sind unzulässig) die Pendellänge
Ip einen Einfluss erster Ordnung auf die obere Wiegeschwingung

besitzt. Selbstverständlich muss immer kontrolliert
werden, ob wegen der in Aussicht genommenen Aenderung
nicht eine andere Eigenschwingung in ein kritisches Gebiet
gerät.

Es dürfte von Vorteil sein, bei Neukonstruktionen alle
Eigenschwingungen im voraus zu berechnen, um sich einiger-
massen vor Ueberraschungen zu schützen. Nach
Fertigstellung des Prototypen sollte diese Rechnung auf dem
Versuchsstand kontrolliert werden; gleichzeitig mussten die
Dämpfungswerte bestimmt und gegebenenfalls korrigiert
werden.

Die Durchführung von Fahrversuchen mit verschiedenen
Fahrzeugen wird in der Regel auf dem selben Streckenstück
mit der selben Fahrgeschwindigkeit durchgeführt. So
einwandfrei ein solches Vorgehen auf den ersten Blick auch
aussieht, so muss man sich bewusst sein, dass solche
Versuche nur ganz spezielle Aussagen für ganz bestimmte
Verhältnisse machen können. Will man aber Schlüsse
allgemeiner Art ziehen, so muss man die| engen Beziehungen
zwischen dem Fahrzeuglauf und der Eigenschwingungsmechanik
beachten. Hierfür braucht man das Kennbild des Fahrzeuges,
aus dem die Frequenzen und Formen der verschiedenen
Eigenschwingungen ersichtlich sind.

Man wird dann bei den Fahrversuchen zusätzlich
versuchen, bewusst in den Resonanzgebieten der Eigenschwingungen

zu fahren und ebenso bewusst ausserhalb derselben.
Mindestens ist es für die Beurteilung des Fahrzeuglaufes un-
erlässlich, überall den Quotienten aus Erregerfrequenz und
Eigenfrequenz zu kennen. (Die Erregerfrequenz ergibt sich
unmittelbar aus den Messdiagrammen.) Nur so wird sich ein
einwandfreies Gesamtbild des Fahrzeuglaufes ergeben und
nur so kann man mit der Zeit Richtlinien für anstrebenswerte
Kennbilder von Neukonstruktionen erhalten.

Wichtigste Bezeichnungen

1. Eigenschwingung

«i U2 \ Kreisfrequenz | Wiegen
uN der Eigen- Nicken
co.5 Schwingung

' Schlingern
u,. beim Stampfen (vertikal)
ji i n. nu ns nv entspr. Eigenfrequenzen
m>i Wt Abstände der Schwingungsachsen

Bild Gleichung

Beimein spiel
(22) 31
(24) 86
(23) 34

22 126
12
22 32
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8. Kurvenverhalten

w0 Abstand Drehzentrum
hs scheinbare Schwerpunktserhöhung

3. Koeffizienten
i Elastizitäts- /

> koeffizienten der l

I Federaufhängung I

Koeffizienten der Diff.
gl. der Wiegeschwingung

Cll Cl3 C31 C33

C22

Co

J\J2v3»4
Ki Ko K3 KÜ
L Koeff. der Diff. gl. der Stampfschw.

lf. Konstruktionsdaten

«i a2 a3 61 63 Ci C3 p q Si s2 s3 S

Qx Çy kennzeichn. Längen der Pendel- /

aufhängung \
Xi X2 Federkonstanten (Kraft/Länge)
t halber Drehgestellabstand

Massenträgheits- Längsrichtung
radius des Kör- Querrichtung
g^^gin*) bezo- (Nicken)
gen auf Schwer- Vertäkalrichtg.
achse in (Schlingern)

m Masse des Körpers HI*)
5. Kräfte, Deformationen, Energien

mg ÎQtewicht (g Erdbeschleunig.)
HW äussere Kräfte
M äusseres Moment
PPo Federkraft«*:
f Federdehnung
X Federkonstante (Kraft/Länge)
m Federpotential
Vs Schwerkraftpotential
V Gesamtpotential
T kinetische Energie

6. Koordinaten

Bild Gleichung

Beimein spiel
25 39
25 38

23 29
23 27

30

21 129

20 125

17 18
19

110
111

17 19
23 24

10

24

23

25

21 23

20
20
20
20 - 8

7

120

9 121

10

14 1 14 109
5 112
6 113

15 16 2

15 16 Ì rioi
\ 107
U08

17 18 3

19 J

18 105
17
18
19

i v f i m
In fu ^n } Koordinaten der Körper I II
ii vi f\ 1 II
un us Mall «2 va Absolutverschiebungen

xi xz x3 yi 2/2 Va Relativverschiebg.

ei «2 «3 Relativwinkel
a ß Pendelwinkel
«11«12 • • • 1 Unabhängige f A-I
«2i «22 ¦ • • } Lagenkoordinaten j I-II
«3i «32 • • •

J im Teuerstem H-III

*) Für die Körper I und II werden die Indizes I und II immer
ausdrücklich beigefügt.

Adresse des Verfassers: Prof. O. Zweifel, Sonnenbergstrasse 2,
Neuhausen am Rheinfall.

Neubau des Schweizerischen Bankvereins
Zürich Architekt Dr. Roland Rohn, Zürich DK 726.24

Am 13. Dezember 1955 lud die Direktion des Schweizerischen

Bankvereins die zürcherische Presse zur Besichtigung

der bisher ausgeführten Bauetappen ein. Seither ist
der uns allen vertraute Altbau am Paradeplatz mit dem
etwas gewalttätigen Monumentaleingang bereits geräumt worden.

Dieses Gebäude soll in nächster Zeit abgebrochen und
durch die dritte Bauetappe ersetzt werden. In dieser
Bauperiode befindet sich die Bank in einem ausserordentlichen
«Engpass». Verschiedene Provisorien mussten daher
eingerichtet werden, die dazu beitragen, den Betrieb in den
nächsten drei Jahren aufrecht zu erhalten. So sind vor allem
ein provisorischer Eingang (Bild 1) mit dahinterliegender
provisorischer Schalterhalle erstellt worden, die nach
Fertigstellung der dritten Bauetappe wieder entfernt und umgebaut
werden müssen.

Dem Bericht, welcher den Pressevertretern übergeben
worden ist, entnehmen wir die städtebaulich-architektonischen

Gesichtspunkte:
«Innerhalb des Paradeplatzes kommt dem Neubau des

Bankvereins in Anbetracht seiner direkten Frontlage zur
Bahnhofstrasse eine ganz besondere Bedeutung zu. Die
Schaffung einer engen räumlichen Beziehung zum Paradeplatz

war deshalb von grosser Wichtigkeit. Aus diesem
Grunde wurde der Haupteingang — nachdem er in früheren
Projekten axial zur Schalterhalle und damit etwa in die
Mitte des Baukörpers zu stehen gekommen wäre — an die
Ecke Paradeplatz-Bleicherweg gerückt. Dort wird er,
plastisch stark hervorgehoben, zusammen mit dem am Bleicherweg

projektierten Erker, der die Flucht des zurückgesetzten
Dachgeschosses aufnehmen wird, die städtebauliche Dominante

des Neubaues bilden. Eine leichte Schwingung der-
Hauptfassade gegen den Bleicherweg zu dürfte die enge
Beziehung zum Paradeplatz weiser unterstreichen.

Diese asymmetrische Gestaltung dürfte zusammen mit
der symmetrisch durchgebildeten Front der Kreditanstalt
einerseits und der kleinmasstäblichen Südfront des Paradeplatzes

(Sprünglihaus usw.) eine städtebaulich abgewogene
Gesamterscheinung gewährleisten.

Die Fassaden selbst gliedern sich in einen etwas höhern,
flächig gehaltenen Erdgeschoss-Sockel mit Gitterfenstern und
eine viergeschossige Fensterzone mit stark plastisch gestalteter

Detail-Ausbildung, welche ihren Abschluss in einem
breit ausladenden Dachgesimse findet. An der Ecke
Bleicherweg-Paradeplatz ist eine in der Flucht des Erdgeschoss-
Sockels entwicSSlte geschlossene Mauerzone vorgesehen,

ipääehe einen kräftigen Gegensatz zu den plastischen
Fensterzonen lüden wird.

Das zurückgesetzte Dachgeschoss ist als durchgehendes
Glasband bewusst gegen die Architektur der Obergeschosse
abgesetzt. Vor den Dachgeschossräumen ist ein breiter
Dachgarten, der auch vom Paradeplatz aus gesehen ein
willkommenes Element darstellen dürfte, in Aussicht genommen.»

Für die Beurteilung der städtebaulichen Wirkung dieses
grossen Bauvorhabens ist die Lage des zukünftigen Haupt-
einganges am Paradeplatz von besonderer Bedeutung. Man
wird also warten müssen, bis der Bau im Jahre 1959 fertig
ist.
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Bild 1. Der 1956 bezogene Bautrakt mit dem provisorischen Haupteingang

am Talacker
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