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Momentenausgleichsverfahren zur Berechnung durchlaufender Platten
für gleichmässig verteilte Belastungen
Von Dipl. Ing. W. Brunner, Dietikon DK 624.073.12

Unter den verschiedenen Methoden, die dem Statiker zur
Berechnung von Mehrfeldplatten zur Verfügung stehen, sind
—• abgesehen von den rein mathematischen Lösungen — nur
zwei Gruppen von Berechnungsverfahren für die Praxis von
Bedeutung.

a) Berechnungsverfahren, die wohl die tatsächlichen
statischen Verhältnisse der Mehrfeldplatten relativ genau
erfassen, jedoch einen grossen Arbeitsaufwand bedingen.

Unter diesen Methoden sind zu erwähnen die Berech-
nungsverfafaeen von H. Bleich und G. Fischer (siehe
Literaturnachweis), die den Winkelausgleich der aneinanderstossen-
den Plattenränder mittels Momentengleichungen an einigen
ausgesuchtere Punkten herstellen. Diese Verfahren erfordern
das Auflösen von Gleichungssystemen, wozu der im Hoch-
und Industriebau tätige Statiker meistens weder die Lust

Koch die erforderliche Zeit hat; ferner rechtfertigt in vielen
Fällen die Grösse des Objektes den Arbeitsaufwand in keiner
Weise.

b) Methoden, die auf einer zuverlässigen Näherungsberechnung

der Einfeldplatten basieren, jedoch die Durchlaufwirkung

zu ungenau erfassen.

Die einfachste Berechnungsart durchlaufender Platten
mit ungefähr gleichen Spannweiten besteht darin, dass man
die Platten für die Belastung g + p/2 an den Kontinuitätsrändern

starr eingespannt und für die schachbrettartige
Belastung ± p/2 allseitig frei drehbar gelagert annimmt. Dieses
Verfahren stimmt sehr genau für geringe Unterschiede in den
Spannweiten. Da jedoch im Gegensatz zum Brückenbau im
Hochbau die Plattenspannweiten oft sehr unterschiedlich
sind, kann die Methode in den meisten Fällen nicht
angewendet werden. Die Randmomente werden zwar auch bei
grossen Unterschieden der Spannweiten relativ genau er-
fasst, jäte Feldmomente hingegen können sehr grosse Fehler
aufweisen.

Wohl am häufigsten wird in der Praxis zur Berechnung
durchlaufender Platten die Streifenmethode verwendet. Dieses
Verfahren berücksichtigt aber die für Platten wesentlich vom
Durchlaufträger verschiedene Fortleitung der Stützenmomente

in keiner Weise. Femer wird durch das Trennen der
Platten in zwei unabhängige Tragrichtungen das zweidimensionale

Wirken zu ungenau erfasst. Bei grossen Unterschieden
der Spannweiten sowie der feldweise konstanten

Belastungen ergibt die Streifenmethode keine zuverlässigen
Resultate mehr.

Neben diesen Berechnungsmethoden fehlt in der Praxis
ein Verfahren, das bei erträglichem Arbeitsaufwand und mit
elementaren Begriffen der dem Ingenieur am meisten
vertrauten Balkenstatik Resultate liefert, die dem effektiven
statischen Wirken der Mehrfeldplatten Rechnung tragen.
Der Zweck der vorliegenden Arbeit ist, eine solche
Berechnungsmethode zu entwickeln. Dabei war es naheliegend, das
Momentenausgleichsverfahren von Cross, das sich In der
Balkenstatik grösster Beliebtheit erfreut, auch auf die
durchlaufenden Platten auszudehnen.

1. Grundgedanken des Verfahrens

Wir betrachten die feldweise konstant belastete
Mehrfeldplatte (Bild 1) und denken uns sämtliche Kontinuitäts¬

ränder 1 bis 12 gegen Verdrehen
gehalten. Beidseitig jedes
Kontinuitätsrandes treten die
Volleinspannmomente der beiden
anliegenden, rechteckigen Einfeldplatten

auf. Diese Volleinspannmo-
Bild 1 mente werden sich in der Regel

nicht aufheben, sondern am festgehaltenen Rand ein resultierendes

Moment abgeben. Lassen wir z. B. Rand 2 los, so wird
er sich soweit verdrehen, bis die Platten b und e zusammen
auf den nun gedrehten Rand 2 ein Ausgleichsmoment
ausüben, das mit der Resultierenden der VoÜetaspannmomente*''
im Gleichgewicht ist. Dieses Moment wirkt mit umgekehrten
Vorzeichen längs des Randes 2 auf die Platten b und e und
erzeugt zusätzliche Einspannmomente — genannt übertragene

Momente —¦ an den übrigen Rändern. Die Platte b
erhält übertragene Momente an den Rändern 7 und 10 und
die Platte e solche an den Rändern 5, 8 und 11. Denken wir
uns nun Rand 2 in der gedrehten Lage festgehalten und
heben wir die Einspannung des Randes 11 auf, so wiederholt

sich der gleiche Vorgang, wobei wir lediglich zur
Resultierenden der Volleinspannmomente noch das zusätzliche,
durch Loslassen des Randes 2 erzeugtf^fflSertragene Moment
addieren müssen. Es entstehen nun übertragene Momente
an den Rändern 2, 3, 5, 6 und 8. In analoger Weise lassen
wir der Reihe nach alle Ränder los, bis die übertragenen
Momente genügend klein werden. Bilden wir am Schlüsse
an jedem Plattenrand die algebraische Summe der
Volleinspannmomente, Ausgleichs- und übertragenen Momente, so
erhalten wir die genäherten Stützenmomente der Mehrfeldplatte.

Als Kontrolle ergibt sich, dass die beidseitig eines
Randes angreifenden Momente sich aufheben müssen.

Die vorliegende Methode bedeutet nichts anderes als
das auf die Platten übertragene Momentenausgleichsverfahren

von Cross. Um zu einer einfachen Berechnungsmethode

zu gelangen, nehmen wir an, dass alle Momente
sinusförmig an den Plattenrändern angreifen. Diese
Annahme ist für die Einspannmomente von Platten mit
feldweise konstanten gleichmässig verteufen Belastungen bei
nicht zu grossen Seitenverhältnissen mit guter Annäherung
erfüllt. Die Ausgleichsmomente sowie die durch letztere
bedingten übertragenen Momente lassen wir ebenfalls
sinusförmig angreifen. Da wir die Randmomente nur durch eine
Sinushalbwelle darstellen, können wir die Kontinuitätsbedingung

der Platten nur in einem Punkte jedes Randes — am
besten in den Randmittelpunkten — erfüllen. Die Drehwinkel

der Plattenränder In den Randmittelpunkten sind wie
beim Balken proportional den anggeifenden Randmomenten.
Somit verteilt sich ein an einem Kontinuitätsrand
sinusförmig angreifendes Ausgleichsmoment im Verhältnis der
Drehsteifigkeit der beiden angrenzenden Ränder, sofern wir
unter der Drehsteifigkeit — im folgenden stets mit Rand-
steifigkeit bezeichnet —¦ dasjenige sinusförmig am Plattenrande

angreifende Moment verstehen, das im Randmittelpunkte

die Verdrehung 1 erzeugt. Dabei werden die übrigen
Ränder der Platte, sofern sie nicht frei drehbar gelagert sind,
als starr eingespannt betrachtet. Während man beim Balken

mit konstantem Trägheitsmoment nur zwei Steifigkeiten

erhält (4EJ k 3EJ<
—=— bzw.

I treten bei den Platten unendlich

viele Randsteifigkeiten auf. Die Randsteifigkeiten sind eine
Funktion der Einspannverhältnisse (Plattenart) und der
Seitenverhältnisse ly/lx. Um die vorliegende Berechnungsmethode

der Praxis zugänglich zu machen, haben wir die
Randsteifigkeiten für verschiedene Seitenverhältnisse und Plattenarten

berechnet und tabelliert (Tafel I und H). Somit können

die Randsteifigkeiten der Platten ungefähr mit
demselben Arbeitsaufwand wie bei den Balken ermittelt werden.
Die Uebertragungsfaktoren, das sind diejenigen Faktoren,
mit denen wir ein an einem Rande sinusförmig angreifendes
Moment multiplizieren müssen, um die an den übrigen
eingespannten Rändern voraussetzungsgemäss ebenfalls
sinusförmig verteilten Einspannmomente zu erhalten, sind für ver-
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schiedene Plattenarten und Seitenverhältnisse berechnet und
tabelliert worden (Tafel I u. H). Beim Balken liegen die
Verhältnisse wesentlich einfacher, besitzen doch bei
konstantem Trägheitsmoment die Uebertragungsfaktoren stets
den Wert %. Die vorliegende Methode entspricht dem
Berechnungsverfahren von H. Bleich, mit dem einzigen
Unterschied, dass Bleich die Kontinuitätsbedingung in den
Randmittelpunkten nicht durch Iteration, sondern mittels
Drehwinkelgleichungen herstellt.

2. Berechnung der HUfsgrössen
2.1 Plattenarten

Wir verwenden die Bezeichnung von Dischinger und
führen somit neun verschiedene Plattenarten ein (siehe
Bild 2).

Die kürzere Seite wird stets mit lx bezeichnet. Alle von
lx und ly abhängigen Grössen werden in den berechneten
Tabellen auf lx bezogen.

2.2 Drehwinkel

Wir benötigen die Drehwinkel der frei aufliegenden
rechteckigen Platte unter sinusförmig angreifenden
Randmomenten. Vorteilhaft unterscheidet man zwischen
Momentenangriff am langen und am kurzen Rand.

Die Formeln für die Drehwinkel befinden sich verschiedentlich

in der Literatur. Sie lauten:

¦ Plallenj.l? Flallmrt3 Plsllenarl 4 Plallenart 5 Plaltenarl 6 PtaHenart 7 WM,

Jä- JH. Kg

\ \ r - ha u~ iL n m ä/^i
% U u HLJ il] K5ta iii KiB %

Ui Kä K« /<¦ K4 V *5 s" K6 j*- Kt >"• v"-'
ICD 641 6,41 1,01 0,233 1.01 0,293 6,65 o,iao G.65 0,190 7.10 0,114 0,253 1,00

I.OS 6,13 6,31 6,12 0,303 6.98 0,217 6.42 0,?D8 G.5B 0,173 6,63 0,134 0,267 1,05
1.10 5,30 6,35 6,44 0,322 6.34 0,262 6.21 0,224 G.52 o.ise 6,60 0,153 0,273 1,10

US 5,68 6,33 6,20 0,334 6,91 0,247 6.83 0,239 6.47 0,142 6,36 0,172 0,217 115

1.20 5.« 6,32 5,91 0,345 6,88 0,233 5,87 0,255 6,43 0,126 6,19 0.163 0,279 1,20

\2S 6.31 6,31 5.TT 0,353 6,85 0,220 5,72 0,267 6,40 0,115 6,02 0,205 J 0,261 1.25

1,30 5,16 6,31 5,58 0,361 6,82 0.207 5.59 0,273 6,38 0,104 5,86 0,220 0,282 130
1.3b S.Ol 6,30 5,41 0,368 6,13 0.195 5.48 0,265 6,36 0,034 5,73 0,237 0,262 1,35
1,40 4.89 6,30 5,25 0,374 6.76 0.183 5,37 0,301 6,34 0,064 5,53 0.249 0,281 140
1,4b 4,16 6,30 5,10 0,318 6.13 0,172 5,26 0.311 6,33 0,075 5,48 0,2641 0,219 145
•„to 4.66 - 6.29 4,97 0.382 6.70 0.161 5.20 0.321 6.32 0.067 5.38 0.276 0.277 1.50

1,551.55 4,56 6.29 4,84 0.385 6,68 0,151 5,12 0,330 6.32 0,053 5^2B 0,269 0,275
l.feu 4,47 6,29 4,73 0.389 6,66 0,142 5.05 0.339 6,31 0,053 3,20 0,30t 0,272 1,60

1.6b 4,38 6,19 4,62 0,391 6.64 0.133 4.99 0.24t 6,31 0,047 5.12 0,312 0,269 165
1.10 4,31 6,29 4,53 0,392 6.61 0,125 4,93 0,355 6,30 0,041 5,05 0,3221 0,266 v?t
VI* 4.23 6.18 4,44 0.393 6.59 0,111 4,98 0.3G2 6.30 | 0.037 4.39

i 0,331 0,262
0.340 0.259 1801,60 4,17 6,26 4,36 0,393 6.57 0,110 4,83 0.368 6,29 0,033 4,93

1,115 4.11 6,28 4,23 0,393 6.55 0.103 4.76 0,374 6,29 0.029 4,86 0,34ß] 0,256 IRS
1,90 4,0« 6.28 4,2? 0,392 6,53 0,097 4.74 0.380 G,29 0.025 4,83 0,355 0,252 1,90

1,95 4,00 6,29 4,15 0.390 6.S1 0,090 4.11 0.305 6,29 0,021 4,78 0,362 0,248 1,95

2.00 3,36 6.28 4,09 0,399 6,50 0.08S 4.61 0,390 6.29 0,019 4,74 0,369 0,245 2,00

Oo 3,00 6,28 3,00 ~0.38 -6,5 0 4.00 0,500 6.2B 0 4,00 i 0,500 -0,24 «=*o

w» ¦»II, ¦ «le, •Vl.\ •«II, ¦Vi, \ •#lex •*/& I '//////,

» PlaHenart 7 Plallenart 8 Plallenart 5 m
Ki K« K«

% § - 1/"'
Kb1v'' u 1 Ol 0 V

¦'s
Kt Sö? Kb 'M Ka Ji y Ka /¦- >L' Kä H y

1,00 7,49 •0.246" 7.49 0.246 1.10 0,114 0.259 1,51 0 054 0,233 1,51 0,054 0,233 1.D0

1,05 7.43 0.230 1,20 0,263 1.04 0,095 0,250 1,23 0,013 0,243 1,45 0,037 0,222 105
1,10 1.37 0,214 6,31 0,21« 6 99 0,080 0,241 6.91 0,092 0,252 1,36 0,023 0,209 1,10
1 1b 1,31 0,199 6.65 0,292 6.95 0,065 0,231 6,13 0,111 0,259 7,32 0,010 0,197 1 15

I.2U 11« 0,186 6,40 0,305 6,90 0,052 0,22t 6.51 0,131 0,265 1,25 0,000 0,186 vw
1,2b 1.19 0.113 6.11 0,317 6,86 0.042 0.211 6.32 0,148 0,270 7.20 -0.009 0,176 1,25
1.30 1.14 0.162 5,91 0,321 6.83 0.032 0,200 6,14 0,166 0,213 1,16 -0,015 0,164 1,30

l» 7.08 0,150 5,16 0,336 6,79 «,023 0,189 5.98 0.183 0,275 1.09 -0,020 0.154 1,35

1,40 1.04 0,140 5,69 0,345 6.16 0,016 0,180 5,82 0,200 0,216 1.04 -0,024 o,!44 1.41

1.45 6,98 o.l?o 5.42 0,352 6.73 0,010 0,163 5,63 0.216 0,216 6,99 -0,027 0,135 Mb
1,50 6,94 0.122 5.21 0,358 6,10 0,005 0,160 5,51 0.232 0.215 6.94 -0,029 0.126 1,50
1,55 6,69 0,113 5.12 0,364 6.68 0,001 0.151 5,46 0,241 0,214 6,90 -0,03t 0,117 1.55
1,60 6.85 0.106 4.99 0,369 6.66 -0,002 0,142 5,36 0,262 0,212 6,86 -0,032 0,109 160
1,65 6.61 0,099 4,86 0,373 6.64 -0,005 0,134 5,21 0,215 0,210 6,92 -0,032 0,102 165
1.10 6,17 0,092 4.75 0.376 6.61 -0.008 0.126 3.18 0,288 0,268 6,18 -0,033 0,095 1,70

1,11 6,14 0,086 4.65 0,379 6.59 -0,010 0.118 5.11 0,299 0,265 6.15 -0,033 0.0B9 1.75

1,60 6,71 0,080 4.55 0,380 6,51 -0,011 0.111 5,04 0,310 0.262 6,71 -0.032 0,063 160

18S 6,67 0.015 4 46 0,381 6.55 ¦0,012 0.104 4,58 0.320 0.253 6,68 -0,031 0,078 1,85

1.90 6.65 0,010 4,36 0,362 6.53 •0,013 0,098 4,92 0,330 0,256 6,66 -0,031 0,072 1,90

195 6,62 0,066 4.30 0.383 6,51 -0,014 0,091 4,91 0,339 0,252 6.63 -0,030 0,067 1,85

2,00 6,60 0,061 4i2J 0,382 6,50 -0,014 0,086 4,B2 0.348 0.249 6.60 -0,030 0,063 2,00

c-= -6,6 0 3,00 -0,38 -6,5 0 0 4,00 0,900 -0,24 -6,6 0 0 <»_

» '"/& '"/«, ¦"II, ¦"lt. ¦«lk f/A

lx \H Alois die kurier« Spannweite
BH-y»)

i« Pialtenslarke
<¦• s.uerdehnung&'iahi

1

2*
Sin 2 ß — 2/3 a
Cos 2ß — l " N

1 ß ¦ Cos ß — Sin ß a
IT Cos 2 ß — 1 N

N -

Eh»

12.(1-

¦, Sin-!i1 2

C0S2-.

b

2.3 Randsteifigkeiten; Uebertragungsfaktoren
Für den Mittelpunkt zweier angrenzender Ränder ergibt

sich wie beim Durchlaufbalken die Verteilung der Ausgleichsmomente

im Verhältnis der Randsteifigkeit der Platten. Die
Randsteifigkeit K bedeute» dasjenige sinusförmig am Rande
angreifende MomentsSlias im Mittelpunkt des Plattenrandes
die Verdrehung ^hervorruft. Dabffiwerden die übrigen Ränder

der Platte starr eingespannt angenommen, sofern sie
starr eingespannt sind oder Kontinuitätsräntler darstellen.
Die Berechnung der Randsteifigkeiten soll anhand des
Beispieles des Bildes 4 gezeigt werden.

2.31 Berechnung der Randsteifigkeiten
K Randsteifigkeit für kurzen Rand.
K Randsteifigkeit für langen Rand.
Zur Bezeichnung der Plattenarten werden die Kantinui-

tätsränder als starr eingespannte Ränder betrachtet. Die
Platte a (Bild 4) entspricht also der Plattenart 2 mit der
Randsteifigkeit K% und die Platte b der Plattenart 9 mit der
Randsteifigkeit Kg.

Zur Berechnung der Randsteifigkeit Kg gehen wir von
der freiaufliegenden unbelasteten Rechteckplatte (Bild 5)
aus. An ihr greifer^Sinerseits die gesuchte Randsteifigkeit
Kg und anderseits die voraussetzungsgemäss ebenfalls
sinusförmig- wirkenden Einspannmomente X±, X2 und X3 an.
Formulieren wir nun in den Punkten 1—4 die ElastizitScsbedin-
gungen für die Drehwinkel, so erhalten wir vier Gleichungen
zur Bestimmung der vier Unbekannten. Im vorliegenden
Falle ist aus Symmetriegründen X2 — Xs. Die
Elastizitätsbedingungen und Elastimtätsgleichungen lauten:

Punkt 1: <p 1 a'i ¦ Kg — ß\ ¦ X± — 2e'2 • X2 1

Punkt 2: <p 0 ß'x-Kg — a\ • Xx — 2e'2 • X2 0

Punkt 4: <p 0 s\ ¦ Kg — e'x • Xx — (a'2 + j8'2) * X2 0

Die Auflösung des Gleichungssystems ergibt die gesuchte
Randsteifigkeit

¦ Symmetrische Belastung Anlimetrisel o Beladung m,
Plaltenarl 5 Plallenart 6 HaHenarV 1 PlaHenar! 8 PlaHenart 3 5,1,3 6,8,3 B

s; K6 R Kb 5t K9 ¦
1 m aL 4# Q jj.

si
,|r m

•¦SSS-"

i<5 K* Kt M' Kb F> Ea ^ K9 M' 75-*RtKs Ke-Ks-Ka

1,00 6,38 5,38 8,23 0,598 6,29 0,596 i.il jVtäl 1,11 0,492 1,92 1,82 100

1,05 6,08 5,44 5,92 0,617 6.36 0,554 8,10 1521 1.11 0 460 1,15 1,12 1,05
1,10 4,52 5.49 5,53 0,643 6,43 0,525 6,18 0,556 1.21 0,429 1,60 1,55 1,10

U5 4,59 5,55 5,29 0,6GB 6,49 0,435 5,91 0 586 1.24 0 400 1.48 1.39 1,15

1,20 4,37 5,E1 5,02 0,689 6,54 0,487 5.66 0,611 1.25 0,979 1.36 1.26 l?0
125 ¦4,21 5,6b 4.78 0.707 6,58 0,440 5,38 0.635 1,26 0,MT 1.26 1.14 125
1,30 4,04 5.71 4.SI 0,723 6,91 0.414 5.12 0,655 1,26 0,994 1,15 1,04 1,30

1,36 3.90 5,76 4,37 0,738 6,93 0,999 4.85 °.61^ 1,24 0,309 1.01 6.94 IM
140 3,76 5,61 4,20 0.T4B 6.65 0.365 4,66 0,690 1,21 0,281 6,93 6,81 140

1,46 3,64 5,86 4,04 0,757 6,66 1

0,343 4,46 0,104 T,!» w$a 6.95 6,80 145
150 3,53 5,80 3,89 0.16S 6.67 1 0.3E3 4.28 0,111 1.15 0.244 6.87 6.14 151
1,55 3,43 5,94 3,16 0,171 6,67 0,303 4,11 10,128 Vi 0.W7 6.82 6,69 155
1,60 3.34 5,97 3,84 0,777 6)97 0.284 3.96 0,138 1,08 0,219 6.17 6,64 160
165 WW&M e.oo 3,53 0,780 6,66 0,266 3.82 0,146 1,04 0,197 6,12 6,60 1,6S

no 3,18 e 03 3,43 0,783 6,66 o 250 3,69 0.152 1,01 0 194 6.68 6,56 ITA
|,18 3.11 6,06 3,34 0.165 6.66 _5534 3.51 0.151 6,91 0,172 6.64 6,53 1,15

160 3,05 6,09 3.26 0,706 6,64 0,220 3,41 0,161 6,93 0,160 6,60 6,50 1,80

IR5 3.00 fe.U 3,10 0.1BS 6,63 0,206 3.31 0,163 6,90 0,150 6,51 6,41 1,85

190 W4 6,13 3,11 0,783 6.6? 0.193 3.29 0,164 6,81 0.140 6,54 6,45 1.90

195 2 89 6,15 3.05 0,781 6,61 0,181 3,21 0,164 6,83 0.130 6.5t 6,43 195
7,ao 2.95 6,17 2.99 0,778 6,59 0,170 3.14 0,163 6.50 o.iea 6.49 5,41 2,00

0« 2,00 6,28 2,00 *0,76 •-6,5 0 2,00 ~ 0,16 - 6.6 0 6.00 6.26h6,5|- 6,6|°°

m WM *<%, •¦%, — MBH ¦%\ - ¦% — •m -ih m
t% ist stets die kürzere Seile h- Plallensfarke

r ßuerdehnunosiahl

Tafel I^^^aiteifigkeiten k und Uebertragungsfaktoren ß und Tafel II: Randsteifigkeiten 7c und Uebertragungsfaktoren ß* für sym¬
metrische Platten bei symmetrischer und antimetrischer Belastung
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n Kt/Ks

Id4

•xKt Sin i-»n -.

S "^ Kg-sin —
Bild 5

K9:
a'i (<*'* + ß's)

(a'i — ß\) {(a'i + jS'x) (a'ü + £'2) — 4«'l«'s }

Die Berechnung der Randsteifigkeit K% gestaltet sieh sehr
einfach. Aus der Bedingung K2 • ct'2 1 erhalten wir die
gesuchte Randsteifigkeit 1

ct 2

2.32 Berechnung der Uebertragungsfaktoren
p Uebertragungsfaktor für gegenüberliegende Seite
p' — Uebertragungsfaktor für anliegende Seiten.

Die Uebertragungsfaktoren p und p' sind diejenigen
Paktoren, püt denen wir ein am Rande sinusförmig angreifendes
Moment multiplizieren müssen, um die an den übrigen
eingespannten Rändern ebenfalls sinusförmig angreifenden
Momente zu erhalten. Die zur Randsteifigkeit Kg gehörenden
Uebertragungsfaktoren p und p' der Platte b (Bilder 4 bis 6)
erhalten wir ebenfalls aus der Auflösung des Gleichungs-
systemes. Es gilt:

P _ Xl i'ß'i (a's + ß'2)--2e 'ie'n
K a\ (a'2 + ß' 2) —-2e 1<*'2

_X2 <*'l (a 1--ß'1)

K a'x (a'2 + ß': 2e

Für die Randsteifigkeit 2T2 der Platte a (Bild 4) treten
keine Uebertragungsfaktoren auf, da alle übrigen Plattenränder

frei drehbar gelagert sind. Auf analoge Weise lassen
sich für alle Plattenarten die Randsteifigkeiten und
Uebertragungsfaktoren berechnen. Für die Seitenverhältnisse
lyßx =1 + 2 können diese Werte direkt aus Tafel I entnommen

werden. Die Dimension der Randsteifigkeiten ist mt/m
t, die Uebertragungsfaktoren sind naturgemäss

dimensionslos.

2.33 Randsteifigkeiten und Uebertragungsfaktoren bei
Symmetrie und Antimetrie.

Die Berechnung der Werte K, p und p' wird prinzipiell auf
dieselbe Art durchgeführt, lediglich sind bei Symmetrie
beidseitig der Symmetrie-Axe zwei gleichgerichtete und bei
Antimetrie zwei entgegengesetzt gleiche Randmomente K
einzuführen. Die Werte sind in Tafel II zusammengestellt. Bei
antimetrischer Belastung erhalten wir für die langen Seiten
der Plattenarten 5, 7 und 9 einerseits und für die kurzen
Seiten der Plattenarten 6, 8 und 9 anderseits stets dieselben
Randsteifigkeiten, da die beiden entgegengesetzt gleichen
Randmomente K an den übrigen beiden Plattenrändern
Momente erzeugen, die sich gegenseitig aufheben, so dass diese

IKaader stets wie frei drehbare Auflager wirken.

2.34 Randsteifigkeiten und Uebertragungsfaktoren im Grenzfäll

lylf$fik= 00.

Bei Platten mit grossen Seitenverhältnissen lyßx stimmt
die Annahme sinusförmiger Randmomente nicht mehr, da die
Einspannmomente längs den langen Rändern —
gleichmässig verteilte Belastung vorausgesetzt -- konstant sind.
Trotzdem versuchen wir im folgenden auch für solche Fälle
die K-Werte, p und /j'-Faktoren näherungsweise zu berechnen,

um die Methode für alle in der Praxis vorkommenden Fälle
benützen zu können. Bilden wir die Grenzwerte der K-Wegj®!
so entstehen für die langen Seiten die Steifigkeiten des
Balkens, da das Moment K • sin iry/ly für unendllS grosses ly
im Randmittelpunkt konstant verläuft. In diesem Fall liefert
die Methode die richtigen Randsteifigkeiten.

Für die kurzen Seiten entstehen stets die Randsteifigkeiten

der Plattenart 3. Der Grund liegt darin, dass die
sinusförmig an den beiden unendlich langen Rändern angreifenden
Einspannmomente im endlichen Nachbarbereich der kurzen
Seite verschwinden. Die langen Ränder wirken folglich stets
als frei aufliegende Ränder. In Wirklichkeit hängt jedoch
die Steifigkeit des kurzen Randes bei grossem Seitenverhältnis

ly/lx erst recht nur vom Einspannverhältnis der
angrenzenden langen Ränder ab. Näherungsweise setzen wir
in diesen Fällen die Randsteifigkeiten für lyßx 2 ein.
Betrachten wir den Verlauf der Randsteifigkeiten der kurzen
Seite bei Plattenart 3 (Tafel I), so fällt auf, dass diese für
Verhältnisse lvßx 2 und lyßx 00 praktisch den gleichen
Wert haben. Daraus kann gefolgert werden, dass die "übrigen
Randsteifigkeiten der kurzen Seite sich analog verhalten und
somit die getroffene Näherung im Rahmen dieser genäherten
Berechnungsweise zulässig ist.

Die Annahme sinusförmiger Randmomente ergibt für die
Uebertragungsfaktoren p und p' in analoger Weise z. T. die
richtigen Werte, z. T. Widersprüche. Um diese zu vermeiden,
setzen wir in solchen Fällen ebenfalls die Werte p und p' ein,
die dem Verhältnis lyßx 2 entsprechen. Zu bemerken ist
noch, dass wir bei symmetrischen Platten im Grenzfall
lyßx °° für die kurzen Seiten die Randsteifigkeiten der
Tafel I erhalten, da die Momente K ¦ sin irxßx einander nicht
mehr beeinflussen. Folglich treten bei antimetrischer
Belastung für die Randsteifigkeiten Ka, Ks, Kg drei verschiedene
Werte auf (siehe Tafel II).
2.4 Vorzeichenregelung

Betrachten wir die Platten in Blickrichtung A und B
(Bild 7), so gilt die übliche Vorzeichenregelung des Cross-
Verfahrens sowohl für die Randmomente wie auch für die
Uebertragungsfaktoren p, die folglich stets positiv sind. Bild 7
enthält ferner die Vorzeichen der Einspannmomente einer
gleichmässig belasteten, eingespannten Rechteckplatte mit
dem Drehsinn der durch die angreifenden Randmomente
bewirkten Randdrehungen.

Durch die getroffene Vorzeichenregelung sind die
Vorzeichen der Faktoren p' ebenfalls bestimmt. Diese werden
zum Teil negativ, während beim Cross-Verfahren der Balkenstatik

nur positive Uebertragungsfaktoren auftreten. In
Bild 8 sind die Vorzeichen der Faktoren p und p' dargestellt.

2.5 Feldmomente in Plattenmitte infolge von Rcmdmomenten

Px> Py Momenteneinflusszahlen bei Momentenangriff am
kurzen Rand

~px, ~py Momenteneinflusszahlen bei Momentenangriff am
langen Rand

Im vorliegenden Fall (Bild 9) betragen die Feldmomente
im Punkt 1:

mx px- m
mv — Py' m

Für die Faktoren px und py bestehen geschlossene Ausdrücke.
Sie sind der Vollständigkeit halber hier angegeben:

Px-
Sin 18/2

Sin/3 + — ") Sin ß

Py
Sin/»/2
Sin/3

(1- m, Sin

Cosß--1
Cos 2 ß --1

ß —
m b

a

ß Cos ß- 1

Cos2 ß ¦

V
m
Bild 6

i< *>

Blickrichtung A

ld 7

f <] - Blickrichtung B

•«•x
m- sin

Mjr 1 -
+P

€-*+)1 ^¦-M

*xj>
P*=a

Bilds Bild 9



774 SCHWEIZERISCHE BAUZEITUNG 73. Jahrgang Nr. 50

ir-x / " /
in,- sin—i —,

0-N

r !-Xm*- sin

ild 11Bild 10

Diese Faktoren können für v — 0 (Beton) und
(Stahl) direkt der Tafel in entnommen werden,
liebige Querdehnungszahl v gilt:

- 0,30
Für be-

"3? "a
-0 + '< ¦¦ 0

P, "Pr,

Greifen an einer frei aufliegenden Platte (Bild 10) die
vier Randmomente m±, m2, w.3, w.4 an, so betragen die
Feldmomente in Plattenmitte:

mx (mi + OT.3) px + (m2 + m*) px

my (irii + m.3) py + (m2 + m4) pv

2.6 FeZdmo?n.e»ite der elastisch eingespannten Rechteckplatte
Es empfiehlt sich für die Berechnung der Feldmomente

nicht von der frei aufliegenden Platte, sondern von der an den
Kontinuitätsrändern total eingespannten Platte auszugehen.
Dadurch erreichen wir, dass die Feldmomente viel unempfindlicher

auf die Genauigkeit der Bestimmung der
Randmomente sind. Wir berechnen also zuerst die Feldmomente
der total eingespannten Platte und addieren dazu noch die
zusätzlichen Feldmomente, herrührend aus den
Differenzmomenten zwischen Volleinspannmomenten und ausgeglichenen

Randmomenten. Diese zusätzlichen Feldmomente sind
meistens sehr klein. Wie beim normalen Cross-Verfahren
verwenden wir zur Bestimmung der Feldmomente die in der
Statik übliche Vorzeichenregelung. So ergeben Differenzmomente,

die die Plattenrandeinspannung verkleinern, positive
zusätzliche Feldmomente.

2.7 Kragplatten
Kragplatten, wie Balkone, Rampen, Vordächer etc. können

ebenfalls in die Berechnung miteinbezogen werden. Wir
ermitteln das gesamte auf den Plattenrand wirkende
Konsolmoment M und verwandeln es in ein sinusförmig angreifendes

Moment

lx
Es gilt:

m
M
17

w, Y=0 V 0.30 1V <rtri

-t r1 r - f~fft

4/ H T 1 j-f
-i

mi_ f T ¦ty
'e 4-tx-*. .+( -4-fc-*- 4-(<—

^x ,ä M ^ ¦H-x "•s H H
1,00 0,056 0,144 0,144 0,056 0,099 0,160 0,160 0,093 ho
105 0,010 0.144 0,142 0,042 0,112 0,165 0,155 0,086 1,05
1,10 0,083 0,144 0,140 0,032 0,126 0,169 0,150 0,074 1,10
1 IS 0,098 0,143 0,12-6 0,023 0,139 0,112 0,144 0 064 1 15
1,20 0,109 0,142 0,153 0,015 0,152 0,115 0,138 0,035 171)
1,25 0,123 0,141 0,129 0,006 0,165 0.117 0,133 0 o-¥I 1,25
1,30 0,136 0,133 0,126 o.oog 0,117 0,119 0,127 0,039 1.3'
1,35 0.W8 0,131 0,122 - 0,00+ 0,183 0.161 0,122 0,033 1 35
1,40 0,161 0,135 0,118 - 0,009 0,201 0,182 0,115 0,027 140
Hb 0,113 0,131 0,113 -0,012 0,212 0,183 0,110 0,023 1,45
150 0,185 0.128 0,109 -0J51S 0.223 0.163 0,104 0,018 1.50
1,55 0,196 0,123 0,104 -0,017 0,233 0,184 1,099 0,014 1,55
ISO 0,201 0,122 0,100 - 0,019 0,243 0.184 0,094 0 011 1,60
165 0,218 0,118 0,095 -0,021 0,252 0,194 0,089 0,006 1.65
1,10 0.228 0,115 0,091 - 0,022 0,262 0,184 0,084 0 005 1,10
1,15
180

0.236
0,241

0.112 0,191 -0,024 0.210 0.183 0,090 0.003 115
0,109 0,084 -0,025 0,219 0 iS3 0,016 0 000 1,90

HR 0,256 0,106 0,013 -0,025 0,281 0,192 0.O11 -0,001 1,85
110 0,264 0,103 0.01S -0,025 0,296 0,162 0,061 -0,00*2 1,90
1,15 0,212 0.100 0,011 -0,0-24 0,302 0,181 0,064 -o,oo3 1.15
2,011 0.260 0,007 0,068 -0,024 0,310 0,181 0,060 -0,004 2,00

¦x, 0,500 0 0 0 0,500 0,160 0 0 0^3

Tafel III: Einflusszatilen p* und py für die
Feldmomente in Plattenmitte der frei aufliegenden
rechteckigen Platte bei sinusförmig angreifenden
Randmomenten

Bei Kragplatten mit gleichmässig verteilter Belastung
p errechnet sich das Randmoment m zu:

ir lx
p c*

Mit den Uebertragungsfaktoren p und p' (nach Tafel I
für Plattenart mit Rand a eingespannt [Bild 11]) lassen sich
die Volleinspannmomente an den übrigen Rändern bestimmen.

Für den Momentenausgleich ist der Plattenrand a
als gelenkig gelagert zu betrachten, da er nur das
Kragmoment M aufnehmen kann.

2.8 Berechnungsgang
Nachdem wir sämtliche Hilfsgrössen ermittelt haben,

gestaltet sich die Berechnung durchlaufender Platten wie
folgt:

1. Berechnung der Randsteifigkeiten und Uebertragungsfaktoren

nach Tafel I oder II und Bestimmung der
Verteilzahlen für die Ausgleichsnaomente.

2. Bestimmung der Randmomente (Volleinspannmomente)
und Feldmomente unter der Annahme, dass alle
Kontinuitätsränder total eingespannt sind. Für die Berechnung

dieser Momente bestehen Tabellen, so u. a. von
Marcus, Dischinger, S. Timoshenko und F. Czerny (siehe
Literaturnachweis).

3. Ausgleich der Volleinspannmomente.
4. Berechnung der Differenzmomente zwischen Vollein-

spannmomenten und ausgeglichenen Randmomenten.
5. Bestimmung der effektiven Feldmomente als Summe

der Feldmomente bei totaler Randeinspannung und der
Zusatzmomente in Feldmitte infolge der Differenzmomente

(Momentenfortleitungszahlen p^, p^ und px, pr
nach Tafel HI). Um die Grenzwerte der Feld- und
Randmomente zu erhalten, ist die Berechnung für
verschiedene Belastungsfälle durchzuführen.

3. Berechnungsbeispiel

Wir betrachten die Vierfeldplatte, Bild 12. Platte o sei
20 cm, die Platten b, c und d 16 cm stark. Die Platten
b und d seien längs den Aussenrändern 5 und 6 total
eingespannt.

3.1 Plattensteifigkeiten

Platte a N —

Platten b, c und d N

E 20»

12( 1 — p2)

E -168
12 (1 — J»2)

2,03 8,00

~ 1,63 4 09

3.2 Randsteifigkeiten und Uebertragungsfaktoren
Die K-Werte, p und /t'-Fäktoren erhalten wir aus Tafel I

wie folgt:

Platte a: Plattenart 4 mit 4^11=9r
10,8

1,0 und N 8 8>00

Rand 1,2:£ K4 *4 7,01 g ~ 7,01^^20 | |^

10,60 6,00

a b
10,80

t

c <J

I
**.*•»

®
_%}*V1JS +0.510

U-+0.293 U'"-H25S

^ + 0.293 f*-W80 u*+0,0B''

65°/ 187
35 "X il't

p-0,582 n'-0,W

* pH*m
5S%l»u.+o,mI11%

Bild 12 Bild 13
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Platte b: Plattenart 7 mit 10,8

6,0
1,8 und N ~ 4,09

— N 4,09 „ „„ p 0,340Rand l: K K7 4,93 ^ ~ 4,93^ 3^36 J ^W 4,09 p 0
Rand 3: £« tf7 6,71 ^ ~ 6,71^ 4£8 J ^

Platte c: Plattenart 4 mit
lx

10,8
7,2

1,5 und N ~ 4,09

N 4,09 p 0
Rand 2: £= S4 4,97 ^ ~ 4,97^- 2J3 J ^tf 4,09 u 0
Rand 4: _£= if4 6,70 % ~ 6.70 -^ 3^81 J, ^

Platte d: Plattenart 7 mit -i 7,2
"äö" 1,2 und JV ~ 4,09

p 0
Li2 J 0,186

tf 4,09Rand 3: K K7 7,25 -=- ~ 7,25 -^—

— N 4,09 » 0,189
Rand4:=£=K7 6,191-~6,i9_!_ 421 J, ^

3.3 VerteiZwwg* der A2tsgiZeic?ismo«ieMte

Die Verteilung der Ausgleichsmomente erfolgt im
Verhältnis der Randsteifigkeiten. Es entfallen

5,20
am Rand 1 auf Platte a

auf Platte b

am Rand 2 auf Platte a

auf Platte c:

am Rand 3 auf Platte b

auf Platte d

am Rand 4 auf Platte c:

auf Platte d

5,20 + 3,36

3,36
5,20 + 3,36

5,20
5,20 + 2,83

2,83
5,20 + 2,83

4,58
4,58 + 4,95

4,95
4,58 + 4,95

3,81
3,81 + 4,21

4,21
3,81 + 4,21

100 61 %

100 39 %

100 65 %

100 35 %

100 48 %

100 52 %

100 47 %

.100 5S %

m ® -1,25
-t-%.40

I

+3,03

|61 •äSl-ä-t o,3*M

S
5

+0,293 —\-0,259 +2,85 +0,96 ¦^55\\\

-1,62 -0,09 +0,03
+0,01

4-1.00 +0,65 +0,22
*5s\5s\N

-0,01 -0,01 „ +0.01

+0,19
+ 0,05 +0,03 -0,38

+1,22
-8,5t -3,49 +3.49 + 0,09 ——

I
+ 1,28

+1.2S
,,+0,293 -0,091

-o,n
+*Vtt
-o,n

y y +0,080

BS ¦w
35 52

-2.33
* -0,382 +0,186 0*-«*»

I+ 0,09 +OhfI
-0.13
+0,01

-0,02
+0,10

-0,01 ' +0,3ß
-3,03 II

(5)

-ysi \ .+0,2*1$

® i-m
-0,11

l
|t1 53|->+0,189

+ 1,1» -0,01
-0,54 -0,60 -0,02
+o,os
-0,01

+0.09
- 0,01

-0,23

+ 0.02
- 0.01 — 0.01

l
+ 0,57 -0,51

Bild 13 zeigt das Schema der Verteilzahlen und
Uebertragungsfaktoren mit den nach Bild 8 bestimmten Vorzeichen
für die Werte p und p'.

3.4 Volleinspannmomente

Wir denken uns Platte a mit 1 t/m2 belastet. Die Felder
b, c und d seien unbelastet. Die Volleinspannmomente betragen

nach Dischinger (siehe Literaturverzeichnis) an den Rändern

1 und 2 «ii % Vie * 1 * 10,82 7,25 t. Laut Bild 7
wird das Volleinspannmoment am Rand 1 negativ, dasjenige
am Rand 2 jedoch positiv.

3.5 Momentenausgleich
Bild 14 zeigt den Momentenausgleich nach Cross. Der

Reihe nach wurden die Ränder 1, 2, 4, 3, 1, 2, 4, 3, 1§| und 4

ausgeglichen.
Nach den in der Statik allgemein ülübhen Vorzeichen

betragen die ausgeglichenen Randmomente somit:

«i — 3,49 t m4 -- + 0,57 t
«2 — 3,03 t ms -: + 1,22 t
ms - + 0,38 t me - : — 0,23 t

3.6 Feldmomente

Feld a: Wir gehen von der an den Rändern 1 und 2 total
eingespannten Platte aus. Nach den Tabellen von Dischinger
betragen die Feldmomente:

1/37,2 • 1 • 10,82 3,13 t
Die Differenzmomente sind:

für Rand 1: Ami 7,25 — 3,49 3,76 t
für Rand 2: Am2 7,25 — 3,03 - 4,22 t

Mit den Momenteneinflusszahlen der Tafel UI für
Plattenart 4 mit lyßx 1 und v 0 errechnen sich die
Feldmomente der elastisch eingespannten Platte a zu: (x- Axe ||

Rand 2 angenommen)

mx 3,13+3,76 • 0,056+4,22 • 0,144 3,13+0,21+0,61 3,95 t
m~y - 3,13+3,76 -0,144+4,22- 0,056^3,13+0,54+0,23 3,90 t

Feld b: Da die Platte b unbelastet ist, sind die
Feldmomente in Plattenmitte lediglich von den Randmomenten
der Ränder 1, 3 und 5 abhängig. Nach Tafel m für Plattenart

7 mit lyßx — 1,8 ergibt sich:

mx (- 3,49 + 1,22) ¦ 0,247+0,38 • 0,084 - 0,56 + 0,03 - 0,53 t
ml (- 3,49 + 1,22) • 0,109—0,38 • 0,025 - 0,25—0,01 0,261

Feld c, d: Analog erhalten wir für
1,5)

— 3,03 • 0,185 0,57 0,109 —0,56
0,57-0,015 —0,39

0,06

-0,01

- 0,50 t
- 0,401

Feld d: (lyßx - 1,2)
mx (+0,57—0,23) • 0,109+0,38 • 0,133 + 0,04+0,05

+ 0,091

m„ (+0,57—0,23) 0,142+0,38 -0,015 =^+0,05+0,01
+ 0,061

•Bild 14

4. Vereinfachte Anwendung der Methode

Wie das berechnete Beispiel zeigt, geht der Momentenausgleich

dank den geringen Uebertragungsfaktoren viel
rascher vor sich als (hIb beim Durchlaufträger der Fall ist.
Eine Vereinfachung der Iteration können wir dadurch
erreichen, dass wir von Anfang an Uebertragungsfaktoren, die
eine gewisse Grösse (z. B. 0,100) nicht überschreiten,
vernachlässigen. Ferner genügt es in vielen Fällen, den
Momentenausgleich nur auf die der belasteten Platte benachbarten

Felder auszudehnen. Bei untergeordneten Platten, wie
z. B. Wohnhausdecken mit geringen Spannweiten, können
wir noch einen Schritt weitergehen und lediglich die an
einem Rande angreifenden Volleinspannmomente einmal
ausgleichen, wobei wir auf die Fort&ltung der Ausgleichsmomente

verzichten. Die dabei auftretenden Fehler werden
nicht sehr gross sein, insbesondere auch, weil bei solchen
Decken die Nutzlast nur einen geringen Teil der Gesamtbelastung

ausmacht.
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5. Verwendung der Methode für beliebige Belastungen
Das vorliegende Berechnungsverfahren kann auch für

Einzellasten verwendet werden, sofern die Seitenverhältnisse
lyßx der Platten nicht grösser als etwa 1,6 sind. Bei
grösseren Seitenverhältnissen ist die Abweichung der Einspannmomente

von einer Sinushalbwelle so stark, dass in der
Bestimmung der Randmomente untragbar grosse Fehler
entstehen. Die Methode ist jedoch nur dann vorteilhaft, wenn
zur Bestimmung der Volleinspannmomente und Feldmomente
Einflussflächen zur Verfügung stehen.

Adresse des Verfassers: W. Brunner, Dipl. Ing. ETH, Schöneggstrasse

42, Dietikon.
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Bild 1. Grundriss, Masstab 1:400. Umgebung nicht nach Plan ausgeführt

«Motel» in Losone

Architekt Herbert Osterwald, Zürich DK 728.52

Bild 2. Lageplan, Masstab 1:2000

Das hier abgebildete Hotel wurdS||n der «Sie und Er»
vom 6. Oktober 1955 dargestellt. In jener Publikation Hess
sich ein Herr Karl Glaus als Projektverfasser, Architekt und
Inhaber dieser neuzeitlichen Gaststätte feiern. In der Tat
ist aber Arch. H. Osterwald Urheber des Entwurfes, was
wohl am augenfälligsten mit den Bildern 3 und 4 bewiesen
wird, die das Modell des Architekten und den ausgeführten
Bau aus der gleichen Perspektive zeigen. Arch. Osterwald
hatte aus eigener Initiative auf Grund des Bauprogrammes
des Bauherrn (Mot Hotel AG. Luzern) einen Entwurf ver-
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