Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 73 (1955)

Heft: 46

Artikel: Reynoldszahl und dimensionslose Kennziffern bei

Strömungsmaschinen

Autor: Rütschi, K.

DOI: https://doi.org/10.5169/seals-62020

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Reynoldszahl und dimensionslose Kennziffern bei Strömungsmaschinen

Von K. Rütschi, Pumpenbau, Brugg

DK 621-135

1. Reynoldszahl

In Amerika wird im Zusammenhang mit dem Problem der Wirkungsgradaufwertung darüber diskutiert, ob die Reynoldszahl $Re=u\cdot D/\nu$ mit u= Umfangsgeschwindigkeit in m/s, D= Raddurchmesser in m, $\nu=$ Zähigkeit in m²/s für Strömungsmaschinen richtig gewählt sei. Man anerkennt, dass Re in dieser Form wohl in bezug auf seitliche Radrebung passe, aber nicht für die Raddurchströmung. Eine eindeutige Definition der Reynoldsziffer ist dann von besonderer Bedeutung, wenn man sie nicht nur zu Vergleichen modellähnlicher Ausführungen, sondern verschiedenartiger Strömungsmaschinen untereinander gebrauchen will.

In einer Arbeit von Hunt, Kottas und AMG Moody 1) versuchen die drei Autoren den Maschinenwirkungsgrad als Kenngrösse in Abhängigkeit der Reynoldszahl Re aufzuführen, wozu sie sich auf eine grössere Anzahl, in der Literatur angeführter praktischer Ausführungen von Turbomaschinen, d. h. Kreiselpumpen, Axial- und Radialkompressoren stützen. Bild 1 zeigt das Resultat dieser Untersuchungen, bei welchen man den Wirkungsgrad nach der Formel aufwertete:

$$rac{1-\eta}{1-\eta_v} = \left(rac{Re\ v}{Re}
ight)^a$$

wobei der Exponent α aus Versuchen zurückberechnet wurde. Daraus geht hervor, dass der Einfluss von Re im allgemeinen um so kleiner wird, je grösser Re ist. Man findet Exponenten von 0,57 bis hinab zu 0 vertreten, wobei aber hier nicht darüber diskutiert werden soll, ob die als Basis gewählte Reynoldszahl für den beabsichtigten Zweck in dieser Form überhaupt zwechmässig ist.

Die starke Streuung der Werte in Bild 1 erklärt sich einesteils aus der Nichtberücksichtigung der Spalt- und Leckverluste usw. (es wurde jeweils der gesamte an der Welle gemessene Wirkungsgrad zugrundegelegt) und anderseits aus dem Umstand, dass die Werte $Re = u \cdot D/\nu$ für Radial- und Axialmaschinen keinen inneren Zusammenhang haben. In den Diskussionen und Entgegnungen wird deshalb besonders betont, dass die Bezugnahme der Reynoldszahl auf den äusseren Raddurchmesser D_2 nicht zufriedenstellen könne und es wurde empfohlen, einen mittleren Durchmesser

$$D_m=\sqrt{rac{D_2^2+D_1^2}{2}}$$

zu wählen. Ein anderer Vorschlag ging dahin, für die Reynoldszahl

$$\mathit{Re} = rac{Q\;D}{D^2\;
u} = rac{Q}{D\;
u}$$

zu verwenden, wobei *Re* zugleich mit der Radform wechselt, also auch die spezifische Drehzahl mit einschliesst, um so verschiedene Modelle, bei denen also geometrische Aehnlichkeit nicht mehr vorliegt, miteinander vergleichen zu können.

In beiden Vorschlägen für die Reynoldszahl ist auch das Bestreben erkennbar, den Förderstrom entweder durch Hereinnahme von Q oder den davon abhängigen Laufradinnendurchmesser D_1 zu berücksichtigen. Betrachtet man nun Bild 2, das verschiedene typische Strömungsmaschinen zeigt, so tritt tatsächlich als gemeinsames Merkmal bei Axial- und Radialmaschinen der gesammelte Förderstrom am Ein- und Austritt in Erscheinung. Eine Bestätigung dieses vorherrschenden Einflusses bei Strömungsmaschinen wurde in eindeutiger Weise bei Versuchen über die Wirkungsgradaufwertung an einstufigen Spiralgehäusepumpen gewonnen 2). Wählt

man in gewohnter Weise als Vergleichsbasis den Radaussendurchmesser D_2 , so liegen in Bild 3a die hydraulischen Wirkungsgrade (bei denen Spaltverlust, Radreibung und mechanische Gleitflächenverluste ausgeschieden waren) für drei verschiedene Bauformen auf drei entsprechenden Kurven. Trägt man aber die gleichen Kurvenwerte in Bild 3b über dem Laufradinnendurchmesser D_1 auf, welcher dem gesammelten Förderstrom entspricht, so ergibt sich die wichtige Feststellung, dass diese drei Kurven auf eine einzige zusammenfallen. Man kann nun diese Erscheinung, wonach sich bei Strömungsmaschinen der Laufradinnendurchmesser D_1 als

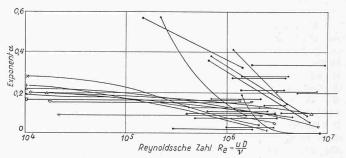


Bild 1. Beziehung zwischen dem Exponenten α und der Reynoldszahl Re für Strömungsmaschinen nach amerikanischen Untersuchungen 1)

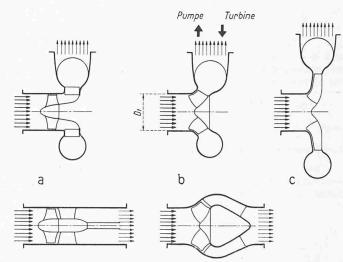


Bild 2. Allen Strömungsmaschinen gemeinsam ist der gesammelte Förderstrom am Ein- und Austritt der Maschine a Axialrad b Halbaxialrad c Radialrad

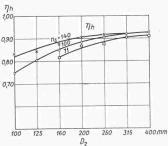


Bild 3 a. η_h in Funktion des Laufradaussendurchmessers D_2

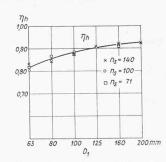


Bild 3 b. η_h in Funktion des Laufradinnendurchmessers D_1

Bild 3. Verlauf des hydraulischen Wirkungsgrades geometrisch nicht ähnlicher Maschinen,

¹⁾ The Influence of Reynolds Number on the Performance of Turbomachinery by Hunt, Harry Kottas and AMG. Moody in «Transactions of the ASME.» Juli 1951

²⁾ K. Rütschi, Untersuchungen an Spiralgehäusepumpen verschiedener Schnelläufigkeit, «Schweizer Archiv», Febr. 1951 SBZ

kennzeichnende Abmessung herausstellt, auch auf die Reynoldszahl ausdehnen, indem man bei $Re=u\cdot D/\nu$ u und D auf den Laufradinnendurchmesser D_1 bezieht oder noch besser die ursprüngliche Form der Reynoldszahl $Re=c\cdot d/\nu$ mit c als mittlerer Geschwindigkeit, also Förderstrom durch Querschnitt und $d=D_1$, wählt.

Mit beiden obigen Formen von *Re* können nun also beliebige, d. h. geometrisch nicht ähnliche Strömungsmaschinen miteinander verglichen werden, wobei die letztere Fassung noch den weiteren Vorteil hat, dass sie zu direkten Vergleichen mit bekannten Zahlenwerten der Rohrströmung herangezogen werden kann.

Wie stark Reynoldszahlen, je nach der Bestimmungsweise, in ihren Absolutwerten differieren können, zeigt das Beispiel eines Radialrades mit $D_1=200$ mm, $D_2=400$ mm, n=1450 U/min und c=4 m/s bei Wasserförderung (20 °C, $\nu=1/10^6$ m²/s)

$$Re_{D2} = rac{u_2 \ D_2}{r} = rac{30.4 \cdot 0.4 \cdot 10^6}{1} = 12.16 \cdot 10^6$$
 $Re_{D1} = rac{u_1 \ D_1}{r} = rac{15.2 \cdot 0.2 \cdot 10^6}{1} = 3.04 \cdot 10^6$
 $Re = rac{c \ D_1}{r} = rac{4 \quad 0.2 \cdot 10^6}{1} = 0.8 \cdot 10^6$

Es ist verständlich, dass bei solchen Unterschieden, wo vor allem schmale Radialräder mit grossen Radienverhältnissen gegenüber Axial- und Halbaxialrädern für gleiche Förderströme sehr hohe Reynoldszahlen ergeben, deren Bestimmung in der herkömmlichen Weise ein Gefühl der Unsicherheit hinterlässt. Schliesslich ist die Umfangsgeschwindigkeit u_2 und der Radaussendurchmesser D_2 wohl für die Förderhöhe massgebend, nicht aber für die bei Reynoldszahlen vorherrschende Durchströmung, für welche sich entschieden der Laufradinnendurchmesser D_1 besser eignet. Auch Pfleiderer schlägt für die Reynoldszahl den gleichwertigen Saugmunddurchmesser D_s vor (s. Fussnote 4). Es wird deshalb empfohlen, in Zukunft bei Strömungsmaschinen einheitlich die Gleichung

$$Re = \frac{c \ d}{v}$$

mit c= Durchflussgeschwindigkeit am Eintritt in m/s und d= Eintrittsdurchmesser D_1 in m zu wählen. Zur Vereinfachung der Bestimmung von Re soll die Nabenverengung weggelassen werden, womit

$$Re = rac{V \ D_1}{\pi/_4 \ D_1^2 \
u} = rac{4 \ V}{\pi \ D_1 \
u}$$

wird.

2. Dimensionslose Kennziffern

Bei der Ausbildung von Strömungsmaschinen hat sich als wertvolle Hilfe die Heranziehung von Versuchen und Erfahrungen aus den Nachbargebieten erwiesen, wobei durch die Anwendung dimensionsloser Kennziffern solche Vergleiche erleichtert werden. Es ist üblich, das Betriebsverhalten einer Pumpe oder eines Verdichters bei gleichbleibender Drehzahl durch die sogenannte Drosselkurve darzustellen.

Diese Kurve mit den Förderhöhen H (in m) und den Durchflussmengen V (in ${\rm m^3/s}$) kann in dimensionsloser Form dargestellt werden, wenn aus einer kennzeichnenden Laufrad-Abmessung und der Umfangsgeschwindigkeit u (in ${\rm m/s}$) eine Beziehung zwischen wirklicher und dimensionsfreier Grösse gebildet wird. An Stelle der Förderhöhe tritt dann die

Druckziffer
$$\psi = \frac{2gH}{u^2}$$

wo bei der Bildung von u^2 der hiefür massgebende Laufradaussendurchmesser D_2 gewählt wird. Die Durchflussmenge V wird durch die

Durchflussziffer
$$\varphi = \frac{4\ V}{\pi\ D^2\ u} = \frac{V}{F\ u}$$

ersetzt, wobei in Anlehnung an Axialmaschinen, bei denen diese Kennziffern zuerst angewendet wurden 3) für D und u wiederum der Radaussendurchmesser D_2 (der bei Axialmaschinen mit dem Eintrittsdurchmesser D_1 identisch ist) herangezogen wird. Häufig ist es üblich, bei der Definition der Durchflussziffer, insbesondere für axiale Maschinen, nicht den vollen Kreisquerschnitt, sondern den freien Ringquerschnitt zwischen Nabe und Laufradaussendurchmesser zugrundezulegen. Mit Rücksicht auf eine einfache und eindeutige Definition, die für alle Strömungsmaschinen gelten soll, wurde vom Unterausschuss des VDI-Fachausschusses für Strömungsforschung vorgeschlagen, diese Nabenverengung bei der Bestimmung der Durchflussziffer nicht zu berücksichtigen. Bei den nachfolgenden Bildern wurde diese Weisung durchwegs berücksichtigt.

So eindeutig nun aber die Definition der Druckziffer ist, weil die Umfangsgeschwindigkeit u_2 für den Druck massgeblich ist, so wenig kann man das aber für die Durchflussziffer φ sagen, solange man bei Radialmaschinen für D und u den Radaussendurchmesser D_2 einsetzt, wie dies heute üblich ist.

Vergleicht man in Bild 4 das Axialrad mit dem Radialrad, so sieht man sofort, dass beim Erstgenannten die Wahl des Austrittsdurchmessers D_2 , der ja zugleich auch dem Eintrittsdurchmesser D_1 entspricht, wohl sinnvoll ist, nicht aber beim Radialrad, bei welchem der Durchmesser D_2 mit dem Durchflusstrom (deshalb die Bezeichnung Durchflussziffer) absolut in keiner Beziehung steht. Es ist deshalb angebracht, für die Durchflussziffer, genau gleich wie vorher bei der Reynoldszahl, den hiefür massgeblichen Laufradinnendurchmesser D_1 zu verwenden.

Wenn man von der Nabenverengung und der Verengung durch die Schaufeln absieht, so entspricht die Durchfluss-

3) Dr. C. Keller «Axialgebläse vom Standpunkt der Tragflügeltheorie» Diss. ETH 1934

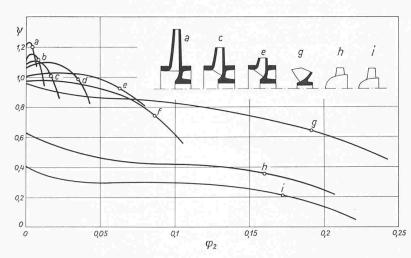


Bild 5. Dimensionslose Kennlinien von Kreiselpumpen verschiedener Schnellläufigkeit

Druckziffer
$$\psi=rac{2\,gH}{u_2^2}$$
 Durchflussziffer $arphi_2=rac{4\,V}{\pi\,D_2^2\,u_2^2}$

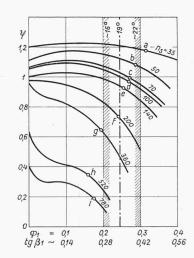


Bild 6. Gleiche Kennlinien wie in Bild 5. jedoch als Abszisse $\text{Durchflussziffer } \varphi_1 = \frac{4\ V}{\pi\ D_1^2\ u_1^2}$

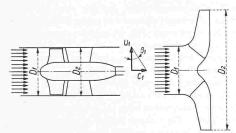


Bild 4. Die Durchflussziffer φ_2 kennzeichnet beim Axialrad mit $D_2 = D_1$ die Durchströmung, nicht aber beim Radialrad. Eine auf den Radinnendurchmesser bezogene Durchflussziffer ist für alle Radformen zweckmässig

ziffer φ gleichzeitig dem Eintrittswinkel des Fördergutes im Rad; denn es ist:

$$\varphi = \frac{V}{F_1 u_1} = \frac{c_1}{u_1} = \operatorname{tg} \beta_1$$

In Bild 5 sind nun einige kennzeichnende Kennlinien von Kreiselpumpen in der bisherigen Darstellungsweise über der Durchflussziffer φ_2 , die so bezeichnet wird, weil sie auf den Laufradaussendurchmesser D_2 bezogen ist, und zum Vergleich in Bild 6 über der dem Eintrittsdurchmesser D_1 zugrundeliegenden Durchflussziffer φ_1 aufgezeichnet. Die Betriebspunkte besten Wirkungsgrades sind jeweils mit einem Kreis hervorgehoben. Der Unterschied der beiden Darstellungsweisen rührt daher, dass die bisher übliche Durchflussziffer φ_2 nicht eine reine Durchflussziffer wie φ_1 ist, sondern die spezifische Drehzahl mit einschliesst und deshalb mit der Radform wechselt. φ_2 würde daher am treffendsten spezifische Durchflussziffer genannt.

Im Gegensatz zu Bild 5, in welchem z.B. ein Vergleich der Kennlinien nichts Wesentliches aussagt, gewährt Bild 6 mit der auf den Laufradinnendurchmesser bezogenen Durchflussziffer eine instruktive Uebersicht über die Wertigkeit der einzelnen Pumpen. Ausserdem sind sowohl Durchfluss- und Druckziffer als auch der ganze Verlauf der Förderkurve viel besser vergleichbar als in Bild 5.

Neben der Durchflussziffer φ_1 ist gleichzeitig auch der davon abhängige Eintrittswinkel β_1 eingezeichnet, wobei als Durchschnittswerte für die Nabenverengung $k=1-(d_n^2/D_1^2)=0,8$ und für die Verengung durch die Schaufeln am Laufradeintritt $t_1/(t_1-\sigma_1)=1,12$ angenommen wurde, so dass also

$$\lgeta_1=arphi_1\;rac{t_1/(\,t_1\,-\,\sigma_1)}{k}=(\,\infty\;1,\!4)\;arphi_1$$

entspricht.

Wenn auch dieser Mittelwert insbesondere bei Axialrädern mit grosser Nabe und hoher Schaufelzahl (Rad h) etwas knapp ist, so bestätigt doch Bild 6, dass bei Kreiselpumpen die Eintrittswinkel insbesondere von Radialrädern meistens zwischen 16 und 22° liegen. Bei Luftförderung, wo keine Rücksichten auf Kavitation zu nehmen sind, können naturgemäss Eintrittswinkel und damit auch die Durchflussziffern merklich höher liegen.

Die bisherige auf dem Laufradaussendurchmesser D_2 basierende spezifische Durchflussziffer φ_2 kann aber zusam-

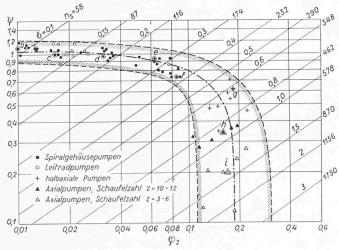


Bild 7. Druckziffer, Durchflussziffer und spezifische Schnelläufigkeit für verschiedenartige Kreiselpumpen

men mit der spezifischen Schnelläufigkeit zur Bildung einer wertvollen Uebersicht über das gesamte Arbeitsgebiet von Strömungsmaschinen verwendet werden. Für die spezifische Drehzahl sind die beiden Begriffe

$$n_s=$$
 3,65 $nrac{\sqrt{|V|}}{H^{3/4}}$ oder $rac{n\sqrt{|N|}}{H^{5/4}}$ und $n_q=rac{\sqrt{|V|}}{H^{3/4}}$

weit verbreitet. Beide Ausdrücke sind aber nicht ganz dimensionsfrei, sie ändern ihren Wert mit dem Massystem und darüber hinaus ist n_s noch von der Dichte des Stoffes abhängig und gilt streng nur für kaltes Wasser mit der Dichte 1000 kg/m^3 .

Damit man bei der spezifischen Drehzahl n_q auch noch die Abhängigkeit vom Massystem wegbringt, wird entweder durch Einführung von $g\cdot H$ an Stelle von H die von Pfleiderer 4) empfohlene Abänderung von n_q in

$$n_{q'} = n \, \frac{\sqrt{V}}{(g \, H)^{3/4}}$$

oder die im Verdichterbau bereits gut eingeführte Drehzahloder Schnellaufziffer von Keller³)

$$\sigma = \frac{2\sqrt[4]{\pi}}{60} (2gH)^{-3/4} \sqrt[4]{V} n$$

verwendet.

Die Werte σ , n_q ', n_q und n_s für die spezifische Schnellläufigkeit verhalten sich im metrischen System zueinander wie in Tabelle 1 angegeben:

Tabelle 1. Zusammenhang zwischen den verschiedenen Werten für die spezifische Schnelläufigkeit.

n_s	$n_s = 3,65 \ n_q$		$n_{q^{'}} = ext{0,182} \ n_{q}$			$\sigma = n_s/578$	
n_s	_	50	100	200	400	800	1600
n_q	=	14	28	56	112	225	450
n_{a}'	=	2,55	5,1	10,25	20,5	41	82
σ	=	0,087	0,172	0,345	0,69	1,38	2,76

In Bild 7 sind nun die Betriebspunkte für eine grössere Anzahl verschiedener Bauarten von Kreiselpumpen zusammen mit der spezifischen Drehzahl eingetragen. Letztere steht zur spezifischen Durchflussziffer φ_2 und zur Druckziffer ψ in folgender Beziehung:

Schnellaufziffer
$$\sigma = \sqrt{\overline{\varphi_2}} / \psi^{3/4}$$

Die Druckziffer ψ verbleibt beim Radialrad lange auf einem Wert um rd. 1 und sinkt dann bei etwas breiteren Radformen zuerst langsam ab, um hierauf beim Halbaxialrad und noch ausgeprägter beim Axialrad steil abzufallen. Dieser Verlauf ist daraus zu erklären, dass die spezifische Durchlaufziffer φ_2 bei ungefähr gleichbleibender Druckziffer ψ mit

4) C. Pfleiderer, Strömungsmaschinen, Springer Verlag 1952

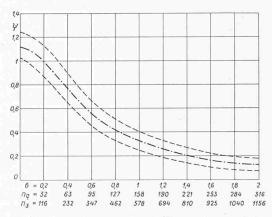


Bild 8. Verlauf der Druckziffer ψ für Kreiselpumpen in Abhängigkeit der spezifischen Drehzahl

kleinerem Verhältnis D_2/D_1 ständig anwächst, beim Halbaxialrad und Axialrad mit $D_2/D_1 = 1$ ein Optimum erreicht und aus diesem Grunde bei sinkender Druckziffer vertikal abfällt. Einen gleichen Verlauf hat übrigens auch Eckert 5) für Verdichter festgestellt, nur liegen dort die Absolutwerte etwas höher, weil im Verdichterbau steilere Schaufelwinkel und auch höhere Schaufelzahlen üblich sind. Bild 7 zeigt mit den schraffierten Konturen gleichzeitig auch die Grenzwerte von ψ und φ_2 , die man bei Kreiselpumpen anwendet. Fallen die Betriebspunkte auf die linke Seite der Mittellinie, so handelt es sich um spezifisch schwächer «aufgeladene» Pumpen, d. h. die Maschine darf vielleicht bei der hohen absoluten Drehzahl aus Kavitationsgründen keine zu steile Schaufelwinkel erhalten. Umgekehrt dürfen und sollen bei relativ niedrigen Drehzahlen oder bei Wegfall von Kavitationsgefahr bei der Pumpe möglichst steile Winkel mit recht hohen Durchflussziffern angestrebt werden, wobei innerhalb des schraffierten Bereiches gute Wirkungsgrade möglich sind.

Trotz der scheinbar starken Streuung der Punkte gestattet Bild 7 doch, die für die Vorausbestimmung einer Strömungsmaschine wichtige Druckhöhenziffer ψ mit guter Annäherung herauszulesen. Zu diesem Zweck sind in Bild 8

Mittellinie und Grenzkonturen aus Bild 7 über der Schnelllaufziffer σ oder der spezifischen Drehzahl n_s aufgetragen, wobei die obere Grenzlinie wiederum für Pumpen mit höheren Schaufelzahlen und steileren Schaufelwinkeln gilt.

Es ist übrigens reizvoll festzustellen, dass auch Dr. $Cordier^6$) bei seinen Untersuchungen über die Arbeitspunkte von 120 Lüftern, Gebläsen und Pumpen unter Benützung eines dimensionslosen spezifischen Laufraddurchmessers, welcher an Stelle der spezifischen Durchlaufziffer φ_2 tritt, zu gleichen Ergebnissen kommt, wie sie die Bilder 7 und 8 zeigen.

Entsprechend dem vorherrschenden Einfluss des Aussendurchmessers D_2 ergeben die Bilder 7 und 8 in erster Linie Unterlagen für die Druckhöhenziffer ψ in Abhängigkeit der spezifischen Drehzahl, wogegen als reine Durchflussziffer wie

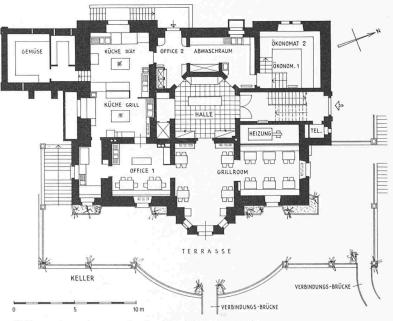
vorgeschlagen der Wert
$$arphi_1 = rac{V}{F_1 \, u_1} = rac{4 \, V}{\pi \, D_1^2 \, u_1}$$

mit dem kennzeichnenden Innendurchmesser D_1 zweckmässiger erscheint.

- Eckert, Axialkompressoren und Radialkompressoren, Springer Verlag 1953, Abb. 41
 - 6) BWK «Brennstoff, Wärme, Kraft» Bd. 5, 10. Oktober 1953

† Lux Guyer

Als Lux Guyer im Jahre 1923 in Zürich ihr eigenes Bureau eröffnete, war sie die erste praktizierende Architektin in der Schweiz, und sie blieb für ein Jahrzehnt die einzige. Sie hatte an der ETH studiert, und zwar trotz ihren modernen Ansichten bei Prof. G. Gull, den sie stets menschlich schäzte, so wenig ihre Architektur mit der seinen übereinstimmte. Es folgten Jahre praktischer Tätigkeit in England, Paris, Berlin, Florenz; der entscheidende Eindruck war die englische Wohnkultur.


Im Jahre 1930 verheiratete sich Lux Guyer mit dem besonders durch seine Brückenbauten der Rhätischen Bahn bekannten Ingenieur Hans Studer, so dass zu ihren Berufspflichten noch die einer Frau und Mutter dazukamen. Ihre erstaunliche Energie und Unternehmungslust liess sich auch durch Rückschläge nicht entmutigen, zu ihrem höchst aktiven, strahlenden Temperament kam eine spezifisch weibliche Einfühlungsgabe in die Bedürfnisse ihrer Bauherren und in die Möglichkeiten einer gegebenen Situation, und ein ganz instinktiver und darum untrüglicher Geschmack für das Detail, für Textilien, Keramik, für Farbgebung jeder Art, und dies ohne alle doktrinäre Festlegung. Ihre Einfühlung hatte nichts Sentimentales à la «Heimatstil», sie war im Gegenteil überzeugt, ihren Bauherren und auch den Besuchern und Bewohnern der Bauten sozialer Zweckbestimmung etwas an

geistiger Spannung zumuten zu dürfen, und sie damit — ohne alle ausdrückliche Belehrung — geschmacklich, und nicht nur geschmacklich erziehen zu können. Anderseits lag ihr nichts ferner, als irgend jemandem irgendwelche Avantgardismen aufzudrängen.

Neben zahlreichen Einfamilienhäusern in Küsnacht, Itschnach, Zollikon, Muttenz u. a. O. stammen folgende grössere Bauten von Lux Guyer: Drei grosse Wohnblöcke mit alkoholfreiem Restaurant «Lettenhof» in Zürich für eine Baugenossenschaft berufstätiger Frauen — das erste Unternehmen dieser Art in Zürich, 1926, Aehnlich zwei Baublöcke mit 44 Ein- und Zweizimmerwohnungen und Restaurant «Beckenhof» 1929, und im gleichen Jahr Bauten für alleinstehende Frauen in Luzern. 1930 bis 1932 fünf Sechsfamilienhäuser «Südend» an der Zollikerstrasse in Zürich 8; 1930 das Studentinnenheim gegenüber der KircheFluntern. 1929 und 1932 die Ferienheime «Co-op» in Weggis und Joigny sur Vevey, dazu 1941 bis 1944 ein Altersheim «Co-op» in Joigny, alles in Zusammenarbeit mit Dr. Jäggi. 1940 bis 1941 Ausbau des Restaurant «zur Münz» in Zürich, besonders schön geschmückt mit Wandund Deckengemälden und Gipsplastiken verschiedener Künstlerinnen und Künstler — in der Folge leider verständnislos entstellt, immerhin noch nicht zerstört. 1942 bis 1943 Umbau der Pension Tiefenau an der Steinwiesstrasse. 1950 bis 1953 eine Wohnsiedlung von vier Ein- und Mehrfamilienhäusern an der Guggerstrasse sowie drei Einfamilienhäuser und ein Mehrfamilienhaus an der Alten Landstrasse, beides in Zollikon, und 1953 bis 1954 die hier abgebildeten Umbauten und Neubauten der Fremdenpension Résidence «Im Park», Zürich-Enge. Dazwischen zahlreiche Einzelhäuser, so neun an der Strasse von Küsnacht nach Itschnach, aus den Jahren 1929 bis 1955.

Eine Hauptleistung, sowohl künstlerisch wie organisatorisch, war Lux Guyers führende Mitarbeit an der «Schweizerischen Ausstellung für Frauenarbeit» SAFFA in Bern 1928. Diese erstmalige, vom ganzen Enthusiasmus der politisch und sozial selbstbewusst gewordenen Schweizer Frauen getragene Manifestation stand weit über allem, was vorher und nachher auf dem gleichen Areal stattfand, und wurde an Intensität und Güte der Darbietung erst von der Landi Zürich 1939 übertroffen.

Wie für keinen anderen Architekten (was wörtlich zu nehmen ist) war es für Lux Guyer eine Selbstverständlichkeit, Kunst und Kunstgewerbe zur Ausstattung ihrer Bauten beizuziehen, und sie hatte ein besonderes Talent, ihre Bauherren für derartiges zu gewinnen, weil sie selbst von der

Kellergeschoss der umgebauten Villa, Masstab 1:300