Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 73 (1955)

Heft: 14

Artikel: Gebirgsdruck im Stollen- und Kavernenbau

Autor: Frey-Bär, Otto

DOI: https://doi.org/10.5169/seals-61885

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZERISCHE BAUZEITUNG

73. JAHRGANG HEFT NR. 14

Gebirgsdruck im Stollen- und Kavernenbau

Von Dipl. Ing. Otto Frey-Bär, Motor-Columbus AG., Baden

DK 627.842:622.83

Die Auskleidung der Druckstollen und Druckschächte von Kraftwerken wird in der Regel nur für die Aufnahme des inneren Wasserdruckes dimensioniert. Die Wirkung des Gebirgsdruckes tritt dabei in den Hintergrund, da es sich meistens um kleinere kreisrunde Querschnitte handelt. Sofern sich eine gewisse Belastung durch das Gebirge einstellt, kann sie durch die Betonverkleidung sehr gut aufgenommen werden. Der Gebirgsdruck bewirkt in diesem Falle eine Druckvorspannung im Betonring, bringt also eine Entlastung der durch den inneren Wasserdruck auf Zug beanspruchten Auskleidung.

Bei weiten Stollen mit grosser Gebirgsüberlagerung gewinnt der Gebirgsdruck vermehrte Bedeutung. Hier kann die äussere Belastung der Auskleidung durch den Gebirgsdruck für die Dimensionierung allein massgebend sein. Ganz eindeutig tritt dieses Problem in den Vordergrund bei grossen Ausbrüchen wie Kavernenbauten für unterirdische Zentralen, Magazine usw. Mit Deformationen vor und auch nach der Ausführung der Betonverkleidung muss gerechnet werden. In den Maschinenkavernen von Kraftwerken werden die Lager der grossen Maschineneinheiten auf Bruchteile von Millimetern ausgerichtet. Schon kleine, durch den Gebirgsdruck hervorgerufene Deformationen, welche sich als Verschiebungen auf die Lager übertragen, können empfindliche Betriebsstörungen zur Folge haben.

Was ist Gebirgsdruck? Warum können beim Ausbruch grosser Hohlräume im Gebirge Kräfte ausgelöst werden, welche imstande sind, gut gefügte Steinauswölbungen zu deformieren oder welche ein Aufsteigen der unverkleideten Sohle in den Hohlraum bewirken? Vor 50 Jahren beschrieb Prof. A. Heim recht plastisch die Auswirkungen des Gebirgsdruckes und gab gleichzeitig auf Grund der Erfahrungen beim Bau der grossen Eisenbahntunnel in den Alpen und im Jura eine Erklärung für dieses Phänomen 1). Er vergleicht die im Gebirge durch das Gewicht der Ueberlagerung wirkenden Kräfte mit einem «hydrostatischen Druck», welcher sich allseitig fortpflanzt, wobei jedoch mit der inneren Reibung im «Medium» gerechnet werden muss. Nach dem Ausbruch eines Stollens tritt bei kleiner innerer Reibung im Gebirge der Gebirgsdruck sofort auf und bewirkt das Eindringen des Gesteins in den Hohlraum. Wenn die Reibung jedoch gross ist,

1) Prof. A. Heim: Tunnelbau und Gebirgsdruck, Vierteljahresschrift der Naturforschenden Gesellschaft, Zürich 1905. erscheint der Druck erst im Verlaufe der Zeit. Der Zeitfaktor spielt deshalb bei allen Untersuchungen eine wesentliche Rolle. Prof. Heim hat seinerzeit ganz klar die plastische Verformbarkeit des Gebirges, das Kriechen unter der Belastung, erkannt. Heute ist diese Eigenschaft durch Messungen in Versuchsstollen und an Gesteinshandstücken vielfach nachgewiesen worden, und es sei auch an dieser Stelle an die Kriechfähigkeit des Betons (künstliches Gestein) erinnert.

Nach dem Ausbruch eines Hohlraumes im Gebirge gesellen sich zu den primär vorhandenen Spannungen (Auflagelast und allfällige tektonische Spannungen) die sekundären Randspannungen infolge der Kerbwirkung des Hohlraumes. Die Berechnungen und Modellversuche lassen erkennen, dass an einigen Stellen am Umfange die resultierenden Druckbeanspruchungen im Gebirge ein Vielfaches der Primärspannungen erreichen. Je nach der Gebirgsart zeigen sich diese grossen Beanspruchungen in den verschiedensten Formen an wie Ausquetschungen, schalenförmige Einbrüche, Bergschlag, Hebung der Sohle usw.

Aus diesen Erkenntnissen lassen sich bereits einige wesentliche Voraussetzungen ableiten, die von der Auskleidung einer grossen Kaverne erfüllt werden müssen. In erster Linie sollen nach dem Ausbruch tiefgreifende Gleiterscheinungen im Gebirge verhindert werden durch sofortige Auskleidung des Hohlraumes. In den meisten Fällen wird sodann der Betoneinbau durch die plastischen Verformungen im Gebirge nach und nach belastet. Je nach Gesteinsart kann sich die Belastungszunahme über mehrere Jahre erstrecken (Zeitfaktor). Zur Aufnahme der im Einzelfalle ganz erheblichen Aussenkräfte ist eine günstige Form des Ausbruches und damit der Verkleidung unerlässlich (z. B. allseitige Wölbung nach aussen). Aber auch im günstigsten Falle ist mit gewissen Verformungen zu rechnen. Die Auswirkungen des Gebirgsdruckes können nicht mit Bestimmtheit vorausgesehen werden. Auch wird der Verkleidungsbeton selbst infolge der Belastung gewisse Deformationen erleiden.

Bei den in den letzten Jahren zur Ausführung gelangten Kavernenbauten wurden vereinzelt grössere plastische Verformungen als Auswirkungen des Gebirgsdruckes festgestellt. Ich gestatte mir deshalb, die früher gemachten Erfahrungen in Erinnerung zu rufen und auf die Bedeutung des Gebirgsdruckes beim Kavernenbau hinzuweisen.

Dehnungsmessungen im Druckstollen des Juliawerkes Tiefencastel

Von Dipl. Ing. R. Vonplon, Büro für Wasserkraftanlagen der Stadt Zürich

DK 627.842.0014

I. Einleitung

«Der Bau eines Druckstollens wird eintönig und uninteressant, wenn immerzu nur gutes, standfestes und trockenes Gebirge durchfahren wird», äusserte ein Mann vom Fach. Auch die Bemessung der Auskleidung eines solchen Druckstollens bedeutet kein Problem, so lange mit einem nicht abnormal hohen Innendruck (Betriebsdruck) gerechnet werden muss. Umgekehrt können ungünstige geologische Verhältnisse nicht nur einen beschwerlichen und kostspieligen Vortrieb verursachen, sondern auch die Bemessung der Auskleidung schon bei relativ kleinem Innendruck vor Aufgaben stellen, deren einwandfreie Lösung in technischer und wirtschaftlicher Hinsicht ohne Vornahme von Stollenabpressungen mit Dehnungsmessungen fast unmöglich ist.

Beim Bau des Druckstollens des Juliawerkes Tiefencastel wurden gute, aber auch sehr schlechte Felsverhältnisse angetroffen. Besondere Umstände ermöglichten, im geologisch ungünstigsten Stollenabschnitt Abpressversuche mit Dehnungsmessungen auszuführen. Für die Bewertung der Ergebnisse dieser Versuche wird es notwendig sein, eine kurze Be-

schreibung der geologischen Verhältnisse im Bereich des Versuchsstollens vorauszuschicken.

Bild 1 gibt eine Uebersicht des ausgeführten Druckstollens. Der erste Vortrieb vom Fenster Mulegn nach Süden verliess nach kurzer Strecke die standfesten Tonschiefer und stiess in einer Zone versackter Tonschiefer mühsam rund 150 Meter vor. Die Bilder 2 und 3 veranschaulichen die heftigen Druckerscheinungen, mit welchen in solchen Gebirgen zu rechnen ist.

Ein Teil dieser Druckzone wurde mit fortschreitendem Vortrieb ausgekleidet. Nach dem Ausschalen der Betonverkleidung entstanden in mehreren Betonringen lokal begrenzte Deformationsrisse, hervorgerufen durch die ungleichmässige Druckwirkung des Gebirges. Durch periodische Durchmesserkontrollen konnten in den ersten Wochen noch kleine Deformationen festgestellt werden, die dann rasch abklangen und schliesslich zum Stillstand kamen. Auch der Holzeinbau im unverkleideten Abschnitt der Stollenbrust zeigte im Verlaufe des folgenden Jahres keine Veränderung der anfäng-