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72. JAHRGANG HEFT NR. 48

Berechnung gekriimmter Blattfedern fiir elastische Kupplungen

Von Dipl. Math. R. Zwahlen, Ziirich

II, Teil: Differentialgleichung, Anfangsbedingungen und
Losung

1. Modifikation der Gleichung (2 b)

Gl. (2b) gibt die Moglichkeit, eine Differentialgleichung
fiir den krummen Balken aufzustellen. Es ist

Adg y2dF
do J r—y
In Bild 6 stellt » den Kriimmungsradius der Neutralaxe im
belastungsfreien Fall und p den entsprechenden Kriimmungs-
radius bei Belastung dar. Kleinen Winkeln Ady entsprechen
relativ grosse Unterschiede ] r—op |. Im schraffierten Dreieck,
gebildet aus den Seiten | r—p |, 7 und p findet man nach dem
Sinussatz:

M —=FE

r—p  sinAdg
P ~ sindg

Weil die Winkel Ade und de
sehr klein sind, folgt
Ade _ R =t
de P
und nach Gl. (2)

2
M:E(.T__l)fy L
3 T—y

1 1 M A Neutralaxe des belastelen Balkens
e e o B Neutralaxe des unbelastelen Balkens
P e Er [Y4F
r—UY

Bild 6. Ermittlung des
Wenn die unter 3 des I. Teils ~ Kriimmungszentrums
genannten Voraussetzungen er-
fiillt sind, macht man von Gl. (9) Gebrauch und erhilt
p T Brl EJ
/i
Gl. (10) gilt tberall da, wo die Feder frei ist, also nicht am
Kupplungs-Segment anliegt. Es ist zu beachten, dass in G1. (10)
M und J nicht konstant sind. Daher ist auch p verédnderlich. Als
unabhingige Variable wahlen wir die Bogenlinge s. M, J und
p sind also Funktionen der unabhingigen Variablen s. Der
Punkt s — 0 wird willkiirlich in jenes Ende der Feder gelegt,
welches mit dem Kupplungs-Segment verbunden ist. J (s) ldsst
sich fiir jeden Wert von s unmittelbar berechnen. Die Kon-
struktion, welche gestattet, die gestellte Aufgabe zu losen,
stiitzt sich auf Gl. (10). Zur vollstindigen Behandlung des
Problems gehort jedoch die Aufstellung der Differentialglei-
chung, welche die Deformation beherrscht. In diesem Zusam-
menhang wollen wir auch abkldren, wie das Moment M von
der Bogenldnge s abhidngt. Wenn es gelingt, M (s) durch p (s)
ohne GIl. (10) auszudriicken sowie in dieser M (s) zu eliminie-
ren, so ist die Gleichung der elastischen Linie des krummen
Balkens durch natiirliche Koordinaten p und s gefunden.
Viele Probleme der technischen Mechanik und der Physik
lassen sich bekanntlich mit natiirlichen Koordinaten besser als
mit anderen behandeln.

Fiir r—> oo erhédlt man die «klassische» Gleichungsform
der elastischen Linie. Bei kleinen Deformationen darf man fir
die Kriimmung 1/p mit guter Niherung die zweite Ableitung
d2?y/dx? einsetzen, wenn x und y irgendwelche rechtwinklige
Koordinaten eines Punktes der elastischen Linie bedeuten, die
wir spiter einfiihren,

2. Differentialgleichung

Auf den Federbolzen wirkt tangential zum Kreis, auf dem
sich der Bolzen um die Kurbelwelle dreht, eine Kraft P. Ihre
Grosse ist bekannt und jeweils aus dem zu iibertragenden
Kupplungsmoment zu berechnen, Durch P wird die Feder zu-
sammengedriickt. Mit ihrem untern Teil liegt sie am Kupp-
lungs-Segment an. Zur Fiihrung des andern Federendes auf

DK 621.825.7: 539.413
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einem Kreis geniigt die Kraft P allein nicht. Es ist vielmehr
noch eine Radialkraft V notwendig. Da V nicht bekannt ist,
ist auch die Resultierende R aus P und V unbekannt. Die Wir-
kungsgerade von R nennen wir w, Bild 7. w schneidet die
Neutralaxe der Feder in zwei Punkten.

Wenn das eine Federende am Kupplungs-Segment zum
Anliegen kommt, das andere dagegen mit dem Bolzen ver-
bunden ist, so muss das Moment die Kriimmung der Feder
einerseits vergrossern und an andern Stellen verkleinern.
M muss daher einmal positiv und einmal negativ sein, was nur
moglich ist, wenn w die Neutralaxe der Feder schneidet. Man
erkennt, dass jener Teil der Feder, der mit w zusammen un-
gefihr ein Kreissegment bildet, seine Kriimmung vergrossern
muss, wahrend der restliche freie Teil sie verkleinert. Bei Zug-
beanspruchung der Feder ist dies gerade umgekehrt. Man ent-
nimmt hieraus, wie die Gleichung fiir die Krimmung anzu-
setzen ist: Die Federkriimmung muss in Ndhe der Einspan-
nung durch das Moment M verringert werden. Mit x (s) be-
zeichnen wir den Abstand eines Punktes @ der Neutralaxe der
Feder von der Wirkungsgeraden w. Fiir das Moment M (s)
gilt folglich

M (s) = — R z (s)

Fir den Abstand « (s) ist damit ein Vorzeichen festgelegt.
Aus GI. (10) folgt damit
1 1 M(s) _ Rux (s)
p(s) r  EJ(s)  EJ(s)
Die Kriimmung der Feder 1/p (s) wird kleiner als 1/r fiir
die Umgebung des Punktes, in welchem sich die Feder vom
Kupplungs-Segment abhebt. Die Kriimmung 1/p (s) kann bei
hinreichend grossem Moment [ — R (s)] das Vorzeichen wech-
seln, wenn man der Feder die nétige Deformationsfreiheit gibt.

Fiir  (s) =0 wird 1/p (s) = 1/r, d. h. p (s) = r ist hier
grosser als im eben betrachteten Punkt. Im Federteil zwi-
schen den beiden Schnittpunkten, der Geraden w mit der Neu-
tralaxe der Feder, in denen x (s) — 0 ist, wird die Krimmung
grosser als 1/r, weil « (s) hier negativ wird.

Wie bereits erwdhnt, sind R und V noch unbekannt, Die
Bestimmung dieser Werte gehort zur Losung der Aufgabe,
welche im folgenden Abschnitt 4 beschrieben wird. Vorldufig
rechnen wir damit wie mit bekannten Grossen. Um die Diffe-
rentialgleichung der elastischen Linie ableiten zu konnen,
schreiben wir Gl. (10) in der Form
EJ (s) 1 1

R ('Ms) _7)

Bild 7 zeigt die Wirkungsgerade w, die elastische Linie
der Feder, ihre Einspannung am Kupplungs-Segment mit der
Tangente ¢t und dem Krimmungsradius p (s), der mit der An-
fangslage s — s, den Winkel ¢ einschliesst. Im Endpunkt @
von p (s) ist die Tangente an die elastische Linie gezogen,
die mit t ebenfalls den Winkel ¢ einschliesst. Der Winkel
zwischen dieser Tangente und dem Abstand x (s) [vom
Punkte Q zu w] betrdgt 6. ® und ¢ sind natiirlich von der
Bogenldnge s auch abhéngig. Einer Drehung von p (s) um
den Winkel dg entspricht auch eine Drehung der Tangente um

(11)

— SN =

a) Krimmungszentrum der Feder

Bild 7. Anordnung der Krifte und Bezeichnungen
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dp. Auch der Winkel © dndert sich um dy. Man macht sich
leicht klar, dass

x (s 4+ ds) —x(s) <

—=’—cos 0 (s)

ds
folglich
d EJ(s) Bl IN" dx(s)
WT(W—7)__T_COSO(S)
Somit
d EJ(s) 1k
arc cos = (m)— — ?) = 08.(8)
d areioos d EJ(s) 1 1\7]_ do(s)
W[ WT(T(S—)_TXI‘T

Aus d0 = dg geht hervor, dass do6/ds = dp/ds (0 und ¢ unter-
scheiden sich nur um eine Konstante). Ferner ist dg/ds =
1/p (s); somit erhdlt man

are cos d EJ(s) . Iy 1
ds ds R (WT o 7) p(s)
oder nach Ausfiihrung der Differentiation
EJ5s) 1 1\
(12) — [ R (P's) _?):I — 1
1/1_[EBJ G [ 1 1\['2 p (s)
l’ [ R (p(S) _7)}
Damit gleichwertig ist die Form
d EJ(s) 1 1 1
(ERh) A Aot ST VP (L e mm g e e
) R (p ©) r) p(s)

In GL (12) und (13) ist je p (s) die gesuchte Funktion.
Die Losung der Gl. (12) und (13) fiihrt bei konstanter Biege-
festigkeit auf elliptische Integrale. Die exakte Ldsung bei
nichtkonstanter Biegesteifigkeit ist meistens nicht moglich.
Die Differentialgleichungen sind nicht linear und von zweiter
Ordnung. Durch die Angabe von EJ (s) bleibt als unbekannte
Funktion in Gl. (13) nur p (s) zuriick, die durch die Anfangs-
bedingungen eindeutig bestimmt wird.

3. Anfangsbedingungen

Unter den vorhandenen Bedingungen gilt Gl. (12) nicht,
wo der Balken am Kupplungs-Segment anliegt, weil der Feder
dort die Kriimmung vorgeschrieben ist., Wenn das Moment
fiir den Balken nach GIl. (10) eine kleinere Krimmung er-
fordern wiirde als die durch das Kupplungs-Segment vorge-
gebene, so wird einfach ein Teil des Momentes vom Kupp-
lungs-Segment aufgenommen.

Mit dieser Feststellung ldsst sich jener Punkt bestimmen,
in dem sich die Feder von ihrer Anlage am Kupplungs-Seg-
ment trennt. Es sei R’ der Radius des Kupplungs-Segmentes.
So weit die Feder am Kupplungs-Segment anliegt, ist

R =p (8)
In jenem Punkte jedoch, wo nach Gl (10) erstmals folgt
R > p (s)

beginnt sich die Feder von ihrer Fiihrung abzuheben. Wir
bezeichnen diesen Punkt als Anlagepunkt.

Geméss GI. (10) erhdlt man fiir die Bestimmung des Anlage-
punktes die Gleichung

1__i__ Rux(s)

p(s) r "EJ (s)

Hieraus ist die Bogenlinge (sg) so zu bestimmen, dass die
Beziehung erfiillt ist:

1 il

R r

(14)

Rz (89)
EJ (so)

Das gelingt nur durch sukzessive Approximationen. Man
schiitzt einen Wert s, und berechnet dazu einen Radius p (s),
schéitzt einen zweiten Wert von s, berechnet hierzu p (80).
Durch lineare Interpolationen folgt hieraus ein neuer Wert
von so. Damit wiederholt man das Verfahren, bis der Wert
von p mit R’ geniigend genau {ibereinstimmt 2),

Im Anlagepunkt gelten fiir die Feder folgende Stetig-
keitsbedingungen:
1. Die elastische Linie der Feder ist iiberall stetig.

?) Den Abstand « (8) bestimmt man mit Vorteil und geniigend
genau graphisch.

(15)

2. Die Tangente dreht sich stetig. Die Kurve ist nicht ge-

knickt.
Hieraus folgen die Anfangsbedingungen
2 (’8) : =70 ﬂ = %o’ = — €08 B9
3 = 8 ds |s= So

xo und 2z’ sind geometrische Daten, die sich bei bekanntem
Anlagepunkt zeichnerisch leicht bestimmen lassen. Damit
sind die Differentialgleichungen (12) und (13) samt Anfangs-
bedingungen bekannt.

Bei der praktischen Losung der Aufgabe wird man be-
merken, dass im vorliegenden Falle die theoretische Losung
der experimentellen iiberlegen ist, da diese liberraschend ge-
nau, billig und schnell zum Ziele fiihrt. Sie ldsst sich auch
auf den Fall ausdehnen, wo Fliehkriafte an der Deformation
der Feder mitwirken, wahrend fiir eine experimentelle Unter-
suchung dieses erschwerten Problems teure Einrichtungen
bendtigt werden.

4. Graphische und numerische Losung der Differential-
gleichung

Man schédtzt eine passend erscheinende Radialkraft V.
Damit ist zunéchst die Lage der Geraden w bekannt und die
elastische Linie des deformierten Balkens ldsst sich fiir diese
Radialkraft konstruieren. Man findet am Schlusse der nach-
folgend beschriebenen Konstruktion ein einfaches Kriterium
dafiir, ob V richtig geschatzt wurde.

Die elastische Linie des gekriimmten Balkens entsteht
nun durch Zusammenfiigen von Kreissektoren, Bild 8 Neh-
men wir an, ein solcher Kreissektor 1 sei schon gefunden
worden und man suche den Sektor 2. Wir beschreiben nach-
folgend dessen Konstruktion.

Man schidtzt den mutmasslichen Verlauf der elastischen
Linie des Sektors 2, um zu passenden Annahmen fiir das Mo-
ment und die Biegesteifigkeit zu gelangen. Die Schitzung er-
folgt dadurch, dass man den Kreisbogen von Sektor 1 ver-
lingert, denn es kann angenommen werden, dass die
elastische Linie nicht stark von diesem Kreisbogen abweichen
wird. Mit Hilfe eines Stechzirkels tridgt man auf der ge-
schitzten elastischen Linie die Bogenldnge s ein, damit man
iiber die Verteilung der Biegesteifigkeit orientiert ist.

Man wihlt auf der geschétzten Verldngerung der ela-
stischen Linie einen beliebigen Punkt 4. Durch die Lage von
A ist der Abstand 8, von der Wirkungsgeraden w bestimmt,
also das in A wirksame Moment | R§|. Nach Gl (10) findet
man hieraus ps, denn durch die Wahl von 4 ist auch EJ fest-
gelegt. Da, wo die Sektoren 1 und 2 zusammenstossen, miis-
sen beide Kreisbogen die selbe Tangente besitzen. Der Kriim-
mungsmittelpunkt zum Sektor 2 liegt deshalb auf dem an-
stossenden Begrenzungsradius des Sektors 1, so, dass das neue
Kriimmungszentrum Z, von jenem des Sektors1 den Abstand
| p2— p1 | erhilt.

Mit der Kenntnis von Z, und p, kann man ein Stiick der
elastischen Linie mit dem Zirkel zeichnen.

Man bemerkt in den meisten Fédllen, dass die Abwei-
chung von der geschitzten elastischen Linie vernachlidssigt
werden darf. Wenn das nicht zutreffen sollte, so kann man
das Verfahren mit der eben konstruierten elastischen Linie
nochmals durchfiihren; die neuerliche Néherung wird be-
stimmt ausreichen.

Die restliche Begrenzung von Sektor 2 wird so gewdhlt,
dass AZ, Winkelhalbierende des Sektors 2 wird. In gleicher
Weise wird Sektor 3
usw. konstruiert, bis die
ganze elastische Linie —
zur gewihlten Kraft V
— bekannt ist.

Die Konstruktion des
auf den Anlagepunkt
folgenden Sektors stellt
keine Schwierigkeit dar,
denn man kennt ja die
Lage des Beriihrungsra.
dius im Anlagepunkt aus
den  Anfangsbedingun-
gen. Ebenso ist es nicht
schwierig, auch bei an-
derer Lagerung als der

geschatzte elastische Llinie Fir Sektor 2
=Verlangerung der Kreislinie Fir Sektor 1

Bild 8. Konstruktion der elastischen
Linie
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in Bild 1 angedeuteten, die elastische Linie zu konstruieren.
Die Konstruktion fiihrt schliesslich dazu, dass man die Lage
des Bolzens findet: Das oben angedeutete Kriterium besteht
darin, dass der Bolzen den bekannten Abstand von der Kur-
belwellenaxe erhalten muss. Wegen der beliebigen Wahl von
Vv wird das beim ersten Versuch kaum zutreffen. Deshalb
muss die Konstruktion mit einem andern Wert von V wieder-
holt werden, Indem man wiederum die Lage des Bolzens er-
mittelt, erhdlt man die Moglichkeit, durch Interpolation eine
neue Kraft V zu finden, die dann meistens geniigend genau
sein wird. Damit aber ist die gestellte Aufgabe graphisch
16sbar. Zur Ermittlung des Anlagepunktes dienen ausserdem
die Ueberlegungen des Abschnittes 3.

Man konnte noch einwenden, dass die Genauigkeit der
graphischen Konstruktion eng begrenzt sei. Dem muss ent-
gegengehalten werden, dass die Genauigkeit fiir praktische
Zwecke meistens ausreicht. Man hat indessen die Moglich-
keit, mit Hilfe einer miihsameren numerischen Integration
das Ergebnis der graphischen Integration zu verbessern. Das
numerische Verfahren ist nicht schwieriger als das gra-
phische, erfordert aber viel grosseren Arbeitsaufwand.

Gemiss der numerischen Integration nach Blaess muss
man im Anfangspunkt z, und ' kennen. Dariiber, wie man
xo und 2z’ findet, ist weiter oben ausfiihrlich geschrieben
worden. Nach der Differentialgleichung (12) oder (13) kennt
man auch x,/, denn es ist

m):_m<;_i>

Man erhilt nach leichter Rechnung aus Gl. (12)

n_ YT — R 1
o= = {35 +5)

=
Nun macht man Gebrauch von der Taylorschen Formel. Es ist

o ds dx (ds)2 d2x
g(s-ds) =als) & g7+ 37 ge
und indem man den Taylorschen Satz auf 2’ (s) anwendet
. D ds d2x
x' (s + ds) = x' (s) +ﬁW

Es empfiehlt sich ds = 1 zu wéihlen, um die Berechnung von
z (s + ds) bzw. z' (s + ds) zu vereinfachen. Man erhédlt so

dx 1 d2x
%ile e L) =2@) 5 ops 5
, o, d2x
oc(s+1)-:fc(3)+d82

Welche Vorzeichen sind massgebend ? Das Vorzeichen von x
ist bereits festgelegt, denn gemiss Abschnitt 2 des II. Teils ist

M (8) = — R x (8)

z ist positiv fiir Punkte in einer kleinen Umgebung des An-
lagepunktes, 2’ ist dagegen negativ, weil x zunichst mit
wachsendem s Kkleiner wird. Das Vorzeichen von '’ ergibt
sich aus der oben angeschriebenen Differentialgleichung:
x' fallt positiv aus. Man tabelliert also « (s), z' (s) und 2" (s).
Wenn auch z (s) bekannt ist, so hat man noch immer
keine praktisch brauchbare Parameterdarstellung der elasti-
schen Linie. Man sucht deshalb nach einer senkrechten Ko-
ordinatenaxe y zur Geraden w. In bezug auf diese Axen er-
hélt man fiir die elastische Linie die Gleichung
y=1y(s)
Einen Koordinatenanfangspunkt erhdlt man, indem man die
y-Axe durch den Anlagepunkt der Feder wihlt. Man {iber-

zeugt sich leicht, dass bei der getroffenen Wahl der Ko-
ordinatenaxen

=0 (8)

T dx dy g — dy ds
—c = it =
ds dx ds dux
tg2 0 = sin2®  1—cos26 1 1
cosz2@®  coszZ@®  cos?2@

dy 1/ 1 (ds 2
dx ‘/fcés‘-’ g l/(?l&" e

1) 1 — _ ds -
=— s :7_/ e 1 2
l/“"‘ 1 = J1—a2 = = 1T —=

Hieraus folgt
dy = ds ]/1 — x'2

s
y= [ds)T—=2
/

Man wird deshalb nicht nur z, z’, " tabellieren, sondern
auch ]/'1—x"2. Diesen Wert bendtigt man ohnehin zur Be-
rechnung von z’, so dass die Tabellierungsarbeit durch die
Berechnung von y (s) nicht komplizierter wird. Es sei noch
darauf hingewiesen, dass R. Somntag (Ing. Arch. Bd. 13
(1943), S. 380—97 und Bd. 14 (1943), S. 53—T74) das Pro-
blem des Kreisringes behandelt hat. Man bemerkt sofort,
dass die vorliegende Konstruktion nicht an eine Kreisringform
der Neutralaxe im unbelasteten Zustand gebunden ist.

II. Teil: Elastische Kupplungsfeder Von G. Elger

Priifung der Theorie des I. und IL Teils im Versuch

Bei Schiffsanlagen ist es aus Griinden der Raumerspar-
nis (gedridngte Maschinenanlage) oft notwendig, sehr weiche
elastische Kupplungen zu verwenden, damit die Abstimmung
w/wp fiir die erste Resonanzerregende grosser als |2 ge-
halten werden kann. Die zusitzliche Torsionsbeanspruchung
der Kurbelwelle wird (vom Déampfer abgesehen) auf diese
Weise gesenkt und bleibt innerhalb zuldssiger Grenzen.

In solchen Féllen geniligen Gummi-Elemente den Anfor-
derungen in bezug auf Weichheit und zu leistender Defor-
mationsarbeit nicht, es sei denn, dass man solche Hlemente
in Serie schaltet. Dagegen lassen sich bei geschickter An-
ordnung und Formgebung von Stahlfedern die gewiinschten
Bedingungen besser und einfacher erreichen. Im vorliegenden
Falle war fiir eine Schiffsanlage eine elastische Kupplung zu
bauen, fiir die die Verwendung von Stahlfedern beschlossen
war. Bei der fiir dieses Beispiel zugrunde gelegten Ma-
schinenanlage sind die aus dem Tangentialdruckdiagramm und
der mittleren Maschinenleistung berechneten Kupplungsmo-
mente 3)

My yax = 2700 mkg My ypin = 600 mkg

Negative Momente treten bei dieser Anlage nur beim An-
fahren und Abstellen auf, so dass die Kupplungsfedern haupt-
séchlich in der Drehrichtung, und zwar auf Druck beansprucht
werden.

Es war fiir eine gegebene Feder einer Anlage die Kenn-
linie zu ermitteln, Bei der Wahl von 6 Kupplungsfedern mit
einem Kraftangriff am Federbolzen vom Radius » —= 500 mm
ergibt sich die max. Belastung eines Federelementes zu

2700
6-0,5

Wendet man das hier entwickelte graphische Verfahren
zur Losung der Differentialgleichung an, so erhidlt man, wie
anschliessend gezeigt wird, auf sehr einfache Weise den ge-
nauen Verlauf der elastischen Linie, Hieraus ergibt sich fiir
jede Kraft der gesuchte Federweg, der fiir die exakte Durch-
fiihrung der Schwingungsberechnung des Wellensystems 4)
notwendig ist. Einzelheiten sowie die Federabmessungen sind
aus Bild 9 zu ersehen.

Man geht so vor: Vom eingespannten Federende 0 — 0 be-
ginnend, unterteilt man die beanspruchte Federlinge in be-
liebige, im vorliegenden Falle 3 cm lange Abschnitte und be-
rechnet in diesen Punkten die Biegesteifigkeit EJ (Tabelle 1).
Nun schédtzt man die Vertikalkraft V, z. B. 190 kg, die das
freie Federende bzw. den Angriffspunkt der Kraft P auf der
vom Federbolzen beschriebenen Kreisbahn fiihrt. Aus V und
P ergibt sich R und ihre Wirkungslinie w.

Im folgenden bedeutet:

B = = 900 kg

R’ — Radius der Federwiderlage (cm)
p (s) = Kriimmungsradius der elast. Linie bei Belastung
(cm)
r = Krimmungsradius der elast. Linie unbelastet
(cm)
R — Resultierende Kraft (kg)

#) Zur Berechnung drehelastischer Kupplungen « MTZy 1941, Heft 1,
Seite 3.

4) «Die Dymamik der Verbrennungskraftmaschie» von Hans Schron
und «Technische Dynamiky» von Biezeno & R. Grammel,
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o % Kraftangriff
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Bild 9. Untersuchte Feder im spannungslosen und im gespannten Zustand

2 (s) =— Abstand eines betrachteten Punktes zur Wir-
kungslinie w (em)
E — Elastizitdtsmodul (kg/cm?2)
J (s) = Fldchentrigheitsmoment (cm+)
s — Bogenlinge gemessen von 0 —-0 (cm).
Tabelle 1. Werte fir den Krimmungsradius p bei einer Belastung

P =900 kg, V = 190 kg, R = 920 kg, 1/r = 0,02445

N EJ.106 X Pr
(cm) (kg/ecm?) (cm) M/EJ 1/pn (cm)
25 0,443 4,85 0,01008 0,01437 69,6
26 0,458 4,15 0,00834 0,01611 62,1
29 0,505 2,13 0,00387 0,02058 48,6
32 0,554 0,25 0,00042 0,02403 41,6
35 0,606 —1,45 0,00221 0,02666 37,5
38 0,662 —2,95 0,00411 0,02856 35,1
41 0,722 —4,16 0,00530 0,02975 33,6
44 0,785 —5,16 0,00605 0,03050 32,8
47 0,851 —5,91 0,00639 0,03084 32,5
50 0,916 —6,38 0,00642 0,03087 32,4
53 0,916 —6,55 0,00658 0,03103 32,2
56 0,916 —6,45 0,00647 0,03092 32,4
59 0,916 —6,10 0,00613 0,02058 32,7
62 0,855 —5,45 0,00586 0,03031 33,0
65 0,769 —4,60 0,00550 0,02995 33,4
68 0,691 —3,45 0,00459 0,02904 34,4
71 0,623 —2,05 0,00303 0,02748 26,4
T4 0,554 —0,50 0,00083 0,02528 39,5
7 0,491 1,25 0,00235 0,02210 45,2
79 0,454 2,50 0,00506 0,01939 51,6

Anmerkung: s ist die Bogenlinge der elastischen Linie,
gemessen vom eingespannten Federende 0—0. Von 14 < s < 26
liegt die Feder an der Widerlage an. An den beiden Feder-
enden 0 < s < 14 und 79 < s < 94,3 ist die Feder eingespannt,
daher EJ — 0.

Abwicklung (Sicht von aussen)

Es ist offensichtlich, dass fiir p (s) > R’ (Bild 1) das be-
trachtete Federstiick gegen die Widerlage gepresst wird. Da-
gegen hat sich die Feder fiir p (s) < R’ schon von der Wider-
lage abgehoben.

Daher gilt fiir den Anlagepunkt:

(18) p(s) = R
Um diesen zu finden, zeichnet man den Verlauf der elastischen
Linie mit der Kriimmung der Federwiderlage, eine beliebige
Strecke auf. Nun greift man sich einen Punkt derselben, z. B.
s — 26 cm, heraus und erhidlt durch gleiche Unterteilung den
entsprechenden Punkt 26’. Der Abstand von 26’ bis zur Wir-
kungslinie w misst man ab und erhilt

2 (s) = 4,15 cm
Nach der Momenten-Gleichung der elastischen Linie

i1 R (s)

p(s) v  EJ(s)
kann man den Kriimmungsradius p (s) berechnen und erhilt
(n. Tabelle 1)

p (26) = 62,1
Dieser Wert ist kleiner als R’, folglich hat sich die Feder
schon von der Widerlage abgehoben. Fiihrt man das selbe Ver-

fahren fiir s = 25 ecm durch, so wird nach Gleichung (17),
deren Auswertung in Tabelle 1 wiedergegeben ist:

p (25) = 69,6
Da p (25) > R’, liegt die Feder in diesem Punkte also noch an

und der gesuchte Wert liegt zwischen diesen beiden Grdossen.
Durch Interpolation wird fiir den Anlagepunkt

S4 = 25,88
was fiir unsere Zwecke geniigt.
Mit dem Kriimmungsradius p (26) und dem Kriimmungs-
mittelpunkt B auf MX (Bild 9) zeichnet man mit geniigender

Genauigkeit ein Stiick der elastischen Linie soweit auf, dass
man Punkt 29" noch gut auftragen kann.
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Bild 1C. Federkennlinie

Wiederum misst man x (29) ab und berechnet den Radius
p (29), der mit F auf E 26’ zur weiteren Aufzeichnung der
elastischen Linie dient, und so fort.

Die Enveloppe der Krimmungsradien, die sogenannte
Evolute M, E, F, G, ... hat ihren Scheitel dort, wo p (s) ein
Minimum ist, und die auftretenden Spannungen sind dort am
grossten. Es sei darauf hingewiesen, dass diese Stelle der max.
Beanspruchung kein Festpunkt ist, sondern sich mit zuneh-
mender Belastung, hervorgerufen durch die nichtlineare Aen-
derung der Fiihrungskraft V und durch Wandern des Anlage-
punktes X, in Richtung des Kraftangriffspunktes 4 bewegt.

Zu heachten ist ferner, dass oberhalb von w die Momente
R -z (s) negativ werden und dass die Kriimmung an der obe-
ren Einspannung filir s = 79 cm, einen Sprung macht. An die-
ser Stelle geht der Krimmungsradius sprunghaft auf r; um
die Strecke YZ zuriick, die Einspannelemente sind daher gut
abzurunden, um Spannungsspitzen zu vermeiden.

Hat man nun V zu klein oder zu gross geschitzt, so wird
die Feder seitlich ausweichen und der um den Federweg ver-
schobene Angriffspunkt von P wird oberhalb oder unterhalb
der vom Federbolzen beschriebenen Kreisbahn liegen.

Das Aufzeichnen der elastischen Linie ist dann mit einer
neuen Schidtzung von V zu wiederholen und durch Inter-
polation die wirkliche Grosse von V zu ermitteln, die das
Federende so fiihrt, dass sich 4, auf der Kreisbahn bewegt.

Der Punkt A4, wird gefunden, indem man Dreieck ABC
mit den entsprechenden Punkten B, und C, auf der elastischen
Linie abtrdgt. Der gesuchte Federweg ist nach Bild 9

A Ay)= 18,5 mm
Mit diesem Verfahren der sukzessiven Approximation ist es
moglich, nicht nur von Kreisbogenfedern, sondern auch von
solchen mit beliebigen, komplizierten Formgebungen die
elastische Linie zu konstruieren.

Um die Richtigkeit und Genauigkeit der graphischen Lo-
sung zu untersuchen und die an der Innen- und Aussenseite
der Feder auftretenden Spannungen zu messen, ist die Kupp-
lungsfeder auf einer den Betriebsbedingungen entsprechenden
Versuchseinrichtung einer genauen Priifung unterzogen wor-
den. Wie aus Bild 10 ersichtlich, ist auf der Priifmaschine die
Belastung von 100 zu 100 kg gesteigert und der jeweilige
Federweg gemessen worden., Die Kennlinie ergibt auf Druck
bei P — 900 kg einen Federweg von — 18,6 mm, was die sehr
gute Genauigkeit der graphischen Losung beweist. Beim Zug-
versuch weist die Kennlinie einen eigenartigen Knick auf, der
jedoch, bedingt durch plétzliche Krimmungsidnderung der
Federwiderlage, auf unerwiinschtes Abheben des unteren
Federendes von der Anlage zuriickzufiihren ist.

Wiirde daher die Feder im Betrieb dauernden Zugbe-
anspruchungen ausgesetzt sein, so miisste man durch kon-
struktive Massnahmen ein sauberes Anliegen des Federblattes
herbeifiihren, zumindest aber die Spannungen an der Stelle
des Abhebens genau ermitteln.

Besonders sei darauf hingewiesen, dass der progressive
Verlauf der Federkennlinie wichtig ist. Die nichtlineare Kenn-
linie fiihrt in Resonanzndhe zur Verstimmung, wodurch die
elastische Kupplung bedeutend verbessert wird, Tritt bei einer
Erregenden hoherer Ordnung, deren kritische Drehzahl also
im Betriebsdrehzahlbereich liegt, Resonanz auf, so wiirden die
Ausschldge, wenn man von der Dadmpfung absieht, bei linearer
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Bild 11. Spannungsverlauf der Kupplungsfeder. Masstab der Feder 1:7,5

Federkennlinie, unendlich gross werden. Bei der gekriimmten
Federcharakteristik dagegen ist die Federsteifigkeit
P

f
bei jeder Belastung eine andere, was nichts anderes bedeutet,
als dass sich die reduzierte Lénge der elastischen Kupplung
mit der Belastung &ndert und somit auch die Eigenschwin-
gungszahl des Systems, wodurch die Schwingung «ausser
Tritt» fallt und die gefiirchteten Resonanzausschldge in end-
lichen Grenzen bleiben.

Die Spannungen bei einer Belastung von P = 900 kg
wurden mit dem Tensometer und mit Dehnungsstreifen (strain
gauges) gemessen. Die Messergebnisse der beiden Verfahren
stimmten gut liberein, wobei die des Tensometers ein wenig
tiefer lagen. In Bild 11 sind die Spannungen iiber den Mess-
stellen der Dehnmesstreifen auf Zug und Druck, fiir Feder-
Innen- und Aussenseite aufgetragen. Die Spannungen sind
innen erheblich grosser als aussen und ihre Maximalwerte
liegen im Bereich des grossten Federquerschnittes. Deutlich
geht auch aus Bild 11 hervor, dass an den Stellen, wo die Wir-
kungslinie w die konstruierte elastische Linie der Feder
schneidet (siehe Bild 9), die Spannungen = 0 sind. Auf Grund
des Spannungsverlaufes wiirde daher eine Schwichung des
Federblattes vor den Einspannstellen und eine Verstidrkung
im meist beanspruchten Teil, bei gleichem Federweg, zu einem
erheblichen Abbau der Spannungsspitzen flihren und dem
Idealfall der Feder gleicher Festigkeit ndherkommen,

Der dynamischen Beanspruchung der Feder durch Flieh-
kriafte ist durch konstruktive Massnahmen Rechnung ge-
tragen worden, indem entsprechend gewihlte Gegenmassen
dem zusidtzlichen Ausbiegen der Feder entgegenwirken. Da
ausserdem die Drehzahl verhdltnisméssig klein ist, sind bei
der Konstruktion der elastischen Linie die dynamischen Ein-
fliisse vernachlidssigt worden.

Adresse des Verfassers: Robert Zwahlen, Dipl. Math, ETH.,
Hofwiesenstr. 242, Ziirich, und G. Elger, Oststr. 6, Winterthur.

=




	Berechnung gekrümmter Blattfedern für elastische Kuppelungen

