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Berechnung gekrümmter Blattfedern für elastische Kupplungen
Von Dipl. Math. R. Zvvahlen, Zürich

DK 621.825.7:539.413

Schluss von Seite 684

II. Teil: Differentialgleichung, Anfangsbedingungen und
Lösung

1. Modifikation der Gleichung (2 b)

Gl. (2 b) gibt die Möglichkeit, eine Differentialgleichung
für den krummen Balken aufzustellen. Es ist

M : E-Ad<p Cy2dF
l<p J rdip —y

In Bild 6 stellt r den Krümmungsradius der Neutralaxe im
belastungsfreien Fall und p den entsprechenden Krümmungsradius

bei Belastung dar. Kleinen Winkeln Adip entsprechen
relativ grosse Unterschiede Ir — pi. Im schraffierten Dreieck,
gebildet aus den Seiten | r — p r und p findet man nach dem
Sinussatz:

sin A d i;

sin d w genähert r

Weil die Winkel Adf
sehr klein sind, folgt

Adw r

und

und nach Gl. (2)

M ;

1

P

E ')/ y*dF

i<f

Ad<P

M

Er J r — y

A Neutralaxe des belasteten Balkens
B t/eutra/axe des unbelasteten Balkens

Bild 6. Ermittlung des
KrümmungszentrumsWenn die unter 3 des I. Teils

genannten Voraussetzungen
erfüllt sind, macht man von Gl. (9) Gebrauch und erhält

(10)
M

Eri
M

EJ

GL (10) gilt überall da, wo die Feder frei ist, also nicht am
Kupplungs-Segment anliegt. Es ist zu beachten, dass in Gl. (10)
M und J nicht konstant sind. Daher ist auch p veränderlich. Als
unabhängige Variable wählen wir die Bogenlänge s. M, Jund
p sind also Funktionen der unabhängigen Variablen s. Der
Punkt s 0 wird willkürlich in jenes Ende der Feder gelegt,
welches mit dem Kupplungs-Segment verbunden ist. J (s) lässt
sich für jeden Wert von s unmittelbar berechnen. Die
Konstruktion, welche gestattet, die gestellte Aufgabe zu lösen,
stützt sich auf Gl. (10). Zur vollständigen Behandlung des
Problems gehört jedoch die Aufstellung der Differentialgleichung,

welche die Deformation beherrscht. In diesem
Zusammenhang wollen wir auch abklären, wie das Moment M von
der Bogenlänge s abhängt. Wenn es gelingt, M (s) durch p (s)
ohne Gl. (10) auszudrücken sowie in dieser M (s) zu eliminieren,

so ist die Gleichung der elastischen Linie des krummen
Balkens durch natürliche Koordinaten p und s gefunden.
Viele Probleme der technischen Mechanik und der Physik
lassen sich bekanntlich mit natürlichen Koordinaten besser als
mit anderen behandeln.

Für r—>- oo erhält man die «klassische» Gleichungsform
der elastischen Linie. Bei kleinen Deformationen darf man für
die Krümmung l/p mit guter Näherung die zweite Ableitung
cPy/dx2 einsetzen, wenn x und y irgendwelche rechtwinklige
Koordinaten eines Punktes der elastischen Linie bedeuten, die
wir später einführen.

2. Differentialgleichung
Auf den Federbolzen wirkt tangential zum Kreis, auf dem

sich der Bolzen um die Kurbelwelle dreht, eine Kraft P. Ihre
Grösse ist bekannt und jeweils aus dem zu übertragenden
Kupplungsmoment zu berechnen. Durch P wird die Feder
zusammengedrückt. Mit ihrem untern Teil liegt sie am
Kupplungs-Segment an. Zur Führung des andern Federendes auf

einem Kreis genügt die Kraft P allein nicht. Es ist vielmehr
noch eine Radialkraft V notwendig. Da V nicht bekannt ist,
ist auch die Resultierende R aus P und V unbekannt. Die
Wirkungsgerade von R nennen wir w, Bild 7. w schneidet die
Neutralaxe der Feder in zwei Punkten.

Wenn das eine Federende am Kupplungs-Segment zum
Anliegen kommt, das andere dagegen mit dem Bolzen
verbunden ist, so muss das Moment die Krümmung der Feder
einerseits vergrössern und an andern Stellen verkleinern.
M muss daher einmal positiv und einmal negativ sein, was nur
möglich ist, wenn w die Neutralaxe der Feder schneidet. Man
erkennt, dass jener Teil der Feder, der mit w zusammen
ungefähr ein Kreissegment bildet, seine Krümmung vergrössern
muss, während der restliche freie Teil sie verkleinert. Bei
Zugbeanspruchung der Feder ist dies gerade umgekehrt. Man
entnimmt hieraus, wie die Gleichung für die Krümmung
anzusetzen ist: Die Federkrümmung muss in Nähe der Einspannung

durch das Moment M verringert werden. Mit x (s)
bezeichnen wir den Abstand eines Punktes Q der Neutralaxe der
Feder von der Wirkungsgeraden w. Für das Moment M (s)
gilt folglich

M (s) — R x (s)
Für den Abstand x (s) ist damit ein Vorzeichen festgelegt.
Aus Gl. (10) folgt damit

1 Bfl M(s) Rx(s)
p(s) r EJ's) EJ(s)

Die Krümmung der Feder l/p (s) wird kleiner als 1/r für
die Umgebung des Punktes, in welchem sich die Feder vom
Kupplungs-Segment abhebt. Die Krümmung l/p (s) kann bei
hinreichend grossem Moment [ —Rx(s)~i das Vorzeichen wechseln,

wenn man der Feder die nötige Deformationsfreiheit gibt.
Für x (s) 0 wird l/p (s) 1/r, d. h. p (s) r ist hier

grösser als im eben betrachteten Punkt. Im FederteÜ
zwischen den beiden Schnittpunkten, der Geraden w mit der
Neutralaxe der Feder, in denen x (s) 0 ist, wird die Krümmung
grösser als 1/r, weil x (s) hier negativ wird.

Wie bereits erwähnt, sind R und V noch unbekannt. Die
Bestimmung dieser Werte gehört zur Lösung der Aufgabe,
welche im folgenden Abschnitt 4 beschrieben wird. Vorläufig
rechnen wir damit wie mit bekannten Grössen. Um die
Differentialgleichung der elastischen Linie ableiten zu können,
schreiben wir GL (10) in der Form

EJ(s) / 1 1

~B \ p(s) Hx (s)

Bild 7 zeigt die Wirkungsgerade w, die elastische Linie
der Feder, ihre Einspannung am Kupplungs-Segment mit der
Tangente t und dem Krümmungsradius p (s), der mit der
Anfangslage s so den Winkel y einschliesst. Im Endpunkt Q

von p (s) ist die Tangente an die elastische Linie gezogen,
die mit t ebenfalls den Winkel <p einschliesst. Der Winkel
zwischen dieser Tangente und dem Abstand x (s) [vom
Punkte Q zu wj beträgt 8. 0 und <p sind natürlich von der
Bogenlänge s auch abhängig. Einer Drehung von p (s) um
den Winkel d<p entspricht auch eine Drehung der Tangente um

Kupplungs - Segment.

$-<M>

Bolzen

A

freie Feder
«|SI \

S=5

Einscannung
Kurbelwellenaxe

3) Krummungszentrum der Feder

Bild 7. Anordnung der Kräfte und Bezeichnungen
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d<p. Auch der Winkel 0 ändert sich um dip. Man macht sich
leicht klar, dass

x (s + ds) —'x (s)
ds cos 0(s)

folglich
d EJ(s)

ds R P 9
\ p(s) r)

dx (s)
ds

COS 0 (s)

Somit
d EJ{s)
ds R \p (s)

d EJ(s)

0(s)

ds
I arc cos ds R

I 1 ¦ 1Y\ ¦ d0(s)
\ p (s) r/J ds

Aus d® dip geht hervor, dass d0/ds dtp/ds (0 und 9
unterscheiden sich nur um eine Konstante). Ferner ist dtp/ds
l/p (s); somit erhält man

1

TTsJ
d d EJ(s)

-r=— arc cos -^ ——ds ds R (-1 1
\p (s) r

oder nach Ausführung der Differentiation
TEJis) I 1 1V\"

R Kp,s) r]\ _ 1
(12)

EJ(s. I 1

R \ p (S) t)I p(«)

Damit gleichwertig ist die Form

,.,„, d d EJ(s)(13) -=— arc sin -; =—ds ds R p(s)
In GL (12) und (13) ist je p (s) die gesuchte Funktion.

Die Lösung der Gl. (12) und (13) führt bei konstanter
Biegefestigkeit auf elliptische Integrale. Die exakte Lösung bei
nichtkonstanter Biegesteifigkeit ist meistens nicht möglich.
Die Differentialgleichungen sind nicht linear und von zweiter
Ordnung. Durch die Angabe von EJ (s) bleibt als unbekannte
Funktion in Gl. (13) nur p (s) zurück, die durch die
Anfangsbedingungen eindeutig bestimmt wird.

3. Anfangsbedingungen

Unter den vorhandenen Bedingungen gilt Gl. (12) nicht,
wo der Balken am Kupplungs-Segment anliegt, weil der Feder
dort die Krümmung vorgeschrieben ist. Wenn das Moment
für den Balken nach Gl. (10) eine kleinere Krümmung
erfordern würde als die durch das Kupplungs-Segment
vorgegebene, so wird einfach ein Teil des Momentes vom
Kupplungs-Segment aufgenommen.

Mit dieser Feststellung lässt sich jener Punkt bestimmen,
in dem -sich die Feder von ihrer Anlage am Kupplungs-Segment

trennt. Es sei R' der Radius des Kupplungs-Segmentes.
So weit die Feder am Kupplungs-Segment anliegt, ist

R' p (s)
In jenem Punkte jedoch, wo nach Gl. (10) erstmals folgt

R' > p (s)
beginnt sich die Feder von ihrer Führung abzuheben. Wir
bezeichnen diesen Punkt als Anlagepunkt.
Gemäss Gl. (10) erhält man für die Bestimmung des
Anlagepunktes die Gleichung

1 1
(14)

p(s)
Rx(s)
EJ(s)

Hieraus ist die Bogenlänge (so) so zu bestimmen, dass die
Beziehung erfüllt ist:

Rx (s0)(16) ±.-1R r BJ'so)
Das gelingt nur durch sukzessive Approximationen. Man
schätzt einen Wert so und berechnet dazu einen Radius p (s),
schätzt einen zweiten Wert von «0, berechnet hierzu p (so).
Durch lineare Interpolationen folgt hieraus ein neuer Wert
von so. Damit wiederholt man das Verfahren, bis der Wert
von p mit R' genügend genau übereinstimmt9).

Im Anlagepunkt gelten für die Feder folgende
Stetigkeitsbedingungen :
1. Die elastische Linie der Feder ist überall stetig.

2) Den Abstand m fs) bestimmt man mit Vorteil und genügend
genau graphisch.

2. Die Tangente dreht sich stetig. Die Kurve ist nicht ge¬
knickt.

Hieraus folgen die Anfangsbedingungen
dx
dsx (s) x0

s0 «0
Xo" cos 00

Xo und xo' sind geometrische Daten, die sich bei bekanntem
Anlagepunkt zeichnerisch leicht bestimmen lassen. Damit
sind die Differentialgleichungen (12) und (13) samt
Anfangsbedingungen bekannt.

Bei der praktischen Losung der Aufgabe wird man
bemerken, dass im vorliegenden Falle die theoretische Lösung
der experimentellen überlegen ist, da diese überraschend
genau, billig und schnell zum Ziele führt. Sie lässt sich auch
auf den Fall ausdehnen, wo Fliehkräfte an der Deformation
der Feder mitwirken, während für eine experimentelle
Untersuchung dieses erschwerten Problems teure Einrichtungen
benötigt werden.

4. Graphische und numerische Lösung der Differentialgleichung

Man schätzt eine passend erscheinende Radialkraft V.
Damit ist zunächst die Lage der Geraden w bekannt und die
elastische Linie des deformierten Balkens lässt sich für diese
Radialkraft konstruieren. Man findet am Schlüsse der
nachfolgend beschriebenen Konstruktion ein einfaches Kriterium
dafür, ob V richtig geschätzt wurde.

Die elastische Linie des gekrümmten Balkens entsteht
nun durch Zusammenfügen von Kreissektoren, Bild 8. Nehmen

wir an, ein solcher Kreissektor 1 sei schon gefunden
worden und man suche den Sektor 2. Wir beschreiben
nachfolgend dessen Konstruktion.

Man schätzt den mutmasslichen Verlauf der elastischen
Linie des Sektors 2, um zu passenden Annahmen für das
Moment und die Biegesteifigkeit zu gelangen. Die Schätzung
erfolgt dadurch, dass man den Kreisbogen von Sektor 1
verlängert, denn es kann angenommen werden, dass die
elastische Linie nicht stark von diesem Kreisbogen abweichen
wird. Mit Hilfe eines Stechzirkels trägt man auf der
geschätzten elastischen Linie die Bogenlänge s ein, damit man
über die Verteilung der Biegesteifigkeit orientiert ist.

Man wählt auf der geschätzten Verlängerung der
elastischen Linie einen beliebigen Punkt A. Durch die Lage von
A ist der Abstand S 2 von der Wirkungsgeraden w bestimmt,
also das in A wirksame Moment ] R 82 I. Nach Gl. (10) findet
man hieraus pa, denn durch die Wahl von A ist auch EJ
festgelegt. Da, wo die Sektoren 1 und 2 zusammenstossen, müssen

beide Kreisbogen die selbe Tangente besitzen. Der
Krümmungsmittelpunkt zum Sektor 2 liegt deshalb auf dem an-
stossenden Begrenzungsradius des Sektors 1, so, dass das neue
Krümmungszentrum Z,2 von jenem des Sektors 1 den Abstand
| ps — pa. j erhält.

Mit der Kenntnis von Z2 und p2 kann man ein Stück der
elastischen Linie mit dem Zirkel zeichnen.

Man bemerkt in den meisten Fällen, dass die Abweichung

von der geschätzten elastischen Linie vernachlässigt
werden darf. Wenn das nicht zutreffen sollte, so kann man
das Verfahren mit der eben konstruierten elastischen Linie
nochmals durchführen; die neuerliche Näherung wird
bestimmt ausreichen.

Die restliche Begrenzung von Sektor 2 wird so gewählt,
dass A22 Winkelhalbierende des Sektors 2 wird. In gleicher
Weise wird Sektor 3

usw. konstruiert, bis die Ä^^rÄf^^.,ganze elastische Linie —
zur gewählten Kraft V
— bekannt ist.

Die Konstruktion des
auf den Anlagepunkt
folgenden Sektors stellt
keine Schwierigkeit dar,
denn man kennt ja die
Lage des Berührungsra-
dius im Anlagepunkt aus
den Anfangsbedingungen.

Ebenso ist es nicht *>

schwierig, auch bei an- Blld 8 Konstruktion der elastischen
derer Lagerung als der Linie

hr

t» fafci
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in BUd 1 angedeuteten, die elastische Linie zu konstruieren.
Die Konstruktion führt schliesslich dazu, dass man die Lage
des Bolzens findet: Das oben angedeutete Kriterium besteht
darin, dass der Bolzen den bekannten Abstand von der Kur-
belwellenaxe erhalten muss. Wegen der beliebigen Wahl von
V wird das beim ersten Versuch kaum zutreffen. Deshalb
muss die Konstruktion mit einem andern Wert von V wiederholt

werden. Indem man wiederum die Lage des Bolzens
ermittelt, erhält man die Möglichkeit, durch Interpolation eine
neue Kraft V zu finden, die dann meistens genügend genau
sein wird. Damit aber ist die gestellte Aufgabe graphisch
lösbar. Zur Ermittlung des Anlagepunktes dienen ausserdem
die Ueberlegungen des Abschnittes 3.

Man könnte noch einwenden, dass die Genauigkeit der
graphischen Konstruktion eng begrenzt sei. Dem muss
entgegengehalten werden, dass die Genauigkeit für praktische
Zwecke meistens ausreicht. Man hat indessen die Möglichkeit,

mit Hilfe einer mühsameren numerischen Integration
das Ergebnis der graphischen Integration zu verbessern. Das
numerische Verfahren ist nicht schwieriger als das
graphische, erfordert aber viel grösseren Arbeitsaufwand.

Gemäss der numerischen Integration nach Blaess muss
man im Anfangspunkt Xq und Xo' kennen. Darüber, wie man
Xo und Xo' findet, ist weiter oben ausführlich geschrieben
worden. Nach der Differentialgleichung (12) oder (13) kennt
man auch x0", denn es ist

x (s) —
EJ{s)

R P(s)

Man erhält nach leichter Rechnung aus Gl. (12)

l/T -w l Rx 1

-' \ EJ rx

Nun macht man Gebrauch von der Taylorschen Formel. Es ist
ds dx (ds)2 d*x

x (s + ds) x (s) + 1! ds 2! ds*

und indem man den Taylorschen Satz auf x' (s) anwendet

./ i j ^ ,/ n ds d?x
x (s + ds) x (s) + ——

Es empfiehlt sich ds z= 1 zia wählen, um die Berechnung von
x (s + ds) bzw. x' (s + ds) zu vereinfachen. Man erhält so

(s + 1) X (s) + dx
ds +

1 d« X

2 d s2

x' (s + 1) X (s! +
d2 X

ds2

Welche Vorzeichen sind massgebend? Das Vorzeichen von x
ist bereits festgelegt, denn gemäss Abschnitt 2 des n. Teils ist

M (s) — R x (s)
x ist positiv für Punkte in einer kleinen Umgebung des
Anlagepunktes, x1 ist dagegen negativ, weü x zunächst mit
wachsendem s kleiner wird. Das Vorzeichen von x" ergibt
sich aus der oben angeschriebenen Differentialgleichung:
x" fällt positiv aus. Man tabelliert also x(.s), x' (s) und x" (s).

Wenn auch x (s) bekannt ist, so hat man noch immer
keine praktisch brauchbare Parameterdarstellung der elastischen

Linie. Man sucht deshalb nach einer senkrechten Ko-
ordinatenaxe y zur Geraden w. In bezug auf diese Axen
erhält man für die elastische Linie die Gleichung

x x(s) y y{8)
Einen Koordinatenanfangspunkt erhält man, indem man die
t/-Axe durch den Anlagepunkt der Feder wählt. Man
überzeugt sich leicht, dass bei der getroffenen Wahl der Ko-
ordlnatenaxen

dx
ds '

sin20

— cos 0 :
dy-^- — tg 0dx

tg20

dy _
dx

cos20
— cos2 0
cos2 e

dy
ds

ds
dx
1

cos2 0

1/1.-1 l/(—\ cos20 y \dx
1

— 1 Vr ^=£1*-

Hieraus folgt
dy ds]/l ¦ X'2

y Jdsi/l

Man wird deshalb nicht nur x, x', x" tabellieren, sondern

auch ]/l — œ'2. Diesen Wert benötigt man ohnehin zur
Berechnung von x", so dass die Tabellierungsarbeit durch die
Berechnung von y (s) nicht komplizierter wird. Es sei noch
darauf hingewiesen, dass R. Sonntag (Ing. Arch. Bd. 13

(1943), S. 380—97 und Bd. 14 (1943), S. 53—74) das
Problem des Kreisringes behandelt hat. Man bemerkt sofort,
dass die vorliegende Konstruktion nicht an eine Kreisringform
der Neutralaxe im unbelasteten Zustand gebunden ist,

III. Teil: Elastische Kupplungsfeder Von G.Elger

Prüfung der Theorie des I. und II. Teils im Versuch
Bei Schiffsanlagen ist es aus Gründen der Raumersparnis
(gedrängte Maschinenanlage) oft notwendig, sehr weiche

elastische Kupplungen zu verwenden, damit die Abstimmung
w/g>o für die erste Resonanzerregende grösser als |/2~
gehalten werden kann. Die zusätzUche Torsionsbeanspruchung
der Kurbelwelle wird (vom Dämpfer abgesehen) auf diese
Weise gesenkt und bleibt innerhalb zulässiger Grenzen.

In solchen Fällen genügen Gummi-Elemente den
Anforderungen in bezug auf Weichheit und zu leistender
Deformationsarbeit nicht, es sei denn, dass man solche Elemente
in Serie schaltet. Dagegen lassen sich bei geschickter
Anordnung Und Formgebung von Stahlfedern die gewünschten
Bedingungen besser und einfacher erreichen. Im vorliegenden
Falle war für eine Schiffsanlage eine elastische Kupplung zu
bauen, für die die Verwendung von Stahlfedern beschlossen
war. Bei der für dieses Beispiel zugrunde gelegten
Maschinenanlage sind die aus dem Tangentialdruckdiagramm und
der mittleren Maschinenleistung berechneten Kupplungsmomente

s)

Mkmax 2700 mkg Mkmin 600 mkg
Negative Momente treten bei dieser Anlage nur beim
Anfahren und Abstellen auf, so dass die Kupplungsfedern
hauptsächlich in der Drehrichtung, und zwar auf Druck beansprucht
werden.

Es war für eine gegebene Feder einer Anlage die Kennlinie

zu ermitteln. Bei der Wahl von 6 Kupplungsfedern mit
einem Kraftangriff am Federbolzen vom Radius r 500 nun
ergibt sich die max. Belastung eines Federelementes zu

2700
900 kg6-0,5

»'«

Wendet man das hier entwickelte graphische Verfahren
zur Lösung der Differentialgleichung an, so erhält man, wie
anschliessend gezeigt wird, auf sehr einfache Weise den
genauen Verlauf der elastischen Linie. Hieraus ergibt sich für
jede Kraft der gesuchte Federweg, der für die exakte
Durchführung der Schwingungsberechnung des Wellensystems4)
notwendig ist. Einzelheiten sowie die Federabmessungen sind
aus Bild 9 zu ersehen.

Man geht so vor: Vom eingespannten Federende 0 — 0

beginnend, unterteilt man die beanspruchte Federlänge in
beliebige, im vorliegenden Falle 3 cm lange Abschnitte und
berechnet in diesen Punkten die Biegesteifigkeit EJ (Tabelle 1).
Nun schätzt man die Vertikalkraft V, z. B. 190 kg, die das
freie Federende bzw. den Angriffspunkt der Kraft P auf der
vom Federbolzen beschriebenen Kreisbahn führt. Aus V und
P ergibt sich R und ihre Wirkungslinie w.

Im folgenden bedeutet:
R' Radius der Federwiderlage (cm)

p (s) Krümmungsradius der elast. Linie bei Belastung
(cm)

r Krümmungsradius der elast. Linie unbelastet
(cm)

R Resultierende Kraft (kg)
s) Zur Berechnung drehelastischer Kupplungen «MTZ» 1941, Heft 1,

Seite 3.
*) «Die Dynamik der Verbrennungskraftmaschle» von Hans Schrön

und «Technische Dynamik» von Biezeno & R. Grammel.
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Bild 9. Untersuchte Feder im spannungslosen und im gespannten Zustand

Wir-x (s) Abstand eines betrachteten Punktes zur
kungslinie w (cm)

E Elastizitätsmodul (kg/cm2)
J (s) B Flächenträgheitsmoment (cm4)

s Bogenlänge gemessen von 0 — 0 (cm).

Tabelle 1. Werte für den Krümmungsradius p bei einer Belastung
P 900 kg, V 190 kg, R 920 kg, 1/r 0,02445

S Bj.lO« X Pn
(cm) (kg/cm2) (cm) M/EJ l/p» (cm)

25 0,443 4,85 0,01008 0,01437 69,6
26 0,458 4,15 0,00834 0,01611 62,1
29 0,505 2,13 0,00387 0,02058 ¦ 48,6
32 0,554 0,25 0,00042 0,02403 41,6
35 0,606 —1,45 0,00221 0,02666 37,5
38 0,662 —2,95 0,00411 0,02856 35,1
41 0,722 —4,16 0,00530 0,02975 33,6
44 0,785 —5,16 0,00605 0,03050 32,8
47 0,851 —5,91 0,00639 0,03084 32,5
50 0,916 —6,38 0,00642 0,03087 32,4
53 0,916 —6,55 0,00658 0,03103 32,2
56 0,916 —6,45 0,00647 0,03092 32,4
59 0,916 —6,10 0,00613 0,03058 32,7
62 0,855 —5,45 0,00586 0,03031 33,0
65 0,769 —4,60 0,00550 0,02995 33,4
68 0,691 —3,45 0,00459 0,02904 34,4
71 0,623 —2,05 0,00303 0,02748 36,4
74 0,554 —0,50 0,00083 0,02528 39,5
77 0,491 1,25 0,00235 0,02210 45,2
79 0,454 2,50 0,00506 0,01939 51,6

Anmerkung: s ist die Bogenlänge der elastischen Linie,
gemessen vom eingespannten Federende 0—0. Von 14 < s < 26

liegt die Feder an der Widerlage an. An den beiden Federenden

0 < s < 14 und 79 < s < 94,3 ist die Feder eingespannt,
daher EJ oo.

Es ist offensichtlich, dass für p (s) > R' (Bild 1) das
betrachtete Federstück gegen die Widerlage gepresst wird.
Dagegen hat sich die Feder für p (s) < R' schon von der Widerlage

abgehoben.

Daher gilt für den Anlagepunkt:
(16) p (s) R'
Um diesen zu finden, zeichnet man den Verlauf der elastischen
Linie mit der Krümmung der Federwiderlage, eine beliebige
Strecke auf. Nun greift man sich einen Punkt derselben, z. B.
s 26 cm, heraus und erhält durch gleiche Unterteilung den
entsprechenden Punkt 26'. Der Abstand von 26' bis zur
Wirkungslinie w misst man ab und erhält

x (s) 4,15 cm

Nach der Momenten-Gleichung der elastischen Linie
1 1 Rx(s)

p(s) ~~ r
(17)

r EJ(s)
kann man den Krümmungsradius p (s) berechnen und erhält
(n. Tabelle 1)

p (26) I 62,1

Dieser Wert ist kleiner als R', folglich hat sich die Feder
schon von der Widerlage abgehoben. Führt man das selbe
Verfahren für s 25 cm durch, so wird nach Gleichung (17),
deren Auswertung in TabeUe 1 wiedergegeben ist:

p (25) 69,6

Da p (25) > R', liegt die Feder in diesem Punkte also noch an
und der gesuchte Wert liegt zwischen diesen beiden Grössen.
Durch Interpolation wird für den Anlagepunkt

Sa 25,88

was für unsere Zwecke genügt.
Mit dem Krümmungsradius p (26) und dem Krümmungsmittelpunkt

E auf MX (BUd 9) zeichnet man mit genügender
Genauigkeit- ein Stück der elastischen Linie soweit auf, dass
man Punkt 29' noch gut auftragen kann.
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Wiederum misst man x (29) ab und berechnet den Radius
p (29), der mit F auf E 26' zur weiteren Aufzeichnung der
elastischen Linie dient, und so fort.

Die Enveloppe der Krümmungsradien, die sogenannte
Evolute M, E, F, G,... hat ihren Scheitel dort, wo p (s) ein
Minimum ist, und die auftretenden Spannungen sind dort am
grössten. Es sei darauf hingewiesen, dass diese Stelle der max.
Beanspruchung kein Festpunkt ist, sondern sich mit
zunehmender Belastung, hervorgerufen durch die nichtlineare
Aenderung der Führungskraft V und durch Wandern des Anlagepunktes

X, in Richtung des Kraftangriffspunktes A bewegt.
Zu beachten ist ferner, dass oberhalb von w die Momente

R ¦ x (s) negativ werden und dass die Krümmung an der oberen

Einspannung für s 79 cm, einen Sprung macht. An dieser

Stelle geht der Krümmungsradius sprunghaft auf rx um
die Strecke YZ zurück, die Einspannelemente sind daher gut
abzurunden, um Spannungsspitzen zu vermeiden.

Hat man nun V zu klein oder zu gross geschätzt, so wird
die Feder seitlich ausweichen und der um den Federweg
verschobene Angriffspunkt von P wird oberhalb oder unterhalb
der vom Federbolzen beschriebenen Kreisbahn hegen.

Das Aufzeichnen der elastischen Linie ist dann mit einer
neuen Schätzung von V zu wiederholen und durch
Interpolation die wirkliche Grösse von V zu ermitteln, die das
Federende so führt, dass sich A0 auf der Kreisbahn bewegt.

Der Punkt Ao wird gefunden, indem man Dreieck ABC
mit den entsprechenden Punkten B0 und Co auf der elastischen
Linie abträgt. Der gesuchte Federweg ist nach Bild 9

A Ao 18,5 mm
Mit diesem Verfahren der sukzessiven Approximation ist es
möglich, nicht nur von Kreisbogenfedem, sondern auch von
solchen mit beliebigen, komplizierten Formgebungen die
elastische Linie zu konstruieren.

Um die Richtigkeit und Genauigkeit der graphischen
Lösung zu untersuchen und die an der Innen- und Aussenseite
der Feder auftretenden Spannungen zu messen, ist die
Kupplungsfeder auf einer den Betriebsbedingungen entsprechenden
Versuchseinrichtung einer genauen Prüfung unterzogen worden.

Wie aus Bild 10 ersichtlich, ist auf der Prüfmaschine die
Belastung von 100 zu 100 kg gesteigert und der jeweüige
Federweg gemessen worden. Die Kennlinie ergibt auf Druck
bei P 900 kg einen Federweg von 18,6 mm, was die sehr
gute Genauigkeit der graphischen Lösung beweist. Beim
Zugversuch weist die Kennlinie einen eigenartigen Knick auf, der
jedoch, bedingt durch plötzliche Krümmungsänderung der
Federwiderlage, auf unerwünschtes Abheben des unteren
Federendes von der Anlage zurückzuführen ist.

Würde daher die Feder im Betrieb dauernden
Zugbeanspruchungen ausgesetzt sein, so müsste man durch
konstruktive Massnahmen ein sauberes Anliegen des Federblattes
herbeiführen, zumindest aber die Spannungen an der Stelle
des Abhebens genau ermitteln.

Besonders sei darauf hingewiesen, dass der progressive
Verlauf der Federkennlinie wichtig ist. Die nichtlineare Kennlinie

führt in Resonanznähe zur Verstimmung, wodurch die
elastische Kupplung bedeutend verbessert wird. Tritt bei einer
Erregenden höherer Ordnung, deren kritische Drehzahl also
im Betriebsdrehzahlbereich liegt, Resonanz auf, so würden die
Ausschläge, wenn man von der Dämpfung absieht, bei linearer
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Bild 11. Spannungsverlauf der Kupplungsfeder. Masstab der Feder 1:7,5

Federkennlinie, unendlich gross werden. Bei der gekrümmten
Federcharakteristik dagegen ist die Federsteifigkeit

C f
bei jeder Belastung eine andere, was nichts anderes bedeutet,
als dass sich die reduzierte Länge der elastischen Kupplung
mit der Belastung ändert und somit auch die Eigenschwingungszahl

des Systems, wodurch die Schwingung «ausser
Tritt» fällt und die gefürchteten Resonanzausschläge in
endlichen Grenzen bleiben.

Die Spannungen bei einer Belastung von P 900 kg
wurden mit dem Tensometer und mit Dehnungsstreifen (strain
gauges) gemessen. Die Messergebnisse der beiden Verfahren
stimmten gut überein, wobei die des Tensometers ein wenig
tiefer lagen. In BUd 11 sind die Spannungen über den
Messstellen der Dehnmesstreifen auf Zug und Druck, für Feder-
Innen- und Aussenseite aufgetragen. Die Spannungen sind
innen erheblich grösser als aussen und ihre Maximalwerte
liegen im Bereich des grössten Federquerschnittes. Deutlich
geht auch aus BUd 11 hervor, dass an den Stellen, wo die Wu*-
kungslinie w die konstruierte elastische Linie der Feder
schneidet (siehe Bild 9), die Spannungen 0 sind. Auf Grund
des Spannungsverlaufes würde daher eine Schwächung des
Federblattes vor den Einspannstellen und eine Verstärkung
im meist beanspruchten Teil, bei gleichem Federweg, zu einem
erhebUchen Abbau der Spannungsspitzen führen und dem
IdealfaU der Feder gleicher Festigkeit näherkommen.

Der dynamischen Beanspruchung der Feder durch
Fliehkräfte ist durch konstruktive Massnahmen Rechnung
getragen worden, indem entsprechend gewählte Gegenmassen
dem zusätzlichen Ausbiegen der Feder entgegenwirken. Da
ausserdem die Drehzahl verhältnismässig klein ist, sind bei
der Konstruktion der elastischen Linie die dynamischen
Einflüsse vernachlässigt worden.

Adresse des Verfassars: Robert Zwahlen, Dipl. Math. ETH.,
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