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Berechnung gekrümmter Blattfedern für elastische Kupplungen

Von Dipl. Math. R. Zwahlen, Zürich DK 621.825.7:539.413

Einleitung

Um zwei Kolbenmaschinen elastisch miteinander zu
kuppeln, wurde eine Konstruktion mit Hilfe von Stahlfedern
nach Bild. 1 entwickelt. Die Stahlfedern sind in einer der
Drehmassen eingespannt, während ihr anderes Ende von der
zweiten Masse frei drehbar geführt wird. Um das
Schwingungsverhalten dieser Konstruktion zu finden, muss die
Federkennlinie ermittelt werden. Zu diesem Zwecke ist die
Feder als krummer Balken zu berechnen. Die Ueberlegungen,
welche zur Lösung der Aufgabe führten, werden nachfolgend
beschrieben.

Im ersten Teil werden die mathematischen Grundlagen
geschaffen, die das Festigkeitsverhalten des Balkens
betreffen. Man gibt sich leicht darüber Rechenschaft, dass die
aus der klassischen Biegungslehre des geraden Balkens
bekannten Begriffe (Trägheitsmoment, Lage der Neutralaxe)
für den krummen Balken auf ihre Brauchbarkeit überprüft
werden müssen. Es zeigt sich, dass die Lage der Neutralaxe
anders als beim geraden Balken zu bestimmen ist. Auch für
das Trägheitsmoment erhält man einen passenden Ersatz, den
wir als Krümmungs-Widerstandsmoment bezeichnen. Der
Zusammenhang zwischen den bekannten Formeln, die für den
geraden Balken abgeleitet werden, und den für den krummen

Balken üblichen lässt sich mit Hilfe von Reihenentwicklungen

gewinnen.
Im zweiten Teil werden

die Differentialgleichung
aufgestellt, die Anfangsbedingungen

ermittelt und
Lösungsmethoden beschrieben.

Wir nehmen in der
Folge an, die Feder werde
auf Druck beansprucht.
Unsere Ueberlegungen lassen
sich auch auf den Fall
anwenden, bei dem die Feder
auf Zue arbeitet.

Stahlfeder

Bolzen

Kupplungs-
Segment

Bild 1. Klastische Kupplung'

I. Teil: Ersatz des Trägheitsmomentes beim krummen
Balken

1. Ebene Biegung gekrümmter Stäbe

In der einschlägigen Literatur der Statik1) findet man
folgende Berechnungsgrundlagen des krummen Balkens. Es
sei in Bild 2 ein Element eines krummen Balkens dargesteUt,
der sowohl einer Normalkraft N als auch einem Moment M
unterworfen ist. Ein Faserteilchen des Balkens sei klein, doch
immerhin endlich und seine Länge mit ds bezeichnet. Der
Krümmungs-Mittelpunkt des betrachteten Balkenteils sei der
Punkt O. Die beiden Strahlen mit dem Scheitel O, welche das
Element ds aus dem Balken herausschneiden, schliessen
miteinander den Winkel d<p ein; dip ist entsprechend ds klein aber
ebenfalls endlich, y sei der Abstand der betrachteten Faser
von der Neutralaxe z, in der, wie im geraden Balken die
Normalspannungen bei reiner Biegung 0 sind. Neutralaxe z und
Schweraxe z, sind im Gegensatz zum geraden Balken hier
nicht identisch. Um z zu ermitteln, sind einige zusätzliche
Ueberlegungen erforderlich. Zunächst ist unter Beibehaltung
der Navier-Bernoullischen Hypothesen

ds'= (r — y)dq>

Die Formänderung àds wird durch die Normalkraft N, Ad?
durch das Moment M hervorgerufen. Daraus folgt für die
Dehnung e im Abstand y von der Neutralaxe

•) Wir folgen ein Stück weit dem Buche von Prof. Dr. F. Stilasi,
«Vorlesungen über Baustatik», Basel 1945, Birkhäuser.

e(y)
A ds + A dip ¦ y

(r — y) d<p

Man erkennt an dieser Gleichung, dass sich die Dehnung e

auch bei rein zentrischer Normalkraft N mit dem Abstand y
verändert.
Für die Spannung a findet man

(1) a(y) — eE =E
und es muss gelten

Ads + Adq> ¦ y
(r — y) ¦ dq>

N

E
fa(y)dF
Ads r dF
~d

ds r
!<p J r y

M fcr(y)ydF
àds f ydF
*p J r — y

E-
A dtp r ydF-/¦ y

E + E
A dip r y2 dF'/i y

Wenn r—y oo strebt, der Balken also gerade ist, muss man die
entsprechenden Gleichungen für den geraden Balken erhalten.
Das lässt sich aus den beiden Gleichungen noch nicht herauslesen.

Dagegen lässt sich damit die Lage der Neutralaxe
bestimmen: Setzt man M 0, so muss A dip 0 sein. Die Lage
der Neutralaxe ist damit charakterisiert.

0 E HydFAds
<*<P J r — y

Nun sind aber B^O und

ydF

A ds
dip

=£ 0 (weil N ^ 0). Somit folgt

(1¦ y

Zum gleichen Ergebnis führt folgende Ueberlegung:
Setzt man M ^ 0, N ^= 0, so ist A ds 0, denn A ds wird von
der Normalkraft N hervorgerufen. Deshalb ist

0 E
A dip f ydFI

Weil E =£ 0 und

dip j r ¦

A dip

y

0 folgt erneut Gl. (1*). Diese

Gleichung lässt sich auswerten, um die Lage der Neutralaxe zu
berechnen, d. h. r zu bestimmen:

J r — y J r — y ' J r
dF

\M

1%

dm

Mf f * \ Neutrsie Axe

[dF
¦>*

-I -
Bild 2. Element eines krummen Balkens
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Also

fdF / rdF
0

r — y
Nun wird als neue unabhängige Variable eingeführt
p ì— y, also

F r fdF

(2)

/ dF
~P~

Je nach Zweckmässigkeit wird mit y oder p operiert.
Mit p ist die Lage von dF bestimmt, ohne dass man r kennen
muss. Durch Einsetzen der gefundenen Beziehungen in die
Gleichungen für N und M und Auflösen nach N bzw. M folgt

(2 a) E Ads N

I
(2b) E-

dF

M

I y*dF
r — y

Damit sind die Formänderungen des betrachteten
Stabelementes bestimmt. Aus Gl. (1) folgt durch Einsetzen von
Gl. (2 a) und Gl. (2 b)

(3) a(y)

oder auch

a (y)

N M

SS f y*dF
p

y_
v

N M

(r — y)

f(
PJ-

f-Z- f.
J r — y J

1

y*dF
r — y

y
r — y

P
y^dF

P

Die Ausdrücke

•dF
~P

treten offenbar an Stelle von F und J beim geraden Balken.
Sie sind allein von der geometrischen Form des Querschnittes
abhängig und können bei gegebenen Abmessungen z. B.
graphisch ermittelt werden (vgl. die in Fussnote *) zitierte
Literatur).

Das letzte Integral lässt sich mit Hilfe von Gl. (1*) wie
folgt umwandeln

f-yVdF _ Ç(y*
J r — y J

* — ry) ry dF -fydF
Ferner ist y + e der Schwerpunktsabstand von dF (Bild 2),
somit

/ (y + e) dF / ydF + e f dF 0

Deshalb gut

3/2 dF
(4) \ V fydF eF

Die Gleichung (4) erlaubt scheinbar, die graphische Integration
zu umgehen. Der Abstand e wird jedoch in den meisten

Fällen sehr klein ausfallen; er wird nach Gl. (2) und aus
6 5 — r gefunden. Deshalb
wird man in den meisten Fällen

/ j/8 dF / (r — y) doch
genauer graphisch bestimmen.

In folgendem Beispiel
lässt sich die Integration
leicht rechnerisch durchführen.

Es sei in Bild 8 die
Breite des Faserelementes ds
proportional dem Abstand
vom Krümmungszentrum O,
somit dF b • p • dp (b
konst.) Es liegt also ein
Trapezquerschnitt vor, wobei A
— Pmax> H Höhe des
Querschnittes, & 2 ¦ tg a/2

=»:^>8k\
»•

o/

Bild 3. Trapezquerschnitt

/"=/ bpdp
P

bH
A—B

Die Mittellinie des Trapezes hat die Länge b (A — H/2),
somit ist F b (A—H/2). Hieraus berechnet man mit
Gleichung (2)

b (A — H12) H
bH A H/2

Für die Lage der Schweraxe folgt wegen

_ f p dF statisches Moment von F

nach einiger Rechnung

R
fbp2dp

A — H

Fläche

ZA2 — ZA H + W

A* AH

b (A —H12) H

Hieraus folgt

e R — r
.ffü 1

" "Ï2~ ' ~ÄA
und

/= eF

Z(A

H2/3

H/2)

A — H12 — (A — H12)

H/2

Ç y*dF
J r — y

6H3
"Ï2-

Das Trägheitsmoment beträgt demgegenüber für kleine Werte
von b angenähert

(4')
(b • r) H»
—12 / • r

Nimmt man an, es liege lediglich eine im Schwerpunkt S
angreifende Normalkraft N, vor, so ist

N Nt M — e Ne

und für die Spannungen findet man nach Gl. (3)

H, : N, ¦ e y

P!" f
I
/

ysäF.
p

p

' fi TP W
Nach GL (2) folgt / — und wegen Gl. (4)

p r

y*dF

_AT«_
pF/r

P

N,e
eF

z= — eF

V_

P

N,
F

Die Spannungsgleichung für auf den Schnittpunkt bezogene
Schnittgrössen N, und M, lautet

(5) F + M,

I y*dF r — y
r—y

Man erkennt hieraus, dass bei starker Krümmung r — y p
klein werden kann, so dass ays auf der Balken-Innenseite gross
wird.
Der Spannungsverlauf im Querschnitt 1st hyperbolisch wegen

y r
r — y

N,
~F~

-1 +

+

r — y
Ma

y*dF_
ym H + ^f)

F, N„ M, my*dF und r sind Konstanten, y ist Variable,

sofern sie nicht im bestimmten Integral auftritt.
Die bisher allein betrachteten Normalspannungen o-

erzeugen infolge der Stabkrümmung Ablenkungskräfte und
damit radial gerichtete Spannungen aT (Bild 4). Bedeutet hier
6 die Breite des Stabes, so erhält man wegen p • dip ds
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t/rtif 0

IIO'f

T~T"
Ì à;

I f
lç/p_

J.9...
&

Bild 4. Radialspannungen

oy • b ¦ (p • d<p)

Hieraus folgt

Bild 5. Rechteckquerschnitt

f aN- dF

1

bp SydF

Bei Vollquerschnitten wird die Querschnittsform durch die
Radialspannungen <rT kaum beeinflusst. Bei Profilträgern
dagegen sind diese Beanspruchungen speziell zu untersuchen.

Im nächsten Abschnitt möge der Fall untersucht werden,

bei dem die Querschnittshöhe H verhältnismässig klein
ist gegenüber dem Krümmungsradius R. Es lässt sich
abschätzen, welchen Fehler man begeht, wenn man an Stelle
des eben aufgestellten Wertes I mit dem klassischen
Trägheitsmoment J rechnet. Um ein Mass dafür zu haben,
welchen Einfluss die Stabkrümmung auf die Randspannungen
ausübt, setze man in BUd 3 r 10 H, r — H/2 9,5 H; für
N 0 folgt für den Querschnitt, Bild 3, nach Gl. (3 und 4')

M H/2
9,5 H

12 r „ 1/2
bH* brHS 9,5
12

Ì-10H
HSrW

1

9,5

05 •
_

6
• M M

— 1.05 =- WbrW W
Widerstandsmoment

Die Spannungserhöhung gegenüber dem geraden Balken
beträgt somit 5 %. Entsprechend findet man

0,95
M
~W

2. Ermittlung der Neutralaxe eines krummen Balkens mit
Rechteckquerschnitt

Gemäss Gl. (2) berechnet sich der Abstand der Neutralaxe

beim krummen Balken nach

F
r dF

J r — y
Wir legen als Querschnitt ein Rechteck von der Breite B
gemäss Bild 5 zu Grunde. Dann ist dF B • dp, und man hat

WeU der Nenner wegen H/A ^ 0 nicht verschwindet, kann
man r in eine Potenzreihe von H/A entwickeln.

Wir suchen also die Koeffizienten ao Oi a$... usw. zu
bestimmen aus

(6)
1 + x X2 Xs

ir + rn-
Oo + Oi x + 02 a;2 +

Es liegt nahe, die Gleichung (6) beidseitig mit

a* x^_
3 i~ 4

zu multipUzieren.

Ordnet man nach der Multiplikation der rechten Seite
nach fallenden Potenzen von x, so folgt durch Koeffizientenvergleich

«1

a2

o3

a0
2

0

«i
2 + ^ »

a%

~~2~

«H a0
**"

3 "•" 4

Diese Gleichungen gestatten eine rekursive Berechnung
der Koeffizienten, d. h. aus der ersten Gleichung findet man
ao. aus der zweiten «i, aus der dritten a2 usw.

Die praktische Durchführung wird leider rasch mühsam
und man weiss nicht, ob bei unbegrenztem, wachsenden
Index n die Koeffizienten an endlich bleiben.

Um die Konvergenz abzuklären, setzt man

1 +
»2

~3~

Oo + a% x + 02 x ¦

und berechnet / (x) als Mac Laurinsche Reihe

f (x)=f (0) + ||- f (0) + -|Ç- /" (0) +

f(x)

Rn

Rn
xn

n
/<»> (£) 0< £ < x

wobei bekanntüch die Konvergenz der Potenzreüie für / (x)
bewiesen werden muss, indem man zeigt, dass Rn mit
unbegrenzt wachsendem Index n kleiner als jede noch so kleine,
willkürlich wählbare, positive Zahl e ausfällt.

Wir dispensieren uns hier vom Konvergenzbeweis und
teilen nur das Resultat mit. Für * g 0,02 darf man setzen
R3 < 0,000 019; damit wird

/ (x) zz 1 — y x
1

~X2
»2

1
H
X" sar

I dF dprdi
J P

B hi A — In (A- ¦»]
— B In —-— — BinH mi)

Für jene Werte H/A, welche kleiner als 1 sind, kann man
In (1 — H/A) in eine Potenzreihe entwickeln. Für x < 1 ist
bekanntlich

— Im, (1— x) x + »2/2 + as»/3 +
Ersetzt man x durch H/A, so erhält man leicht

r A H
~2~X

H2

IF
H* +

und

> + 4 a*
"3~ +-

x3

i+l
H

~~2

H
X "

1

l2~

idi'
Fehler < 0,000 019 A

Für A 1000 mm machen wir also einen Fehler von a/ioo nun,
wenn wir mit

H
~2

i h»
"WASr — A ¦

rechnen. Dieser Fehler darf vernachlässigt werden.
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Die klassische Theorie führt zu

r A H
T

und der Unterschied gegenüber der vorliegenden Theorie wird
durch H2/12A gemessen.

3. Krümmungs-Widerstandsmoment

An Stelle des Trägheitsmomentes tritt beim gekrümmten
Balken gemäss Gl. (4) der Ausdruck

2/2 dF 1 Ç y*dFi fy2dF -. fy2dF — M fmJ P J r — y ' r J 1y r J l — y Ir
den wir als Krümmungs-Widerstandsmoment bezeichnen.

Gemäss Bild 2 ist < 1, womit die Entwicklung in eine

geometrische Reihe möglich ist.

1 « / « \ 2

(*)

Demnach ist für den Rechteckquerschnitt Bild 5

(7)

Wk
B
r

y^_

r2
yö
7-S

dF

y3
3 or2 + '

Nun sind die Integrationsgrenzen festzulegen. Wir
rechneten zuvor mit H/A 0,02, A 1000, also H 20 mm.
Somit ist H2/12A 0,034 mm. Die Berücksichtigung dieses
Fehlers bei Verwendung des Rechenschiebers ist bereits
zweifelhaft. Die Grenzen sind % H + 0,034 und %H— 0,034
10,034 bzw. 9,966.

Schon der erste Summand Bys
J 1 81
2 12 A

Zr / b im
\-A 12 ~Ä

zeigt, dass H2/12A nicht berücksichtigt werden muss:

W!
H 1 H2>3
IT Î2~ AT

H2\8

H2,2
\12 A

In Zahlen — wenn wir H 2 cm, A 100 cm einsetzen

1 m
12 A

2 + 3-2
1 H2

j2 a

(i-».«r 2,00007

Der entstehende Fehler darf vernachlässigt werden. Wir rechnen

mit den Grenzen
Gleichung (7)

%H und — VzH und erhalten nach

yZ
3

H
2 h»
H ~^S

y*
ir 0

H

y5
or2

2

H

HB
80 T*

2 2 2

usw. Wir finden so

W'M H6
+ 80r2 +° + ---

—
1 BW ^

80 f2 Tr 12 {

Also

(8) H| H2\

Nach unseren Annahmen ist H 2 cm, r A-— %H 99 en

12
"8ö~ (~\ 0,15 • 0,00041 0,00007

Diese Abweichung ist so gering, dass wir stets mit
genügender Genauigkeit

(9) / —

setzen werden. Schluss folgt

Der Ausbau des Kantonsspitals Winterthur
Mitgeteilt vom Hochbauamt des Kantons Zürich

III. Einzelheiten zu den in Betrieb genommenen Neubauten

Schwesternhaus

Da in alten Gebäuden für das Personal auch weiterhin
genug grössere Zimmer vorhanden sein werden, sind im neuen
Schwesternhaus ausschliesslich Zimmer zu einem Bett erstellt
worden. Ihre Bodenfläche beträgt einschliesslich eingebautem
Schrank und Nische für das Waschbecken 10,2 m2, in den
Eckzimmern etwas mehr. Mit einer Läutsignalanlage kann
die Hausmutter den Schwestern Zeichen von bestimmter
Bedeutung geben. Sie kann sie z. B. wecken, in die Halle oder
an das in jedem Stockwerk in einer Kabine installierte Telephon

rufen. In 13 Zimmern für Schwestern mit vermehrter
Verantwortung sind Telephonapparate installiert. Die
Hausmutter überblickt von ihrem Büro aus Hauseingang und
Halle. In der Teeküche und im Schuhputzraum steht jeder
Schwester ein kleines abschliessbares Fach zur Verfügung,
im Handwaschraum ein Sack für Schmutzwäsche, im Keller
ein grösserer Schrank.

Die Aussenmauern sind in Backstein, die Zwischenwände
tragend in Zementsteinen hochgeführt. In den Zimmern ist
über den 16 cm starken Massivdecken und dem Unterlagsboden

nach guter Austrocknung Filzkarton lose aufgelegt und
darauf Linoleum geklebt worden. An Installationen sind zu
erwähnen je ein Abwurfschacht für schmutzige Wäsche und
Kehricht, überall Radiatorenheizung, künstliche Lüftung in
den Badezimmern, Duschen- und Abortanlagen sowie im
Schmutzwäschesammelraum im Keller. Rauminhalt nach den
Normen des S.I.A. berechnet: 12160 m*. Kosten des Hoch-

DK 725.61

Schluss von Seite 675

baues Fr. 1 755 000.— oder rund Fr. 145.— pro Kubikmeter
und Fr. 13100.— pro Bett. Kosten des MobUiars Franken
270 000.—.

Einteilung, Einrichtungen und Konstruktionen haben sich
bewährt.

Betriebsgebäude

Mit der Stadt Winterthur ist vereinbart worden, dass der
Kanton den Kranken- und Leichentransportdienst weiterführt.
Da dies eine Angelegenheit der Gemeinden wäre, leistet die
Stadt Winterthur an Bau und Betrieb eine angemessene
Entschädigung. Die Garage ist dementsprechend ausgebaut und
mit Benzintankstelle, Wagenwäscherei und Oelmagazin
versehen. Die Verbindung von Wagenwäscherei und Schlosserei
erleichtert die Vornahme kleiner Reparaturen.

Die Wäscherei wird nach dem Ausbau des Spitals innert
fünf Tagen zu je siebeneinhalb Stunden etwa 13 600 kg oder
stündlich 360 kg Trockenwäsche zu verarbeiten haben. Die
schmutzige Wäsche wird von den Sammelstellen der verschiedenen

Bautrakte über unterirdische Korridore in das Betriebsgebäude

gebracht und mit dem Lift in den Sortierraum
gefördert. Besonders schmutzige Wäsche wird über jene Tage,
da nicht gewaschen wird, in fahrbaren Bottichen eingeweicht
oder mit Chemikalien vorbehandelt. Der nach der Wäschehalle

offene Sortierraum ist künstlich derart belüftet, dass
keine Gerüche In den Waschraum dringen. Gleichartige
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