**Zeitschrift:** Schweizerische Bauzeitung

**Herausgeber:** Verlags-AG der akademischen technischen Vereine

**Band:** 72 (1954)

**Heft:** 38

Artikel: Das Innkraftwerk Simbach-Braunau

**Autor:** Innwerk Aktiengesellschaft

**DOI:** https://doi.org/10.5169/seals-61257

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

# **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

## Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

barer Missbrauch des Initiativrechtes, sondern sie bedeutet einen Rechts- und Wortbruch gegenüber dem eigenen Staat, gegenüber dem Nachbarstaat und nicht zuletzt gegenüber dem Ueber die ausserordentliche Generalver-Konzessionär.» sammlung vom 4. Juli 1954 berichtet Hch. Leuthold in «Wasser- und Energiewirtschaft» 1954, Nr. 8. Nach den Hauptreferaten, sowie der Voten des Obmannes der Sektion Basel (Dr. R. Massini) und des Staatsschreibers von St. Gallen (Dr. Scherrer), verlas der Vorsitzende, Dr. E. Burckhardt, eine vom Zentralvorstand vorbereitete Resolution, gemäss welcher in Anbetracht der Meinungen, die sich in der staatsrechtlichen und politischen Beurteilung der Initiative trennen, Stimmfreigabe beschlossen werden soll. Dieser Resolution stimmten nach einer von zahlreichen Votanten benutzten Diskussion 149 Mitglieder zu, während auf den Antrag der Sektion Basel auf Unterstützung der Rheinauinitiative 34 Stimmen fielen. Wir halten dieses Ergebnis im Hinblick auf die weitere Entwicklung der Dinge für sehr bedeutungsvoll und sind froh und dankbar dafür, dass sich die Schweizerische Vereinigung für Heimatschutz und vor allem ihr Präsident, Dr. E. Burckhardt, unterstützt von den Obmännern von 14 Sektionen (vier beharrten auf Unterstützung der Initiative), sich zur Anerkennung der tiefgehenden Bedenken staatsrechtlicher Natur haben durchfinden können, die die Initiative aufwirft, und durch die Stimmfreigabe ihren Mitgliedern eine freie Entscheidung als Staatsbürger ermöglichten. Inzwischen hat die ständerätliche Kommission, die am 30. August auf dem Bürgenstock tagte, nach einlässlicher Beratung mehrheitlich beschlossen, dem Ständerat zu beantragen, er möchte die Initiative insbesondere wegen Verletzung der formellen Revisionsvorschriften des Art. 121 der Bundesverfassung Volk und Ständen nicht zur Abstimmung vorlegen.

# Das Innkraftwerk Simbach-Braunau

Mitgeteilt von der Innwerk Aktiengesellschaft, Töging am Inn, Bayern

#### VI. Bauausführung

### a) Vorarbeiten

Fortsetzung von Seite 505

Nach der öffentlichen Ausschreibung des Konzessionsprojektes durch die Wasserrechtsbehörde in Linz wurde auf der österreichischen Seite vom 25. bis 27. Oktober 1950 die wasserrechtliche Tagfahrt durchgeführt; bei der örtlichen Begehung des Krafthausgeländes und der Dammstrecken sind die Wünsche und Einwände der privaten Interessenten entgegengenommen worden. Auf der bayerischen Seite wurde das Konzessionsprojekt am 13. Januar 1951 durch das Landratsamt Pfarrkirchen ausgeschrieben; die wasserrechtliche Tagfahrt fand in der Zeit vom 13. bis 16. März 1951 statt, wobei ebenfalls alle Einwände und Wünsche der Grundstückanlieger protokolliert wurden. In weiteren, zum Teil recht schwierigen Verhandlungen sind dann alle Fragen hinsichtlich der endgültigen Führung der Dämme im Rückstaugebiet und sonstige Einzelheiten so weit geklärt worden, dass man die Ausführungspläne erstellen und mit dem Grunderwerb beginnen konnte.

Die mit dem Einstau zu erwartenden Veränderungen in den Grundwasserverhältnissen erforderten eine sorgfältige Beobachtung der Grundwasserstände während der Bauzeit. Es wurde daher das schon im Jahre 1942 angelegte Netz der Grundwasserbeobachtungsbrunnen im Einvernehmen mit dem hydrographischen Büro in Linz und den Wasserwirtschaftsämtern Pfarrkirchen und Mühldorf durch Anlage von weiteren Beobachtungsbrunnen ergänzt. Durch Erhebungen bei den Aemtern und durch umfangreiche Wassermessungen wurde die Wasserführung der bestehenden Quellbäche und Vorfluter ermittelt und durch Beobachtung von zusätzlich gesetzten Pegeln und durch Reihenmessungen fortlaufend überprüft.

In einer umfassenden Beweissicherung ist der bauliche Zustand der im Einflussbereich des Rückstaugebietes liegenden Anwesen und Gebäude festgehalten worden; ebenso hat man für die land- und forstwirtschaftlich genutzten Grundstücke eine eingehende pflanzensoziologische Beweisaufnahme durchgeführt. Die Untergrundverhältnisse und die Höhenlage des Schliermergels wurden bei den Staudämmen durch zahlreiche Bohrungen festgestellt, besonders sorgfältig in den Dammstrecken, bei denen Stahlspundwände zur Abdichtung des Untergrundes gerammt werden mussten.

Vor dem eigentlichen Baubeginn musste als wichtigste Vorarbeit für Wehr und Krafthaus die Schüttung für den

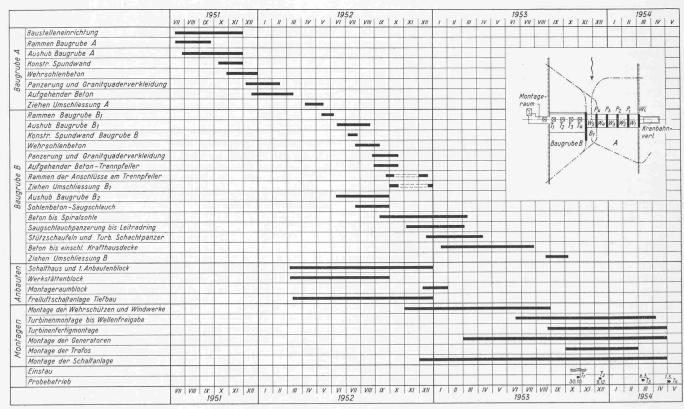



Bild 67. Zeitplan für die Arbeiten von Wehr und Krafthaus

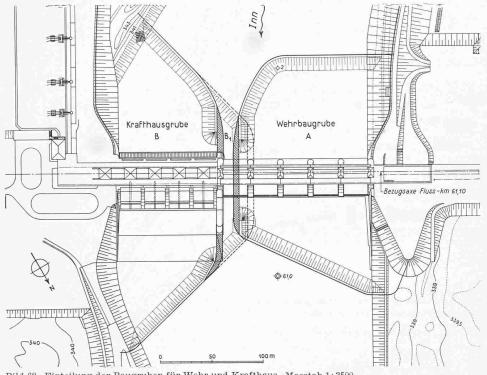



Bild 68. Einteilung der Baugruben für Wehr und Krafthaus, Masstab 1:3500

hochwasserfreien Lagerplatz am bayerischen Ufer durchgeführt werden, da auf diesem Gelände die ganze Baustelleneinrichtung wie Betonfabrik, Werkstätten, Lagerhallen, Werkund Lagerplätze für Rundeisen und Werksteine usw. unterzubringen war. Auch die Uebergabeanlage des Privatgleisanschlusses konnte durch das Entgegenkommen der Bundesbahn auf den Lagerplatz verlegt werden, was eine wesentliche Vereinfachung des ganzen Rangierbetriebes mit sich brachte.

#### 1. Zollgebiet

Für die Durchführung des Wehr- und Krafthausbaues kamen Zoll- und Grenzpolizeibehörden beider Länder in Besprechungen mit der ÖBK überein, eine über den engeren Bereich der Baustelle sich erstreckende sogenannte «Bauzone» zu schaffen, die bei der Abwicklung aller ein- und ausfuhrmässigen, zollrechtlichen und passpolizeilichen Aufgaben sowohl von den österreichischen als auch den deutschen Verwaltungsstellen als Inland betrachtet wurde. Die Bauzone ist durch einen Zaun abgegrenzt worden; sie stellte keine allgemeine Uebergangsstelle über den Inn und damit zwischen den beiden Ländern dar.

An den Zugängen wurden Dienstgebäude für Zoll- und Grenzpolizeiorgane errichtet, welche die Zollabfertigung und Personenkontrolle durchführten. Ein Zollbevollmächtigter der ÖBK besorgte die Abwicklung aller Geschäftsvorgänge mit den Zollbehörden. Die in die Bauzone mit Versandanzeigen eingeführten Baustoffe, Maschinen und sonstige Lieferungen wurden lediglich registriert, waren aber frei von Zöllen und Abgaben. Alle beim Bau vorübergehend gebrauchten Geräte und Maschinen unterlagen dem Zoll-Vormerkverfahren. Der Warenverkehr mit der Bahn wurde über das österreichische und deutsche Eisenbahnzollamt Simbach abgewickelt und von hier an die Zollstelle der Bauzone eingewiesen.

Die in der Bauzone Beschäftigten erhielten einen Werkausweis mit Lichtbild, der beim Betreten und Verlassen der Bauzone vorzuzeigen war. An Bargeld durften in die Bauzone nur DM 2.- oder ÖS 10.- mitgenommen werden; für überzähliges Bargeld waren an beiden Eingängen Geldhinterlegungsstellen eingerichtet. Zur Begleichung der Verpflegungskosten in der Gemeinschaftskantine innerhalb der Bauzone wurde ein eigenes Kantinengeld in deutscher und österreichischer Ausführung ausgegeben. Der Zollverkehr wickelte sich infolge der Sachlichkeit und Hilfsbereitschaft der Zollbehörden während der ganzen Bauzeit reibungslos ab.

## Bauzeitplan

Für die Ausschreibung der Bauarbeiten für Wehr und Krafthaus wurde ein bis in die Einzelheiten gehender Zeit-

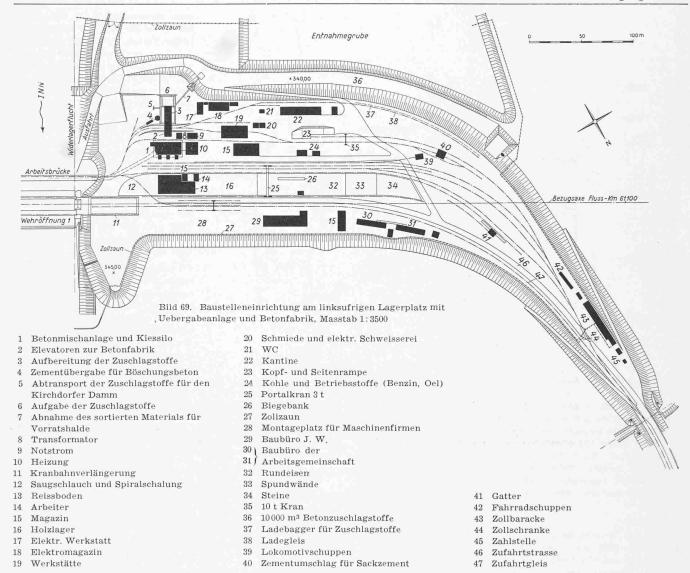
plan ausgearbeitet, in dem auch die Termine für die Montagearbeiten festgelegt waren (Bild 67). Alle am Bau beteiligten Firmen, insbesondere die Lieferfirmen für die maschinelle und elektrotechnische Ausrüstung, konnten somit ihre Dispositionen auf weite Sicht treffen. Nach diesem ersten Zeitplan war die Inbetriebnahme der ersten Maschine auf den 1. April 1954 vorgesehen. Durch einen Sondervorschlag der bauausführenden Firmen konnte dieser Termin um zwei Monate vorverlegt werden; als Vertragstermine wurden dann für den Einstau der 15. Dezember 1953 und für die Inbetriebnahme der ersten Maschine der 1. Februar 1954 festgelegt.

Günstige Umstände, wie die milde Witterung während der Betonierungsarbeiten in den Wintermonaten, normale Sommerhochwässer während der Bauzeit und verhältnismässig niedrige Wasserführung während Rammarbeiten für die Umschliessung der zweiten Baugrube, nicht zuletzt aber die technisch ausgezeichnete Durchführung aller Bau-

arbeiten ermöglichten eine weitere Einsparung an Bauzeit: Der Einstau konnte bereits am 8. Oktober 1953 beginnen und die erste Maschine am 23. Oktober 1953 in Probebetrieb gehen. Am 30. Oktober 1953 wurde erstmals Strom ins Netz abgegeben.

#### 3. Baugrubeneinteilung für Wehr und Krafthaus

Die Bauzeit für Wehr und Krafthaus wird im allgemeinen wesentlich von der Einteilung und Anzahl der Baugruben bestimmt. Auf Grund der günstigen Erfahrungen bei dem ersten nach dem Kriege erbauten Kraftwerke der Innwerk AG. wurde die Baudurchführung von Wehr und Krafthaus auf nur zwei Baugruben abgestellt. Voraussetzung für eine solche Planung ist, dass die Arbeiten in der ersten Baugrube in einer Niederwasserperiode fertiggestellt werden, so dass noch vor dem nächsten Hochwasser die zweite Baugrube geschlossen werden kann.


Für die Ausführung in nur zwei Baugruben waren hier die Verhältnisse insofern günstig, als bereits im Jahre 1943 für die damals vorgesehene Baugrubeneinteilung der Flussschlauch am rechten Ufer durch Baggerung verbreitert worden war. Nun konnten unbedenklich in der ersten Baugrube vier Wehröffnungen fertig gebaut werden; der Abflussquerschnitt im Inn für die Winterwasserführung war trotzdem noch ausreichend.

In der zweiten Baugrube waren noch die fünfte Wehröffnung mit dem Trennpfeiler und die Baublöcke der vier Turbinenaggregate auszuführen, wobei nach Fertigstellung der fünften Wehröffnung und des Trennpfeilers die Umschliessungsspundwand in die Flucht des Trennpfeilers zurückgesetzt wurde, so dass das Hochwasser durch alle fünf Wehröffnungen abfliessen konnte.

Die Höhe der Umschliessungsspundwand in der ersten Baugrube wurde nur für das voraussichtlich grösste Winterwasser bemessen, die Höhe der Umschliessungsspundwand der zweiten Baugrube für die normale jährliche Hochwasserführung von 2700 m³/s, wobei man bewusst in Kauf nahm, bei einem etwaigen grösseren Hochwasser die Baugrube fluten zu müssen.

#### 4. Arbeitsbrücke

Die Verbindung zwischen den beiden Ufern musste innerhalb der Bauzone geschaffen werden, da der Inn Grenzfluss ist. Schon vor Inangriffnahme der allgemeinen Arbeiten wurde mit dem Bau einer Arbeitsbrücke im freien Fluss begonnen; sie sollte in erster Linie dem gegenseitigen Verkehr dienen, sowie die Pumprohre für den Betontransport und zwei Transportgleise mit 60 cm Spurweite für den Antransport von Schalungsmaterial, Rundeisen usw. aufnehmen.



Beim starken Treibzeuganfall im Inn bei Hochwasser musste man auf möglichst grosse Durchflussöffnungen bedacht sein. Die Doppeljoche der Arbeitsbrücke wurden daher in der Flucht der Wehrpfeiler mit einem gegenseitigen Abstand von 29 m angeordnet; diese Stützweiten hat man auch in der Brückenstrecke beim Krafthaus beibehalten.

Für den Ueberbau der Arbeitsbrücke waren geschweisste Träger vorgesehen, die sich auf die Doppeljoche aus Peiner Kastenspundbohlen abstützten. Auf Grund der Angebote und der endgültigen Planbearbeitung sind dann als Tragpfähle für den Ueberbau Stahlrammpfähle, Bauart «Rheinhausen», und zwar die Profile KP 23 und KP 24 verwendet worden, für die Brückenkonstruktion zum Teil vorhandene Peiner-Profile 100, zum Teil zusammengeschweisste Profile, die in ihren Abmessungen den vorgenannten Peiner-Profilen entsprachen. Den Doppeljochen wurde noch ein spitzwinkeliger Vorkopf aus Spundwanddielen zur Abwehr von Treibzeug vorgerammt.

# b) Ausschreibung und Vergebung der Bauarbeiten

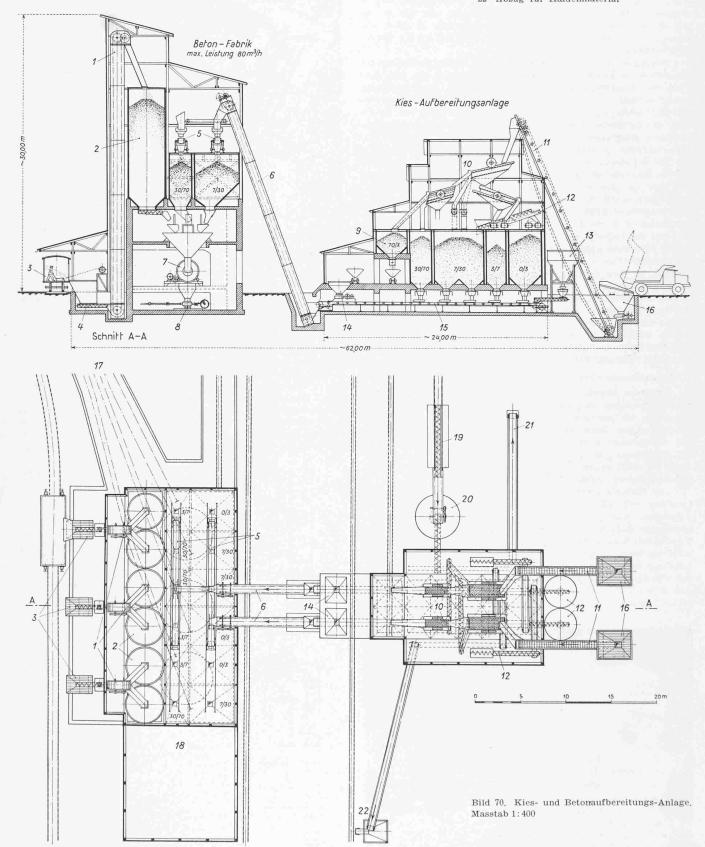
Die gesamten Bauarbeiten des Innkraftwerkes Simbach-Braunau sind in einzelne Baulose aufgeteilt und beschränkt ausgeschrieben worden. Die Grundlage für die Ausschreibungen bildeten die Leistungsverzeichnisse mit den schon jeweils bis ins einzelne ausgearbeiteten Ausschreibungsplänen sowie die Vorschriften zu der Verdingungsordnung für Bauleistungen und zu den österreichischen Normen mit speziellen Ergänzungen.

Bei der Ausschreibung für die in der «Bauzone» durchzuführenden Arbeiten für Wehr und Krafthaus mit dem auf deutscher Seite anschliessenden Staudamm Kirchdorf waren die Angebote jeweils von einer Arbeitsgemeinschaft aus österreichischen und deutschen Firmen einzureichen. Der Zweistaatlichkeit einer solchen Arbeitsgemeinschaft entsprechend mussten die Einheitspreise des Angebotes in einen DM- und ÖS-Anteil aufgegliedert werden.

Hinsichtlich etwaiger Lohnerhöhungen und Preisgleitungen bei den Bau- und Betriebsstoffen einigte man sich bei den Vergebungsverhandlungen mit der aus drei österreichischen und drei deutschen Firmen bestehenden Arbeitsgemeinschaft dahingehend, Lohn- und Materialpreisgleitungen nach dem Indexverfahren für die Lohn- und Material-Anteile der Einheitspreise abzugelten.

Die Bauarbeiten auf der österreichischen Seite ausserhalb der Bauzone wurden nur an österreichische Firmen vergeben, die weiteren Arbeiten auf der bayerischen Seite ebenso nur an deutsche Firmen. Während diese Bauarbeiten auf der österreichischen Seite ebenfalls nach dem Indexverfahren mit Lohn- und Materialpreisgleitung der Einheitspreise vergütet wurden, sind auf der bayerischen Seite die Bauarbeiten nach dem Leistungsvertrag mit festen Einheitspreisen vergeben worden; Lohnerhöhungen infolge Aenderung des Tarifvertrages im Baugewerbe wurden mit einem Gesamtzuschlag auf die reinen Baustellenlöhne von 35 %, Preiserhöhungen für Bau- und Bauhilfsstoffe mit einem geringen Unkostenzuschlag zuzüglich anteiliger Umsatzsteuer vergütet.

Wie schon früher ausgeführt, musste bei der Ausschreibung und Vergebung aller Arbeiten darauf geachtet werden, dass im Rahmen der Gesamtkosten das Verhältnis der in DM und öS auszuführenden Leistungen den in beiden Währungen veranschlagten Kostenanteilen entsprach.


## c) Bauarbeiten für Wehr und Krafthaus

#### 1. Lagerplatzschüttung und Anschlussgleis

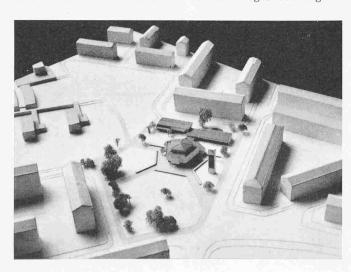
Als erste vordringliche Baumassnahme waren rund 300 000 m³ Schlick- und Kiesmaterial für den hochwasser-

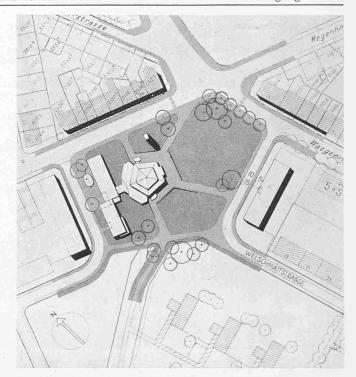
- 1 3 Zement-Elevatoren, je 25 t/h
- 2 6 Zementsilos, je 180 t
- 3 3 Zement-Entladestellen mittels Kraftschaufel
- Zuführungsschnecke 2 reversierbare Förderbänder, je 12,50 m
- lang, 600 mm breit 2 Schräg-Elevatoren, je 25 m lang, für 40 bis  $45 \text{ m}^3/\text{h}$
- 7 Mischer  $2 \times 1500 \ 1 + 4 \times 1000 \ 1$
- Betonpumpen: 1 amerik. Rex-Pumpe + 4 Torkret-Pumpen
- Aufgabesilo für Haldenmaterial
- Vibro-Siebe
- 11 2 Schräg-Elevatoren, je 25 m lang, 25 m³/h 12 2 Entwässerungsrinnen mit Sandschnecken
- 13 2 Entwässerungssilos 24 m³

- 14 2 Stossaufgeber
- 15 2 Förderbänder, je 25 m lang
- 2 Material-Aufgabe-Silos, je 6 m³
- 17 Pumpbeton-Rohre
- 18 Raum für Heizungs- und Kompressor-Anlagen
- Zement-Umschlag für Böschungsbeton 19
- 20 Zement-Silo 120 t
- 21 Abtransport des Böschungsbetons
- 22 Abzug für Haldenmaterial



freien Lagerplatz am bayerischen Ufer zu schütten. Das Schüttmaterial wurde aus einer oberstrom des Lagerplatzes erschlossenen Entnahmegrube bis auf eine mittlere Tiefe von 7 bis 8 m gewonnen und im gleislosen Betrieb eingebaut, wobei die tägliche Leistung bis zu 6500 m³ betrug. Die gesamten Arbeiten waren am 1. August 1951 abgeschlossen, so dass mit der Baustelleneinrichtung für Wehr und Krafthaus rechtzeitig begonnen werden konnte. Die Unternehmung hatte für die Erdbewegung ausser GMC-Lastwagen noch Krupp-Lastwagen mit 6 m³ und Dumptors mit 4 m³ Fassungsvermögen eingesetzt. Bei der mittleren Transportweite von 600 m erzielten die Krupp-Fahrzeuge eine Leistung von 27 m³/h, die Dumptor-Fahrzeuge eine solche von 21 m³/h bei 0,2 kg Treibstoffverbrauch pro Kubikmeter.

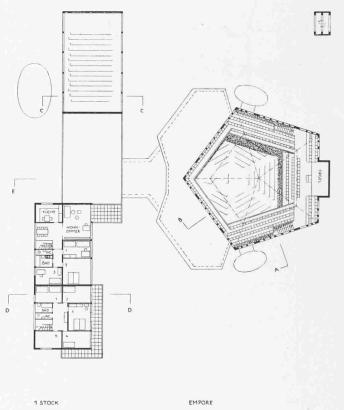

Nach Fertigstellung des Lagerplatzes wurde anschliessend das schon im Jahre 1943 vom Bahnhof Simbach bis zum Beginn der Lagerplatzschüttung vorgestreckte Anschlussgleis fertig verlegt, einschliesslich der Gleise für die Uebergabeund Entladeanlage. Gleichzeitig mit diesen Arbeiten baute man die Zufahrtstrasse — von der Bundesstrasse Altötting-Simbach abzweigend — bis zum Lagerplatz, die auf der Dammstrecke unmittelbar neben dem Zufahrtgleis geführt ist. Die Bundesbahn stellte die Wagen vom Bahnhof Simbach bis zur Bauzollstelle am landseitigen Beginn des Lagerplatzes zu. Von hier aus wurde dann der Rangierbetrieb in eigener Regie durchgeführt. Vom 1. Juli 1951 bis 31. Dezember 1953 sind insgesamt 5260 Waggons mit 86 800 t Ladegewicht über den Bahnhof Simbach zur Baustelle abgefertigt worden.


Mit der Lagerplatzschüttung hat man auch die bereits im Jahre 1943 zum grössten Teil ausgeführte Flussverbreiterung am rechten Ufer in der Zeit von April bis August 1951 fertiggestellt, so dass bei Beginn der Rammarbeiten für die erste Baugrube ein genügend grosser Durchflussquerschnitt zur Verfügung stand. Noch vor Inangriffnahme der Arbeiten für die Baugrubenumschliessung war mit der Rammung der Jochpfähle für die Arbeitsbrücke begonnen worden. Die Arbeiten waren während der Sommerwasserführung im freien Fluss durchzuführen und stellten bei der starken Strömung eine beachtliche Leistung der ausführenden Stahlbaufirma dar.

# $2.\ Baustelle nein richtung,\ Kies-\ und\ Betonaufbereitungsanlage$

In ihrem Angebot hatte die Arbeitsgemeinschaft der Bauunternehmungen vorgesehen, den Beton von der Betonaufbereitung bis zur Einbaustelle zu pumpen; für den Pumpbetrieb sollten Torkretpumpen verwendet werden. Nachdem mit Pumpbeton vom Bau des Kraftwerkes Neuötting und der Kraftwerke am unteren Inn gute Erfahrungen vorlagen, hatte die ÖBK gegen den Einsatz von Torkretpumpen für den Betontransport nichts einzuwenden.

Die Kiesaufbereitungsanlage wurde für eine theoretische Leistung von 120 m³/h Kiesmaterial ausgelegt und in zwei Aggregate von je der halben Leistung aufgeteilt. Das im gleislosen Betrieb beigefahrene Kiesmaterial gelangte vom Vorsilo mit festem Rost über einen Stossaufgeber zum Elevatoreinlaufkasten und über einen Schrägelevator mit einer Leistung von 60 m³/h auf ein zweistufiges Schwingsiebsystem mit Spritzvorrichtung, von dem das Material in die Körnungen 0 bis 7 mm, 7 bis 30 mm, 30 bis 60 mm und darüber sortiert wurde. Ein anschliessendes einstufiges Schwingsieb






Projekt Nr. 9, Lageplan 1:2500, Im Südwesten des Kirchenbaugeländes liegt das Schulareal «Am Wasgenring» (vgl. Wettbewerb von 1951, SBZ 1951, Nr. 49, S. 690)

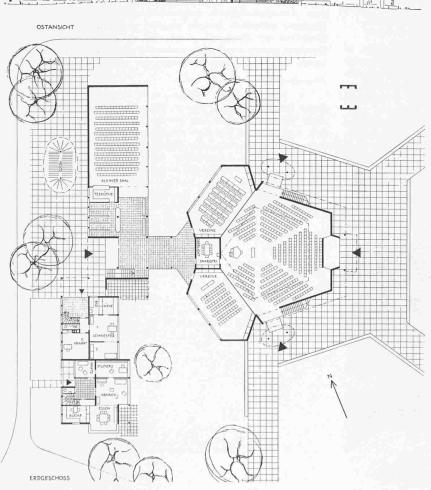
mit Spritzvorrichtung trennte das Material 0 bis 7 mm in die Korngrössen 3 bis 7 mm und 0 bis 3 mm. Der Sandanteil 0 bis 3 mm kam über eine Sandrückgewinnungsschnecke zum Abzug. Für die Versorgung der Spritzvorrichtungen mit Waschwasser waren Pumpen mit einer Gesamtleistung von 120  $\rm m^3/h$  und einer manometrischen Förderhöhe von 50 m eingebaut.

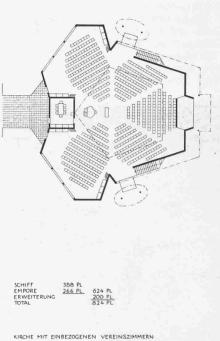
Die aus der Aufbereitung gewonnenen Körnungen gelangten in Holzsilos, deren Fassungsvermögen nach dem Kornanfall abgestuft war. Unter den einzelnen Silos befanden sich Rollverschlüsse, über die jede Körnung über ein Förderband zum Elevator der Betonaufbereitung abgegeben werden konnte. Die Aufgabe zum Elevator wurde von der Betonfabrik aus gesteuert. Das gesamte Abwasser aus der Sand-



SUDANSICHT

Wettbewerb für eine reformierte Kirche an der Hegenheimerstrasse in Basel


Ankauf (3000 Fr.) Projekt Nr. 9. Verfasser Arch. OTTO SENN, Basel


Projekt Nr. 9. Die Anlage zerfällt in den streng symmetrischen Kirchenbaukörper, der von der Grünanlage umschlossen wird, und in einen zur Mittelaxe senkrecht stehenden unsymmetrischen stark aufgelösten Trakt längs der Nebenstrasse. Die Bedeutung dieses Projektes liegt in der intensiven Auseinandersetzung mit den Problemen des protestantischen Kirchenbaues, die zu einer klar durchdachten Lösung des Innenraumes geführt hat. Kubikinhalt: 10 347 m³.

Vorteile: Dank der Loslösung des dominierenden Kirchenbaukörpers von den Nebengebäuden und dank seiner polygonalen Form fügt er sich der Grünanlage organisch ein. Die Zugänge zur Kirche erfolgen richtigerweise von der Anlage her. Der in seiner Formgebung den Eindruck des Selbstverständlichen erweckende gut proportionierte Raum, dessen Wirkung durch die ringsumlaufenden Emporen gesteigert wird, stellt eine dem evangelischen Gottesdienst entsprechende Raumform dar. Die Gruppierung der Sitzplätze um die Kanzel ist in vorzüglicher Weise erfüllt. Der Verfasser schlägt in Abweichung vom Programm vor, als Erweiterung des Kirchenraumes die beiden Mehrzweckräume einzubeziehen. Er erreicht damit eine räumlich und betrieblich organische Ausweitung des konzentrisch bestuhlten Predigtraumes. Die Nebenräume und Wohnungen sind von der Seitenstrasse her zweckmässig erschlossen. Die in einem zweigeschossigen Trakt untergebrachten Wohnungen weisen eine günstige Lage auf und sind grundrisslich gut organisiert.

Nachteile: Die Stellung des Turmes in Konkurrenz zu den Miethäusern überzeugt nicht. Die Ausbildung der Eingänge und des Kirchenvorplatzes lässt eine Vorbereitung auf den Kirchenraum vermissen. Die Wirkung des Hauptbaukörpers wird beeinträchtigt durch zu weitgehende Auflösung und Abstufung der Annexbauten. Die Lichtführung durch die aufgesetzte Laterne einerseits und die durchbrochenen Aussenwände anderseits ist nicht zum harmonischen Ausgleich gebracht. Die gegenseitigen Einblicke zwischen den Mehrzweckräumen und den gegenüberliegenden Lokalen sind zu beanstanden.

Grundrisse, Schnitte und Fassaden Masstab 1:600.

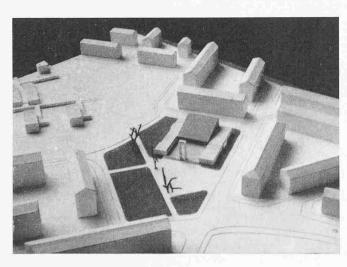


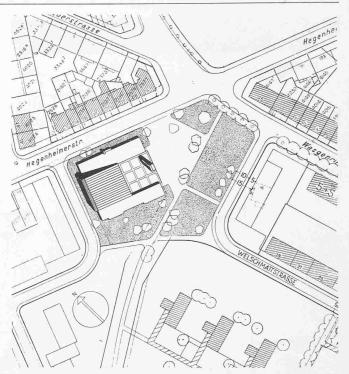


schnecke und den Entwässerungsrinnen wurde einem Feinstsand-Rückgewinnungssilo zugeleitet und das hieraus gewonnene Feinstsandmaterial über eine Transportschnecke auf das Förderband abgegeben.

In den «Besonderen Vertragsbedingungen» war für die Betonaufbereitungsanlage eine maximale Leistung von 80 m³/h gefordert, für die Zementsilos die Einlagerung von 1000 t losem Zement. Zur Ausnützung der Niederwasserperiode sollte bei Frost bis  $-10\,^{\circ}$ C betoniert und hierbei der Beton mit mindestens  $+10\,^{\circ}$ C eingebracht werden. Diese Bedingungen zwangen die Arbeitsgemeinschaft, eine Betonfabrik mit automatischer Beigabe der Zuschlagsstoffe und des Zementes zu erstellen, die in ihrem Aufbau Aehnlichkeit mit der amerikanischen Johnson-Anlage zeigte.

Die Zuschlagsstoffe aus der Kiesaufbereitung und aus den Vorratshalden wurden der Betonaufbereitung über zwei Schrägelevatoren zugeführt; diese gaben die einzelnen Körnungen auf fahrbare, reversierbare Förderbänder, die über Verteiler in die Bunker entleerten. Unter den Bunkern waren drei Chargiereinheiten mit sechs Betonmischern angeordnet, die paarweise zusammenarbeiteten, darüber die Gesteinswaagen für die einzelnen Körnungen und die Zementwaage. Von den Gesteinswaagen und der Zementwaage gelangte das Material in den federnd aufgehängten Chargiertrichter und von diesem über pneumatisch gesteuerte Verschlüsse in die Betonmischer von 1000 l und 1500 l Inhalt.


Unter jedem der sechs Mischer war eine Torkretpumpe mit einer Leistung von 15 m³/h aufgebaut, von denen später zwei Pumpen durch eine Zwillings-Rex-Pumpe amerikanischer Bauart mit einer Leistung von 35 bis 40 m³/h ersetzt wurden. Der Zement wurde lose im Waggon angeliefert, mit Kraftschaufeln in die seitlich angeordneten Elevatorgruben mit Zuführungsschnecke entleert und über drei senkrecht stehende Elevatoren mit einer Leistung von 25 t/h in die beiderseits der drei Elevatoren angeordneten Zwillingssilos von je 180 t Fassungsvermögen abgegeben.


# Wettbewerb für eine reformierte Kirche an der Hegenheimerstrasse in Basel

Auszug aus dem Wettbewerbsprogramm

Umschreibung der Bauaufgabe

Die zu projektierende kirchliche Gebäudegruppe steht in einem Gebiet der Grünzone, die sich vom Kannenfeldpark über das Areal des Hilfsspitals, der Stadtgärtnerei und den Bachgraben erstrecken soll. Die Eingliederung in das städtebauliche Gesamtprojekt ist daher die gegebene Grundlage dieses Wettbewerbes. Der Kirchenraum soll so gestaltet sein, dass eine, die innere Sammlung fördernde, harmonische Raumatmosphäre entsteht. Der Lichtführung ist deshalb besondere Aufmerksamkeit zu schenken. Der Kirchenraum muss eine gute Hörsamkeit für die Predigt gewährleisten. Die ganze Gemeinde soll sich vereinigt fühlen mit ihrem Pfarrer. Diese Gemeinschaft soll durch die Stellung der Kanzel betont werden, und diese darum nicht losgelöst der Gemeinde gegenübergestellt, sondern einbezogen werden in die Ordnung der Bestuhlung. Die Grundrissform des Kirchenraums bleibt aber





Lageplan der projektierten Kirche an der Hegenheimerstrasse, Masstab 1:2500 (Projekt Nr. 7). Im Südwesten des Kirchenbaugeländes liegt das Schulareal «Am Wasgeming» (vergl. Wettbewerb von 1951, SBZ 1951, Nr. 49, S. 690)

den Projektverfassern freigestellt. Der Abendmahltisch (nicht ein «Altar») hat eine grosse Bedeutung im Raum. Er dient nicht nur der Austeilung des Abendmahls, sondern auch der Taufe; vor ihm wird die Ehe eingesegnet. Er soll in der Kirchgemeinde, in der Versammlung stehen und nicht in einem eigenen Raumteil (sog. «Chor»). Es wird den Projektverfassern freigestellt, auch einen eigentlichen Taufstein ausser dem Abendmahlstisch vorzuschlagen. Die Orgel soll 25—30 Register enthalten und so placiert werden, dass sie nicht im Blickfeld der Gemeinde liegt und zu einem Schaustück des Kirchenraumes wird. Für einen Kirchenchor von 40—50 Personen ist in der Nähe der Orgel der nötige Platz vorzusehen.

## Raumprogramm

DK 726.5

- 1. Hauptbau: a) Kirchenraum (Predigtraum) mit total zirka 600 Sitzplätzen. Davon können 100—150 Sitzplätze auf einer Empore vorgesehen werden. b) Kleiner Saal für rund 200 Personen in Konzert-(Vortrags)bestuhlung. Dieser Saal muss als Erweiterung des Hauptraumes benützt werden können. Er soll so angeordnet sein, dass die Besucher dieses Saales an einer Predigt im Kirchenraum mit möglichst wenig Sichtbehinderung durch Stützen oder Wände teilnehmen können. Anderseits müssen die beiden Säle möglichst schalldicht voneinander getrennt werden können.
- 2. Turm zur Aufnahme von 3 bis 4 Glocken. Dieser Turm kann als Bestandteil des Hauptbaues oder freistehend projektiert werden.
- 3. Nebenräume: a) Sakristei in unmittelbarer Nähe des Kirchenraumes; soll auch als Sitzungszimmer benützt werden können, rund 15 bis 20 m². b) 2 Zimmer für Nähvereine, Jugendgruppen usw. für je rund 50 bis 60 Personen in Vortragsbestuhlung oder rund 40 Personen an Tischen für ein Zimmer und rund 50 Personen für das zweite Zimmer (Tischgrösse  $55 \times 120$  cm). c) Kleine Teeküche. Dieser Raum muss



NORD - OST -SEITE