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Poutres hyperstatiques précontraintes en phase d'adaptation
Par Franco Levi, Ingénieur, professeur du politecnico di Torino, Turin (Italie)

Ce mémoire constitue le résumé d'une conférence tenue par l'auteur
à l'Ecole Polytechnique Fédérale au sein du Groupe professionnel
S. I. A. d«s ingénieurs des ponts et charpentes le 28 février Ï954.

Introduction
D'une façon générale, l'étude des phénomènes d'adaptation

dans les poutres précontraintes hyperstatiques semble
devoir être subdivisée en deux parties bien distinctes: l'une se
rapportant à l'intervalle de charge qui suit immédiatement
la fin de la période élastique, l'autre concernant la période
qui précède la rupture. Dans un cas, on se proposera
d'évaluer la charge de fissuration de la poutre, dans l'autre,
la marge de sécurité à la rupture.

Da nécessité de distinguer les deux aspects de la question
apparaît clairement si l'on analyse d'une façon détaillée les
phases que la construction traverse au fur et à mesure de
l'accroissement de la charge. Au début, les déformations
anélastiques qui apparaissent sont de nature proprement
plastique. Leur loi de distribution dépend nettement des
conditions locales de précontrainte; si celles-ci épousent d'assez
près les conditions de charge, l'étendue de la zone intéressée
par le phénomène plastique peut résulter assez considérable.
Vers la fin de la résistance, au contraire, la plus grande partie
des déformations anélastiques est constituée par des lésions
et la zone intéressée par les fissures est en général assez
restreinte. 11 en résulte que, contrairement à ce qui produit
au voisinage de la limite élastique, la relation qui lie les
efforts à l'amplitude des déformations anélastiques est assez
facile à déceler.

On déduit de ces considérations qu'il est peut être plus
facile d'interpréter correctement le comportement des poutres
quand la limite élastique est déjà nettement surpassée. Si l'on
ajoute à cela que, voulant établir une sorte de hiérarchie entre
les différentes exigences de la sécurité, c'est certainement la
rupture qu'on est conduit à mettre en tête, il semble assez
justifié de se contenter, en premier lieu, d'établir une théorie
qui s'adapte à l'étude de la dernière phase de la résistance.
Il s'agira bien entendu d'une théorie approchée dont nous
nous efforcerons de délimiter le domaine d'application après
en avoir exposé les points essentiels.

Ceci étant posé, voyons alors quelles sont les hypothèses
qu'il est loisible d'adopter si l'on veut éviter à la fois les
complications analytiques inextricables et les imprécisions
trop grossières.

Pour commencer, nous remarquerons que si l'on admet
que dans chaque région intéressée par le phénomène ané-
lastique on puisse faire abstraction des variations de l'état
de précontrainte le long de l'axe de la poutre, on pourra
introduire dans les calculs une loi moment fléchissant - courbure

unique et bien déterminée pour chaque zone entrée en
phase d'adaptation. Cette loi comportera nécessairement une
première partie rectiligne, correspondant à la phase élastique,
suivie par une ligne incurvée à pente décroissante; vers la fin
de la résistance, le diagramme tendra vers une asymptote
sensiblement parallèle- à l'axe des courbures. Il s'agira en somme
d'un diagramme ayant une forme analogue à celle que l'on
admet généralement pour le béton armé ordinaire, avec
naturellement des valeurs caractéristiques nettement
différentes. La façon la plus simple d'introduire cette loi dans nos
calculs sera alors de lui substituer un diagramme formé par
trois segments de droite, semblable à celui que nous avons
représenté dans la fig. 1.

Dans ce qui suit, nous adopterons les notations suivantes:

fi courbure totale
fi fraction anélastique de la courbure
E module d'élasticité
I moment d'inertie de la poutre
Mt moment limite élastique (pour moments fléchissants né¬

gatifs)

coefficient angulaire de la partie intermédiaire a b du
El diagramme de la fig. 1.

Dans ces conditions, la
relation moment - courbure
s'écrira:
a) en régime élastique:

M
" 1ST

b) dans la partie intermédiaire

du diagramme (du
côté des moments fléchissants

négatifs):

DK 624.072.23:6:24.012.47

M

nM,

M,

0

fl

(D

KM M,

(1 —K)

¦M,

nM

El

El

S)

(M, — M)

dans la partie intermédiaire du diagramme (du côté des
moments fléchissants positifs) :

KM Mt d

(2)
K-

fi El (M1 + M)

Ainsi qu'il résulte de la flg. 1, nous admettrons que le
moment fléchissant ne puisse dépasser la valeur ± nM^ et
qu'à partir de l'instant où cette valeur est atteinte la section
se comporte comme une «rotule plastique», au sens désormais
classique de cette expression. Nous supposerons en outre que
l'ampleur de la rotation plastique dans la région considérée ne
puisse dépasser une certaine valeur limite.

Précisons que les hypothèses que nous venons de
formuler ne doivent être considérées valables que pour une
allure croissante de la valeur absolue du moment fléchissant.
Nous nous réservons, de revenir sur la question pour le cas
d'une «rétrogradation» de la valeur absolue de M.

Sur la base de ces hypothèses, nous allons maintenant
nous efforcer d'étudier le comportement, au delà de la limite
élastique, et jusqu'à la fin de la résistance, d'une poutre
encastrée de section constante, soumise à une charge uniformément

répartie. (Précisons que lorsque nous parlons d'une «section

constante» nous voulons dire que l'on pourra adopter le
même diagramme moment-courbure pour toutes les réglons qui
seront le siège de déformations anélastiques). Nous examinerons

successivement le cas d'une poutre parfaitement
encastrée et celui d'une poutre à encastrements élastiques.

Cas d'une poutre parfaitement encastrée (fig. 2)

a) Phénomènes anélastiques localisés aux encastrements

Imaginons de faire augmenter graduellement la charge
répartie appliquée à la poutre jusqu'à ce que le moment
d'encastrement atteigne la valeur M\. Une augmentation
ultérieure de la charge fera apparaître, au voisinage des appuis,
deux zones entrées en régime anélastique. Dans ces régions
moment fléchissant et courbure anélastique seront liés par
la.formule (1).

Soit alors zi, l'abscisse de la section qui sépare la zone
élastique de la zone anélastique (mesurée à partir du milieu
de la poutre). Nous pourrons dès lors étudier l'équilibre de la
poutre en écrivant que la déformation totale de la moitié droite
de la poutre est compatible avec les liaisons. Ce que nous
exprimerons sous la forme:

C Mdz C —(3) J-z^r+J«ds °

Dans cette expression, le premier terme représente la rotation
élastique <p„ le second terme la rotation anélastique «p.i qui
s'est produite au voisinage de l'encastrement. En désignant
par X le moment au milieu de la portée, il résulte de la
fig. 2:
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q«a
2

(5) Mt X- 2

dont on tire:

M. "(i'.A

r 2,=ôtZ~

(6) Jf Jlf, + * («,s — «') Fig. 2.

En substituant il vient:

r Mdz S

*°=J-WT- J

et en développant:

üf, Z

y« B7
On a de même:

+ qizt'
2EI

Mi + \ (*ia

qZ*

a») ^Ë7

6E/

^ (1 — K) (M1 — M)
dz

~Ë~T

(1—K) [q (z' — V)-4n-
et, par suite:

<fA
(1 — g) /q*,8 <jZs,2 qZ»

Er{
Pour simplifier ces expressions, et pour élargir le champ

d'application de nos formules, introduisons les grandeurs sans
dimensions:

Il en résulte:

(7)
fe

<PA

Mtl
6EI
Mtl
6EI

qV

(3«V— /9 + 6)

(1 —K) (2a*ß — Zu'ß + ß)

et l'équation (3) devient, après simplification:

(8) 2a*ß (1 — K) +Sa»/3K — K/3 -f- 6 0

Cette expression caractérise le comportement de la poutre
dans l'Intervalle de charge pendant lequel il y a plastification
au voisinage des encastrements. Si l'on connaît les dimensions
et les propriétés mécaniques de la poutre, l'équation (8) permet

en effet, pour chaque valeur de la charge (et donc du
paramètre ß), de calculer la valeur de a; ce qui revient à
définir l'allure du diagramme des moments fléchissants.

Avant d'aller plus loin, précisons que la validité de l'équation
(8) cesse à partir de l'Instant où le moment fléchissant au

milieu de la portée atteint la valeur limite élastique positive
— Mt. En nous servant de l'équation (5) nous pourrons
caractériser cette limite en écrivant:

X M1 + ^m -Ml
ce qui donne:

q«ia -4 Mi

et, en introduisant les grandeurs a et ß:

(9) ßoP — 4 0

Telle sera l'équation de la courbe qui limitera le domaine
d'application de l'équation (8).

Dans la fig. 3 nous avons tracé les courbes représentatives
de l'équation (8) pour plusieurs valeurs du coefficient K. La
courbe K 1 correspond évidemment au cas où la poutre se
comporte d'une manière élastique, même après que le moment
d'encastrement a dépassé la valeur M±. Les autres courbes
s'épanouissent en éventail à partir du point E, de coordonnées
a 1, ß — 3, et s'arrêtent sur la courbe LL' qui représente
l'équation (9). Comme on pouvait le prévoir, les courbes
s'éloignent d'autant plus nettement de la courbe EL' (qui se

rapporte à un matériau indéfiniment élastique) que le coefficient

K prend une valeur plus élevée.
Pour mieux faire comprendre l'allure du phénomène, nous

avons tracé en pointillé sur la fig. 3 un certain nombre de
courbes le long desquelles le rapport /> entre les valeurs des
moments fléchissants à l'encastrement et au milieu de la travée

reste constant. La courbe EL' appartient évidemment à
cette famille puisque, pour K 1, on a toujours p — 2.
Pour tracer les autres courbes, nous sommes partis de
l'expression du moment d'encastrement qui s'écrit:

JJf,- X - ¦
qP
2

En y substituant X tiré de la formule (5) 11 vient:

(10) Mi Mi + -^l(«»-l) -^L(2 + /3«s- ß)

On a de même:

X Mt -f qa'l> M. W

2=2 <2 + P«2>

Il en résulte:

m ßas — ß + 2
9 X ßa* + 2

expression qui donne immédiatement l'équation des
différentes courbes quand on fixe la valeur de p. Notons
incidemment que la courbe p z= 1 caractérise le lieu des points
pour lesquels il y a égalisation des moments fléchissants
extrêmes.

Si l'on examine alors la position relative des courbes
K constante et p constante, on constate que pour
K > 1 la valeur absolue du rapport entre les moments
extrêmes diminue graduellement lorsque la charge augmente.
La diminution est naturellement plus rapide quand la valeur
du coefficient K augmente. Cela signifie qu'en régime d'adaptation,

pour une augmentation donnée de la charge (c. à. d.

pour une augmentation donnée de //?/), le moment fléchissant
au milieu de la travée augmente beaucoup plus rapidement
qu'en régime élastique. (On constate même que pour K 10
l'accroissement du moment fléchissant entre le point E et la
courbe LL' est plus marqué au milieu de la travée qu'à
l'encastrement)

b) Plastification simultanée aux encastrements et au milieu
de la poutre

Proposons nous maintenant de poursuivre notre étude au
delà de la courbe LL', c. à. d. dans l'intervalle de charge pour
lequel il apparaît une troisième zone de plastification localisée

au milieu de la portée. Cette fois l'équation générale de
compatibilité devra comporter un troisième terme <pm

représentant la rotation anélastique qui se produit dans cette
nouvelle région.

On a, par définition:

<Pn Fdz

où 02 représente l'abscisse de la section qui limite la zone
anélastique du milieu de la poutre. En tenant compte de l'équation

(2) on peut alors écrire:

K
<Pm EfV« + M) dz

On a d'autre part

M X qz*
~2~

qz,(11) — M, X —

Il en résulte:

M, + & y {*»a — z3)

K
<fm E

m,

(zJ — «») dz g (g —D
6 El
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En soustrayant membre à membre les expressions (5*) et (11)
on a par ailleurs:

2Mt

et donc:

q»« g y
2

4M.v -£P + v
Ce qui donne, en passant aux variables a, ß:

4 Za H / 4 \V -g- + «2 p *a (<*a + y)

(12) 9>m :
qZ3 (g —1)

M,l
ZEI

3EI

(g —D

("2 + t)
42+t)

En reportant cette dernière expression dans l'équation
générale de compatibilité:

9, +.VA + ¥m '— °

il vient, après simplification:

(13) 2asß (1 —g) + Za*ßK- Kß

2I 4 \ 2

+ 2 (g — 1) ß U» -j- —j 0

Equation qui caractérise le comportement de la poutre au
delà de la courbe LL'.

Dans la fig. 3 nous avons tracé les courbes qui
représentent l'équation (13) pour les mêmes valeurs de K que nous
avions considérées en dessous de la courbe LL'. On remarque
qu'au passage de la courbe LL' les courbes caractérisées par
une même valeur de K sont tangentes les unes aux autres.
Au delà de LL' on constate cependant un changement de pente
assez rapide et les différentes lignes procèdent presque
parallèlement en conservant une allure à peu près rectiligne.

Si l'on observe la position relative des courbes K
constante, p constante, on note qu'au delà de LL' la tendance
à la diminution du rapport p disparaît. On constate même une
légère réaugmentation de ce rapport qu'il faut évidemment
attribuer au fait que la rotation anélastique du milieu de la
poutre prévaut sur celle des encastrements.

Pour que tous ces raisonnements soient valables, il faut
qu'en tous les points de la poutre la valeur absolue du
moment fléchissant augmente constamment. Sans quoi la loi
moment-courbure que nous avons adoptée ne serait plus applicable.

Or le diagramme de la fig. 3 permet très facilement
de déceler une éventuelle rétrogradation du moment fléchissant.

Pour la zone d'encastrement cette éventualité sera en
effet révélée par une réaugmentation du paramètre a (à
laquelle correspond une diminution de l'étendue de la zone
plastifiée correspondante). Pour le milieu de la poutre, la
rétrogradation correspond à une diminution de l'abscisse z%,

autrement dit de la quantité a2 + 4//J qui lui est proportionnelle.

Sur notre diagramme les variations de z% seront donc
représentées par les variations de la distance à la courbe LL'.

En partant de ces considérations, il est alors facile de se

rendre compte que les courbes K constante que nous avons
tracées ne donnent jamais lieu à une rétrogradation. Ce qui
confirme la validité de nos calculs.

c) Phase de rupture
A titre d'exemple, nous supposerons que l'ordonnée limite

du diagramme moment - courbure de la flg. 1 soit égale à
± 2 Mi. Cela revient à dire qu'à partir de l'instant où le

moment d'encastrement atteindra la valeur 2 M\, nous devrons
admettre que les appuis se comportent comme des rotules
plastiques. La fig. 4 représente alors l'allure des modifications
que le diagramme des moments fléchissants devra subir pour
une augmentation ultérieure de la charge: on passera du
diagramme en trait plein au diagramme en pointillé.

Nous pourrons dès lors représenter cette nouvelle phase
du comportement de la poutre dans le plan a — ß en remar¬

quant que, à partir de
l'instant où le moment
d'encastrement aura
atteint la valeur 2 Jflf le
point qui caractérise l'équilibre

de notre poutre se
déplacera sur la courbe
représentative de l'équation:

M, 2 Mi

2çM,i

Fig. 4.

!• l

ni yf $

mmi p

\Mi-2M,

cc',1

Si l'on tient compte de la formule (10) cette équation s'écrit:

"i (2 + ß c? — ß) 2 Mx

ce qui donne:

(14) a'ß — ß — 2 0

Cette courbe est représentée sur la fig. 3 en L'r. Sur le
diagramme, nous avons également tracé la courbe Cr d'équation:

(15) a2 ß — 6

qui correspond à la condition:

X ¦2MX

On remarquera incidemment que les courbes (14) et (15) se
coupent, comme il se doit, au point r qui se trouve sur la
courbe p —1 (et dont les cordonnées sont ß —8, a
0,866).

H est cependant important de noter qu'à partir du
moment où le point qui représente l'équilibre dans le plan a ß
se déplace sur la courbe L'r, il se produit une augmentation
du coefficient a. Cela revient à dire que, sur les bords de la
région plastifiée des encastrements, il y aura rétrogradation
du moment fléchissant. Nous savons que, dans ces conditions,
nos calculs seront nécessairement affectés d'une erreur puisque

dans ces zones la loi moment-courbure de la fig. 1 ne sera
plus valable.

Si l'on considère toutefois que dans la phase qui nous
intéresse la valeur de la rotation anélastique à l'encastrement
(<Pa) augmente très rapidement, on se rend compte que
l'erreur dont il s'agit est certainement négligeable.

Nous pouvons donc continuer à nous servir des tracés de

la fig. 3 pour suivre le comportement de notre poutre
jusqu'à la rupture.

D'après nos hypothèses, la rotule plastique apparue sur
les appuis ne peut tourner indéfiniment. Suivant la composition

de la poutre, l'allure du diagramme des moments
ou la nature des conditions de liaison, on devra donc pouvoir

définir une rotation limite qui caractérisera la fin de la
résistance. Le problème de calculer la charge de rupture de
notre poutre se réduira donc au suivant: trouver sur la courbe
L'r un point pour lequel la rotation sur appui égale la valeur
limite en question. En pratique, il faudra opérer par approximations

successives. On schoisira sur la courbe L'r un point
compris entre la courbe K constante qui correspond au
cas considéré et le point r et l'on calculera, au moyen des
formules (7) et (12), les valeurs correspondantes des termes
<Pe< <Pai 9m- La somme algébrique de ces trois quantités résultera

nécessairement positive, puisque nous avons supposé que
le point choisi se trouve placé au-dessus de la courbe K
constante. C'est à la rotation négative de la rotule sur appui
que reviendra la tâche d'annuler la rotation globale pour
rétablir la condition de compatibilité avec les liaisons. Tant
que la rotation totale sur appui ainsi calculée se maintiendra
inférieure à la limite admissible, la poutre pourra résister.
On parviendra à la rupture quand la déformation demandée
à la rotule égalera sa capacité limite d'adaptation.

On voit sur la fig. 3 que lorsque le point qui caractérise
l'équilibre parcourt la courbe L'r, en se déplaçant vers le
point r, la valeur absolue du rapport p décroît assez rapidement.

Si la rotation disponible sur appui sera suffisante,
on pourra atteindre le point r; on aura alors égalisation des
moments extrêmes et la rupture se produira par indétermination

cinématique. Dans tous les autres cas, la rupture aura
lieu par suite de l'insuffisance de la capacité locale d'adaptation

et le moment de rupture résultera inférieur à celui que
donnerait la théorie des rotules plastiques. Il est logique de
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penser que cette dernière éventualité pourra se vérifier quand
on atteindra la courbe L'r en un point très éloigné du point r.

Cas d'une poutre à encastrements élastiques

Supposons maintenant que les encastrements de notre
poutre puissent donner lieu à une rotation élastique. Nous
exprimerons cette condition en disant qu'en présence d'un
moment d'encastrement d'intensité M-, les extrémités de la
poutre subiront une rotation

\ Mi <pc

Pour étudier les phases successives du comportement de la
poutre, il faudra cette fols égaler la somme algébrique des
rotations élastiques et des rotations anélastiques d'une moitié
de la poutre à <pc.

En reprenant les mêmes notations que ci-dessus, nous
pourrons alors écrire les différentes équations caractéristiques
sous la forme suivante:

phase élastique:

(a) q>e — X Mi

en présence de déformations anélastiques localisées aux
appuis:

(b) <pe + <pA X Mi

en présence de déformations anélastiques localisées au milieu
de la portée:

(C) <Pe + <Pm — XMi
en présence de déformations anélastiques localisées à la fois
aux encastrements et au milieu de la poutre:

(d) + VA + Mt

La nécessité de considérer le cas c) provient de ce que,
en phase élastique, pour des valeurs élevées de X, le moment

au milieu de la portée résulte plus fort que le moment
d'encastrement. Auquel cas le phénomène anélastique commence
au milieu de la poutre et le diagramme du moment fléchissant

prend l'allure qui est représentée à la fig. 5. On voit
sur cette figure que, cette fois, le paramètre a devient supérieur

à 1, la position de la section soumise au moment M^
étant purement virtuelle.

En substituant dans les
égalités a), b), c), d) les
valeurs des quantités <pe, <pa, 9m
tirées des formules (3) et
(12) ainsi que l'expression
(10) du moment d'encastrement

Mi, et en introduisant
dans les calculs la quantité
sans dimensions:¦H
on parvient alors aux équations suivantes qui caractérisent le
comportement de la poutre dans les différentes éventualités:

x—M, i

z,=ccl

a) (16) ZoPß (1—B) — ß (1 — 3R) + 6 (1 — R) -
b) (17) 2cPß (1—g) + 3«2J3 (g — R) -

— ß (g — ZR) + 6 (1 — R) — 0

c) (18) 3 <*2/3 (1 — R) —ß (1 — ZR) + 6 (1 — R) +

0

d) (19)

+ 2ß (K

2a*ß (1

D

g)
Kt) o

3a2/3 (g —B)

6 (1 — R) + 2 ß (g — 1) K4)
ß (K-

4\2

3Ä)

-8 r
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i \
i
i \
i \

1

1 \
1

1
\

1

1 \
1 i/

/ k/
/ ii f /

C
si

/
/ ' im

*V
a/f/js

1
1

a//'/u /
1

1 1
i ///i II

/
/ ll/j 7

/
/ A

A

ê
1

1

t (sSi' 11A

1
1 ty/M%

// 7-f>

1 tm//m
1 /

/
i////

L

/
/

V

//
v///,>fa,

//
t

-3 Ä
1 Ofil Opt Opti 0,92 0,90 0,88 0,86 0,81 0,82 0,80

et
Fig. 3.

/i r
fi\
l \

1 '
/
i \/ 1 \

- -7 / r 1

1 \/ 1

1
A

^ 1

1

1 ¦J \i /\
*/ h

-6/ // \
ç1

1

y
ft

// /i
\M-Aj l

1 V/ 7
1

1 /
l /VI

41

- -S
/

n7/
'SA

f
t /

i/ il// L/
iti/ /r f-

'klk/
i//// D/A

iïAM
L M

•ä/ / Is
ï/ ' W Va 7

V,t | '<¥,4 / y /A
'-°SI.

stffffi' y ' ï/y
1,22 1,20 1,18 lit (M 1,12 (M 1,08 1,06 1,01 tfli I HS8 0,96 0,91 0,92 0,90 0,88 0,86 0,81 0,82 0,80

Fig. 6.
ce



21. August 1954 SCHWEIZERISCHE BAUZEITUNG 489

Dans la fig. 6 nous avons représenté graphiquement un
certain nombre de courbes obtenues en attribuant au
paramètre R des valeurs correspondant à des conditions
d'encastrement plus ou moins efficaces. On reconnaît tout d'abord

sur le graphique la famille de courbes que nous avions déjà
représentées dans la fig. 3, lesquelles correspondent au cas

d'un encastrement parfait (R O). Les courbes partent du

point E et se développent d'abord dans la région marquée A
(plastification aux appuis), successivement, après avoir
traversé la ligne LL', elles changent de direction et vont
s'arrêter sur la courbe limite L'r. Quand la valeur absolue de R
augmente (c'est-à-dire quand on considère des encastrements
de moins en moins efficaces) on voit que le point de départ
du faisceau de courbes remonte sur l'axe des ß. Cela signifie
que la période élastique, qui est représentée par la partie
de la courbe K 1 qui se trouve à gauche de l'axe des ß,

se prolonge jusqu'à des valeurs plus élevées de la charge.
Ce qui n'a rien d'étonnant puisqu'en phase élastique la rotation

que subit l'encastrement tend à réduire l'écart entre les

moments extrêmes. Pour R — 0,333 les valeurs absolues

des moments extrêmes sont égales en phase élastique; la
courbe K 1 (comportement purement élastique) coïncide

donc avec la courbe p — 1. Pour K ^> 1 la plastification

commence simultanément au milieu de la poutre et

aux appuis. On entre donc directement dans la zone marquée
M — A (plastification simultanée). Dans cette zone, nous

avons dessiné les courbes K 1 et K 5. On voit que,

contrairement à ce qui se passait pour les valeurs moins
élevées de R, la courbe g 5 se trouve en-dessous de la
courbe g 1. Comme cette dernière coïncide avec le lieu des

points pour lesquels il y a égalisation des moments extrêmes,

on en déduit qu'au fur et à mesure'que la charge augmente
les moments au milieu et sur appui tendent à se différencier.
Ce phénomène s'explique facilement si l'on remarque que le

diagramme des moments fléchissants est fortement arrondi
au milieu de la poutre et qu'il termine en pointe aux encastrements.

Il s'en suit que la rotation anélastique du milieu de

la poutre prévaut sur celle des appuis et que le moment sur

appui augmente plus vite. La courbe g 5 atteint la ligne
L'r pour ß — 7,15. On voit donc qu'à moins de disposer

sur appui d'une marge d'adaptation capable d'absorber l'effet
du passage du paramètre ß de la valeur — 7,15 à la valeur
—8, il pourra très bien se produire que la rupture ait lieu
dans des conditions moins favorables que celles qui se

vérifiaient en phase élastique.
Si la valeur absolue de R augmente encore, on voit sur le

graphique que la ligne qui correspond au comportement
élastique rencontre la courbe LqL (prolongement de LL') avant
d'atteindre l'axe des ß. Cela revient à dire que le phénomène

anélastique prendra naissance au milieu de la poutre. On

entrera donc dans la région marquée M. Après quoi, suivant
les cas, plusieurs éventualités pourront se présenter:

a) rencontre avec l'axe des ß, passage dans la zone

M-A (plastification simultanée), rencontre avec la ligne L'r;
b) rencontre avec l'axe des /?, rencontre avec la ligue Cr

(le moment au milieu atteignant la valeur limite —nM±).
A partir de ce moment, le point représentatif suivra la ligne
Cr, l'ampleur de son déplacement étant réglée par la capacité
d'adaptation du milieu de la poutre;

c) rencontre directe avec le prolongement de Cr. Ce cas

correspond à un encastrement très flexible. On peut très bien
concevoir que dans un cas semblable la rupture au milieu de

la poutre puisse se produire avant même que les encastrements

n'atteignent leur limite élastique.
Bien entendu, dans l'étude de toutes ces différentes

éventualités, il faudra se préoccuper de déceler d'éventuelles
«rétrogradations» du moment fléchissant. Pour cela il suffira
de s'appuyer sur les considérations que nous avons développées

sur cette question en parlant des poutres parfaitement
encastrées.

En matière d'encastrements élastiques, il faudra cependant

considérer également avec attention un autre aspect du

problème: à savoir la possibilité que les déformations
anélastiques qui prennent naissance aux extrémités de la portée
intéressent, non seulement la poutre elle-même, mais également

les éléments auxquels la poutre se trouve reliée, et qui
lui confèrent les liaisons d'encastrement. Exemple typique:
celui d'une poutre continue dans laquelle la plastification se

produira toujours des deux côtés d'un appui intermédiaire.
Nous n'insisterons pas sur l'étude de ce phénomène. Nous

nous contenterons de remarquer qu'il sera toujours assez facile
d'en tenir compte en affectant la rotation anélastique <pA d'un
coefficient d'amplification convenable.

Pour ne pas dépasser les limites nécessairement restreintes

du présent exposé, nous nous abstiendrons de reproduire
la discussion détaillée de nos hypothèses de base et l'étude
des possibilités de généralisation qu'offre le procédé dont nous

avons indiqué les points essentiels. Le lecteur qui voudra
approfondir ces aspects du problème pourra se reporter à

d'autres publications *) ; qu'il nous suffise ici de conclure en

remarquant qu'il est certain que l'étude des phénomènes

d'adaptation dans les poutres précontraintes hyperstatiques
exigera encore beaucoup de travail. Ce qui paraît souhaitable,

c'est que les recherches se développent d'une manière
coordonnée.

Nous serions heureux si la méthode d'interprétation que

nous avons développée pouvait contribuer utilement à orienter

les recherches et à établir un moyen pour comparer entre

eux les résultats obtenus par les différents chercheurs*
Adresse de l'auteur: Prof. Franco Levi, Ing., Politecnico di Torino,

Castello del Valentino, Torino.

Die ersten fünfzig Jahre Kraftwerke Brusio

Am 14. Juni 1904 fand im Bankhaus A. Sarasin & Cie. in
Basel die konstitutierende Generalversammlung der Brusio
Kraftwerke AG. statt. Diesem bedeutsamem Anlass widmet
das Unternehmen eine prachtvoll ausgestattete Festschrift, die

der heutigen Generation eindringlich und in gediegener Form
zum Bewusstsein bringt, was es bedeutet und gekostet hat,
vor fünfzig Jahren ein Hochdruck-Speicherkraftwerk mit
Fernübertragung der Energie ins Ausland zu bauen.

Zugleich aber kreisen die Gedanken in der vorliegenden
Schrift in sehr sinnvoller Weise um das zentrale Thema
«Einordnung». Das gibt Anlass zu einer eingehenderen Betrachtung

über das, was wir als Ingenieure und Architekten bauen

und was wir alle als moderne Menschen nutzniessen. Denn
Einordnung bedeutet eine sehr umfassende Forderung an alles

technische Gestalten und an alles In-Dienst-Nehmen von
Gestaltetem.

Diese Forderung ist nicht nur wirtschaftlich zu verstehen
im Sinne einer zweckmässigen Erfüllung von Marktbedürfnissen,

auch nicht nur historisch als Antwort auf die
Entwicklungen in der Politik, im besondern als Antwort auf die
sich kreuzenden Interessen verschiedener Menschengruppen
und verschiedener Nationen; ebenso wenig ist sie ausschliesslich

ästhetisch aufzufassen, als Rücksichtnahme auf die
Naturschönheiten, die bei jedem Bauvorhaben verändert werden.
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Wesentlich und vorrangig ist die Einordnung all dessen, was
wir als Techniker und Menschen tun, in die Wertehierarchie,
die uns gesetzt ist. Damit ist nicht nur die Synthese von
technischem Schaffen und allgemeinem kulturellen Leben gemeint,
also von typisch menschlichen Verhaltensweisen, die heute
vielfach noch als Gegensätze empfunden werden. Vielmehr
geht es um das Herausarbeiten einer neuen, ganzheitlichen
Lebenshaltung, in der der Mensch ganz sich selber.ist, worauf
die Synthese, von der eben die Rede war, ohne unser Hinzutun

als reife Frucht aus dieser innern geistigen Haltung
herauswächst.

Es ist überaus erfreulich und weist auf einen bedeutsamen

Gesinnungswandel hin, dass in allen technischen,
wirtschaftlichen, politischen, historischen und ästhetischen
Gesichtspunkten, die in der Festschrift zur Sprache kommen,
das Bedürfnis der Orientierung nach einer allumfassenden
Werteordnung spürbar ist. Dazu sind allerdings Anlagen und
Geschichte des Werkes besonders gut geeignet. Das Kraftwerk

l) F. Levi, Analisi di fenomeni anelastici proseguita tino a rottura.
«Giornale del Genio Civile», 1964, N° S. — D'autres mémoires devant

paraître incessamment seront consacrés à la description des résultats
de deux séries d'essais qui ont été effectués auprès du Centre d'Etude
sur les états de coaction de l'Ecole Polytechnique de Turin pour vérifier
les considérations théoriques que nous venons d'exposer.
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