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La scie à ruban Un problème cinématique et statique

Par Jean Lombardi, Ing. civil EPF, Berne DK 621.935

1. Introduction

Il nous a été donné de constater, auprès des constructeurs
de métiers à ruban de divers pays, une méconnaissance totale
des lois régissant le comportement de ces scies, ou plus exactement

de celles qui concernent la tenue des lames sur des
volants bombés.

Souvent même, nous avons rencontré une ignorance
certaine de la nature des phénomènes qui interviennent. Et il
nous a semblé, par ailleurs, qu'un empirisme, que l'on
aimerait croire révolu, présidait encore seul au choix des
solutions mécaniques et à la détermination quantitative de
divers paramètres réglant ce comportement. Si besoin était,
on trouverait la preuve de ces affirmations dans le grand
nombre de machines insatisfaisantes existant sur le marché.

En réalité, il semble bien qu'aucune étude théorique
portant sur l'équilibrage des lames n'ait encore été entreprise.
Ce fait s'explique aisément par la nature particulière du
problème, qui se trouve être à la limite de plusieurs domaines
de la science de l'ingénieur. En effet, les nombreuses questions
posées par la construction et le fonctionnement des métiers
à ruban relèvent de diverses disciplines physiques. Le
problème qui nous occupera ici est cependant l'un des plus
importants et des moins bien connus, car il est assez difficile,
de prime abord, de comprendre les raisons qui font qu'une
lame de scie s'enroulant sur des volants se maintienne en
équilibre sur le sommet des bombés.

Ayant eu le loisir d'étudier mathématiquement cette
question, nous avons été heureusement surpris de trouver
qu'il en existe une solution générale et somme toute très
simple. Nous pensons rendre service aux constructeurs en
exposant ci-après une méthode de calcul et en montrant les
avantages immédiats que l'on peut tirer de son application.
Nous nous proposons d'étudier les lois régissant la tenue
d'une lame sur les volants lorsque celle-ci est soumise aux
efforts de sciage, c'est-à-dire aux réactions exercées par la
pièce de bois à scier. Accessoirement, nous parlerons des
sollicitations du ruban. Notons encore que la théorie que nous
exposons est susceptible d'être appliquée à d'autres éléments
mécaniques, tels que courroies de transmission ou tapis
roulants.

2. Le problème de la tenue des lames
(ou l'équilibrage des lames)

Nous considérons une lame de scie s'enroulant sur deux
volants bombés et inclinables, dont l'un est moteur La
lame sera initialement tendue par une force connue S et elle
sera soumise sur l'un de ses deux brins libres à des forces
externes H et M agissant dans son plan (figure 1).

Le problème consiste à étudier l'équilibre cinématique et
élastique de la lame et à chercher notamment les lois qui
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i) Ce faisant, nous généralisons le problème, puisque les métiers à
ruban ne comportent habituellement qu'un seul volant inclinable et
bombé, l'autre étant fixe et cylindrique. Nous nous réservons de justifier

cette généralisation par les applications qu'elle permettra.

relient les forces externes à la position occupée par le ruban
sur les volants.

Avant d'entreprendre l'étude analytique, il est cependant
opportun de rappeler certains faits élémentaires dont la
connaissance facilitera grandement la compréhension de l'exposé.

On sait qu'un fil sans rigidité s'enroule sur un tambour
cylindrique ou conique suivant une hélice dont le pas est
déterminé par l'angle compris entre l'axe du fil et celui du
tambour, au moment de leur premier contact. Ainsi, un fil
formant courroie ne s'enroulera d'une manière stable sur
deux poulies que s'il peut rentrer sur chacune d'elles normalement

à leur axe. Si les axes de celles-ci convergent, le fil ne
peut s'enrouler d'une façon stable et tend à se déplacer vers
le point de concourance des axes.

Des considérations géométriques montrent d'autre part,
qu'un ruban droit s'enroulant sur un cône finit toujours par
se déplacer vers la base de celui-ci. Autrement dit, un ruban
ne peut s'enrouler le long d'une directrice d'un cône que s'il
possède, avant de le faire, une courbure latérale égale à
celle que le cône lui impose par la suite, et que si sa tangente
est normale à l'axe du cône au moment de leur entrée en
contact.

Il est maintenant aisé d'étudier le problème de la scie
à ruban comme se réduisant à une combinaison de ces cas
élémentaires. En particulier, si l'on considère un volant ou
une poulie formé par deux cônes opposés, à base commune,
on conçoit qu'une courroie s'enroulant sur cette poulie aura
tendance à se déplacer vers la base des cônes et donc à
prendre, sous certaines conditions, une position d'équilibre
dans le plan médian de la poulie. On saisit ainsi aussitôt et
intuitivement l'effet stabilisant du bombé et, partant, on
comprend qu'une lame puisse se maintenir sur des volants bombés.

Une remarque s'impose cependant encore. Il est évident
que si les forces agissant sur la lame changent d'intensité, la
position de la lame sur les volants se modifie aussi. Ce
déplacement demande naturellement un certain temps, c'est-
à-dire un certain nombre de tours pendant lesquels la lame
s'enroule en spirale sur les volants. En pratique, il s'avère
néanmoins inutile de suivre par le calcul ces déplacements,
et il suffit de connaître les diverses positions d'équilibre
correspondant aux diverses valeurs des forces.

Nous savons maintenant que, dans toute position d'équilibre

cinématique, la lame doit entrer sur chaque volant
perpendiculairement à l'axe de celui-ci, et qu'elle doit le faire
avec la courbure latérale correspondant à la conicité du
volant. Ces deux constatations permettent de résoudre le
problème sans difficulté.

Nous formulerons d'abord les hypothèses faites, qui sont
très restreintes et pratiquement toujours satisfaites. Nous
admettons que:

1. chaque volant est un corps de rotation indéformable,
2. les axes des deux volants restent toujours dans un plan

(vertical p. ex.),
3. les volants sont assez larges pour que la lame n'en

sorte pas (dents de scie non comprises),
4. la lame est droite et plane ; ses propriétés physiques sont

constantes le long de son axe,
5. la lame se comporte élastiquement,
6. la force initiale de tension est suffisante pour assurer

une adhésion parfaite de la lame sur les volants bombés,
7. cette force ne varie pratiquement pas ni par suite des

réactions exercées par le bois, ni en fonction de la
position de la lame sur les volants,

8. la résultante des forces opposées par le bois ainsi que son
point d'application sont supposés connus.

S. Le cône équivalent
On a vu l'influence de la conicité d'une poulie sur le

comportement de la courroie et l'action stabilisatrice du
bombé d'un volant. Pour saisir quantitativement ces effets, il
s'avère adéquat d'introduire la notion de cône équivalent.
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La figure 2 montre un volant bombé dont une certaine
partie est recouverte par une lame enroulée de manière que
son axe se trouve dans un plan parallèle à celui du volant.

Par suite du bombé, les diverses fibres longitudinales de
la lame subissent une elongation différente; de ce fait résulte
une flexion latérale de celle-ci, donc une courbure latérale
qui caractérise l'influence du volant. On conçoit que le
comportement d'ensemble de la lame ne sera pas affecté si l'on
substitue à ce volant un cône de demi-ouverture eeq
convenablement choisi. Nous l'appelons «cône équivalent», et
disons qu'il doit imposer à la lame la même courbure latérale
que la portion de volant intéressée.

Il est évident que, pour un volant donné, le cône
équivalent varie avec la position et la largeur de la lame, sous
réserve que celle-ci ne sorte jamais du volant2).

En partant de ces remarques, le calcul de l'angle du cône
équivalent est aisé. La figure 2 b représente la partie du
volant couverte par une lame de largeur L, ainsi que le cône
cherché. Soit O l'origine des coordonnées x et y, fixes par
rapport au volant, et soit e la distance de l'axe de la lame à
cette origine; nous définissons alors l'abscisse locale par:
z x — e.

Le profil du volant est représenté par y (z). Puisque nous
avons supposé un contact parfait de la lame et du volant, le
moment statique par rapport à O' de la surface hachurée,
comprise entre le profil du volant et celui du cône, doit être
nul afin qu'il existe l'égalité voulue entre les flexions
latérales de la lame pour les deux cas. Il faut donc avoir:

+ m
\UeqZ— y(z)~izdz 0,

—1/2

d'où l'on tire:

12 +f(1) eeq =-=j Jy(z)zdz
LI2

Le calcul de cette intégrale est aisé. Si, par exemple, le profil
du volant est parabolique avec un rayon de courbure g au
sommet, on a:

Dans ce cas particulier, et comme il fallait s'y attendre,
le cône équivalent coïncide avec le cône tangent au volant
dans l'axe de la lame. Son angle d'ouverture varie donc
linéairement avec la position de cette dernière.

4- Formules pour le hauban

Entre un volant et l'autre, le ruban se comporte dans
son plan comme une poutre tendue et fléchie, c'est-à-dire
comme un hauban chargé transversalement. Il y a donc lieu
de rappeler brièvement ou de dériver quelques formules
applicables à celui-ci.

Pour le problème qui nous occupe, il faut d'abord
connaître les angles de rotation de l'axe du hauban à ses points
d'appui pour divers cas de charge. Nous nous contenterons de
donner les expressions pour ces valeurs sans insister sur les
autres grandeurs statiques, puisque l'établissement des
formules qui les concernent n'offre aucune difficulté.

Considérons le hauban d'une portée a et d'inertie constante

EJ représenté par la figure 3a. Nous supposerons
qu'il est tendu par une force S et qu'il porte une charge
concentrée P à une distance c de l'appui droit.

Selon S. Timoshenko (Résistance des Matériaux, deuxième
Partie), l'équation de la ligne élastique du hauban entre
l'appui gauche et le lieu de la charge est la suivante si l'on
pose p2 S/EJ:

y* —
P sinh p c sinh p a; -f

Pcx 0 < a- < aS p sinn pa Sa
On déduit immédiatement de cette formule les rotations

aux appuis pour une charge unitaire concentrée; ce sont:

(3) aP*

ßp*

dy*
ôx

— dy*
ôx

m
11

~~s

sinh p c \
sinh p a j

— c sinh p (a c)
sinh p a

Nous désignons par un astérisque les valeurs s'appliquant
au hauban pour les différencier de celles relatives à la poutre
simple.

Pour le cas de charge de la figure 3b, nous trouvons les
rotations aux appuis sous l'effet du moment M, en formant la
dérivée selon c des valeurs que nous venons d'obtenir. On peut
en effet considérer que le moment unitaire M est produit par
le déplacement de d'une force 1/dc.

Nous obtenons ainsi:

(4) «HT

<3.M*

dap*
de
dßp*

1

a S
1 — pa

cosh p c

de
1 /

—s- I p aa8 V

sinh p a J

cosh p (a—c)
sinh pa

Il nous suffit de faire c 0 ou c a dans ces formules, afin
d'obtenir les rotations aux appuis sous l'effet de moments
d'encastrement unitaires. Avec les notations habituelles en
statique, nous avons:

y
x*

2ç
et le calcul donne:

— e

(s 4- e)2

(2) ceq

Uff,)

-—-J

p-1

¦——i^L-
*-x

M-1,

b)

Fig. 3
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2) Si la lame dépassait les bords du volant, la notion de cône
équivalent resterait valable, mais le calcul qui suit perdrait sa valeur.

(5)
a S (p a coth p a — 1)

A _v i i^—)
a S \ sinh pa J

En passant à la limite S —>- 0 et donc p a _v 0, on
retrouve évidemment les formules valables pour la poutre
simple, à savoir:

(6) ap

«M

c (a* ca)

6E J a

' — 3ca
6 E J a

ßp

ßM

c (a — c) (2a — c)
6E Ja

2 a» — 6 a c + 3 c2

6E J a

ß>
¦d E J %EJ

Afin de pouvoir apprécier l'influence de la force de traction

S sur les déformations du hauban, nous avons dressé le
Tableau I qui donne les valeurs de ces angles de rotation, en
fonction du paramètre p a dans le cas où c a/2.

A l'aide de ces divers résultats, nous pouvons maintenant
entreprendre le calcul de l'équilibre de la lame de scie.
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5. L'équilibre de la lame

Considérons en premier lieu le brin de retour représenté
par la figure 4. Sur celle-ci, les angles d'inclinaison des arbres
des volants sont désignés par f et ç>, les angles d'ouverture
des cônes équivalents pour la position considérée de la lame
par eeq et peq. En général, il y aura un décalage par rapport
à une verticale entre les points de contact de la lame avec les
deux volants; il sera désigné par /. Dans cette figure, toutes
les valeurs indiquées le sont dans leur sens positif.

Ainsi que nous l'avons déjà fait remarquer, la tangente
au ruban doit être normale à l'arbre des volants aux points
de contact avec ceux-ci; il faut donc avoir3):

a ip et ß ip

Par ailleurs, lors de sa rentrée sur le volant supérieur, le brin
de retour doit posséder une courbure correspondant au cône
équivalent, ce qui donne:

M, BJee
r

si Mx est le moment de flexion latérale du ruban et r le rayon
moyen du volant supérieur.

Avec ces données, les conditions d'élasticité habituelles

(7) « «„ + «,«, + «,^4- f/a
et

ß S ßo + ßi Mi + ßi ^2 - S a

se transforment comme suit, puisque a„ ßa 0 :

— a, E J seq/r 4- a2 itf2 4- fia — ip 0

— ßtEJ seq'r + ßs M2 — fja — <p 0

De ces formules, on tire immédiatement:

(8) f ê= a (a, — a2) E J eeq/r 4- a (a, j/i — a3 9>)/(a, 4- a2)
M2 4- EJseqjr + (y 4- <p) / (a, + a2).

Nous signalerons en passant que la valeur calculée pour
M2 ne correspond pas forcément à la courbure imposée à la
lame par le cône équivalent du volant inférieur. Nous
reviendrons plus loin sur cette question.

Avec la valeur obtenue pour le décalage f, nous pouvons
maintenant procéder au calcul du brin chargé, ou brin sciant,
représenté par la figure 5. En effet, le décalage / est le même
pour les deux brins, puisque nous avons supposé que les axes
des volants se trouvent dans un même plan vertical.

Les forces externes se réduisent à une force horizontale

H et à un couple M agissant les deux en un point C
supposé connu. La force H est la poussée du bois, tandis que le
couple M est dû essentiellement à l'excentricité, par rapport
à l'axe de la lame, de la résistance verticale de sciage V qui
agit au bout des dents. La force V elle-même peut être
négligée devant la tension S de la lame, car elle n'a
pratiquement pas d'influence sur les déformations.

Pour ce brin, les conditions sont comme pour l'autre:
a t/> et ß gp,

mais, cette fois, le moment à l'appui inférieur est:

Mi== — EJ /xeqfr,

si r représente le rayon moyen du volant inférieur que, pour
simplifier, nous supposerons égal à celui du volant supérieur.

Les conditions d'élasticité (7) s'écrivent dans le cas
présent comme suit:

et
ccp H 4- an M 4- a, M.À — as E J neqjr 4- //o — tp --

ßpH + ßMM + ßlM3 — ßiEJixeqjr -fja- <p ¦.

0

La valeur de M3 s'obtient immédiatement. En l'éliminant, on
trouve:

H (apa8 — ßpat) 4- M («m a, — ßtucc,) 4-

+ (a,2 — «j2) EJ/xtg/r 4- / (a, 4- a,)/a 4-

4- Ip tt% 4- q> «, 0

s) Dans le calcul de ce paragraphe, nous n'écrirons pas les astérisques,

puisqu'il est valable aussi bien pour la poutre que pour le hauban.

d'où, en introduisant (8), on tire finalement:

(9) Hr (ap ccs ßp«i)
EJ (a,2 — a28) + Mr (a« a8 — ßm a,)

EJ (a,2 — a22J

+ iip + <P) f
K + a,) EJ (f^eq 4" £eq)

6. Application des formules obtenues

La solution à tout problème d'équilibrage des lames est
fournie par les formules (8) et (9). L'application pratique de

celles-ci procède des remarques suivantes. Deux cas de charge
uniquement, à savoir la marche à vide et le travail de sciage
à pleine charge, sont pratiquement à considérer pendant
l'exploitation d'un métier à ruban. Normalement, on examine
d'abord le cas de marche à vide. Le scieur règle donc les
inclinaisons des arbres des deux volants pour que la lame
occupe une position déterminée par des conditions évidentes
de bon fonctionnement. Ce réglage effectué, les angles des
volants ne seront plus modifiés au cours du sciage.

Le parallèle mathématique de cette opération consiste à
déterminer d'abord par l'expression (1) les cônes équivalents
aux volants pour la position choisie pour la lame, puis à
calculer les angles d'inclinaison des volants par les formules
(8) et (9) en annulant dans (9) les membres de charge
(H 0, M 0). Cette première opération s'effectue facilement

après avoir choisi la valeur de la force initiale de
tension S en fonction de considérations étrangères au problème
que nous étudions ici.

Au cours du sciage, la lame reculera sur les volants et
occupera finalement une position telle que la variation des
cônes équivalents aux volants, consécutive à ce recul,
permette d'équilibrer les réactions du bois. Le calcul direct de
cette position par (8) et (9) n'est possible que dans certains
cas et sera en général assez compliqué. Il est aisé, par contre,
de contourner la difficulté en admettant successivement
diverses positions de la lame, et en déterminant par ces mêmes
formules les valeurs des forces (H et M) nécessaires à lui
imposer ces positions. On procédera de la sorte jusqu'à ce que
l'on obtienne une concordance suffisante entre les forces
données et les valeurs calculées. On conçoit que l'emploi de

graphiques peut simplifier considérablement ce calcul; nous
n'insisterons cependant pas sur ce point.

7. Discussion des formules
a) Symétrie du métier

Si nous passons maintenant à la discussion des formules
que nous venons d'établir, nous sommes tout d'abord amené
à souligner la symétrie de la relation (9) par rapport aux
deux volants. En effet, dans cette formule interviennent, pour
équilibrer les forces externes, d'une part la somme des
inclinaisons des arbres des deux volants, et d'autre part la somme
des angles des cônes équivalents. L'expression (8) par contre
ne contient que l'angle équivalent au volant supérieur. On se
rend compte toutefois, lors des applications numériques, que
cette asymétrie est sans grande importance. On peut donc
affirmer que la pratique courante, consistant à ne bomber et
à n'incliner qu'un seul volant (le volant supérieur en général).

tea i >rçM
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va à rencontre de la symétrie de ces formules. Cette constatation

n'a pas seulement une valeur théorique, mais aussi une
très grande importance pratique. Pour preuve de cette
affirmation, il suffit de dire qu'il nous a été possible de réduire
dans des proportions considérables les sollicitations des lames
et d'en éliminer complètement les ruptures, fréquentes
auparavant, en rétablissant mécaniquement cette symétrie entre
les deux volants d'une machine de construction courante (procédé

breveté). Cette réduction des sollicitations de flexion a
permis d'augmenter très sensiblement la force de tension
initiale et d'éliminer entièrement le travail de tensionnage.
On obtient ainsi un sciage meilleur, une économie de travail
et une plus grande sécurité d'exploitation, au total donc une
augmentation sensible du rendement et de la productivité.

b) Tension initiale
Un problème annexe, posé par le métier à ruban, est le

choix de la force de tension initiale des lames.
Ce choix est influencé par de nombreux facteurs dont

la plupart sont étrangers à la question qui nous occupe. Mais
il est naturel de penser que la tenue des lames sur les volants
est fonction de cette traction, ainsi qu'en témoignent d'ailleurs

les formules (3), (4), (5) et le Tableau I. Il importe
donc de se rendre compte directement de cette influence sur
la tenue de la lame, c'est-à-dire sur la résistance au recul
opposée par celle-ci.

L'exemple numérique exposé au paragraphe suivant
montre que, contrairement à la première impression, l'on n'améliore

que de peu la tenue de la lame en augmentant la force
de traction initiale au delà de la valeur nécessaire à bien la
faire adhérer sur les volants. Cette constatation permettra en
général de négliger dans les calculs l'influence de S et
d'employer les formules suivantes plus simples, obtenues à partir
de (8) et (9) en passant à la limite S —>- 0.

(10) f

(11) -

a2 a „

Hcb'r Mb (2c-

<p) et

b)r
E Ja2

2r+ —— (V + 90 +E Ja2 '

+ (feq + eeq) 0

c) Continuité de la courbure
Une remarque s'impose encore, qui a trait à la continuité

de la courbure transversale de la lame à la sortie des
volants. En effet, nous avons imposé à la lame au moment
de sa rentrée sur les volants une courbure transversale égale
à celle qu'elle aura sur le volant lui-même. Or, rien ne permet
d'affirmer qu'immédiatement après la sortie des volants, une
égalité semblable subsistera. Au contraire, des exemples
numériques ont montré, qu'il peut y avoir des cas où,
mathématiquement, il existe une discontinuité dans la courbure
transversale, et partant dans les moments de flexion. Il est
évident qu'une telle discontinuité n'est pas une réalité
physique. Il faut donc supposer que, dans une zone limitée située
près de ces points, il se produit des glissements entre lame
et volant qui engendrent des efforts de frottement, dont la
résultante est un couple compensant la discontinuité
mentionnée plus haut. Ce phénomène ne modifie pas, ainsi que
des essais l'ont montré, le comportement d'ensemble de la
lame, mais il a une certaine importance quant à l'usure des
volants. Le constructeur de métiers devra donc avoir soin de
réduire au maximum ces glissements en choisissant
convenablement les valeurs des bombés et les inclinaisons des
arbres.

8. Les sollicitations du ruban
En utilisant les résultats de la théorie développée plus

haut ainsi que les méthodes de la résistance des matériaux,
il est aisé de calculer les sollicitations du ruban en chaque
point. Nous n'insisterons pas sur le détail de ces calculs, mais
nous croyons utile de rappeler brièvement les divers efforts
auxquels le ruban est soumis et dont il faut tenir compte:
a) tensions internes dues au «tensionnage» (nous entendons

par là la pratique courante consistant à laminer à froid,
pour l'allonger, la partie médiane du ruban sana toucher
aux bords),

b) contraintes dues à la force de tension initiale,
c) celles dues à la force centrifuge,

Tableau 1

p a
EJap*

a2
EJ au* E J a,* E Ja,*

- Yi Yî r3a a a

0 0,062 50 0,041 66 0,333 3 0,166 7 2,000 8,000 16,00

0,1 0,062 50 0,041 64 0,333 3 0,166 7 1,999 7,998 16,00

0,2 0,062 25 0,041 60 0,332 5 0,166 5 2,004 8,016 16,06
0,5 0,060 92 0,041 30 0,328 0 0,161 9 1,999 8,042 16,42

1,0 0,056 60 0,040 48 0,313 0 0,149 9 2,029 8,178 17,67
1,5 0,050 58 0,039 08 0,292 1 0,131 4 2,035 8,371 19,77
2,0 0,043 99 0,037 27 0,268 7 0,112 1 2,061 8,657 22,73
2,5 0,037 64 0,035 15 0,245 4 0,093 9 2,091 9,014 26,57
3,0 0,031 94 0,032 83 0,223 9 0,077 8 2,123 9,446 31,31

4,0 0,022 94 0,028 03 0,187 7 0,053 3 2,192 10,505 43,59
5,0 0,016 74 0,023 47 0,160 0 0,037 3 2,254 11,787 59,74

10,0 0,004 93 0,009 32 0,090 0 0,010 0 2,362 20,268 202,84
20,0 0,001 245 0,002 49 0,047 5 0,002 5 2,222 40,160 803,21

co 0,000 00 0,000 00 0,000 0 0,000 0 2,000 oo oo

ft* a2* &,* a,* Pour c ^=at2 : ßp* ap* et ßM* — «M*

d)

e)

h)

i)

tensions dues au bombé (adaption de la longueur des
diverses fibres du ruban au profil du volant),
enroulement de la lame sur les volants (pliage alterné),

f) sollicitations de la lame à la flexion latérale conformément

à la théorie exposée plus haut,
g) efforts dans les dents dus à la résistance du bois (flexion,

compression, cisaillement),
effet d'entaille, c'est-à-dire répartition non-linéaire des
tensions sur la section de la lame par suite de la présence
des dents,
efforts divers, tels que: vibrations, accélérations, chocs,
effets thermiques etc.
On notera encore que les ruptures des lames sont dues

au dépassement de la résistance à la fatigue. C'est pourquoi
on aura soin de calculer non seulement les contraintes
extrêmes, mais encore l'amplitude de variation des sollicitations.

On conçoit facilement que le nombre impressionnant
d'efforts subis par la lame explique les ruptures fréquemment
constatées. Par voie de conséquence, on saisit aussitôt
l'intérêt que présente une méthode de calcul permettant de
réduire, par une construction plus judicieuse, un certain nombre
de ces sollicitations. C'est le cas de la méthode exposée dans
cette étude pour les efforts de flexion latérale.

9. Exemple d'application
En vue de donner une idée de l'ordre de grandeur des

divers paramètres intervenant dans le problème de l'équilibrage,

et pour montrer l'application des formules que nous
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avons dérivées, nous allons étudier numériquement la tenue
d'une lame sur un métier de construction habituelle.

Nous admettrons les valeurs suivantes relevées sur un
métier à refendre Guillet type MED ayant servi à divers
essais:

rayons des volants: r 55,0 cm
entr'axe des volants: o 168,0 cm
largeur de la lame: L 5,8 cm
épaisseur de la lame: 0,1 cm

Le volant inférieur est cylindrique et son axe est fixe;
le volant supérieur est inclinable et possède un bombé comme
indiqué par la figure 6.

La variation du cône équivalent au volant supérieur
calculé suivant la formule (1) est donnée par la figure 7 qui
montre bien l'influence stabilisante du bombé. Il est évident
que la ligne dessinée est valable aussi longtemps que la lame
ne sort pas des volants.

Le décalage / entre les points de contact de la lame avec
les deux volants peut se calculer par la formule (8). Si nous
admettons, pour simplifier, que les axes des volants sont
horizontaux, c'est-à-dire que f <p S 0, nous trouvons:

f a, E J
ceq

(Jh <x2E J

A l'aide des valeurs numériques données ci-dessus, de la
figure 7 et du Tableau I, on peut calculer ce décalage. En effet
nous avons:

(12) P« 1/4^=1/4, *en Kg

On voit par exemple que la valeur maximum de / est donnée
pour le cas S 0 et eeq — 5 %0, soit:

Imax — S,
r

1682

EJm
(0,1667)

asEJ \
~a /,
0,4 cm"""* 55 1000

Si S augmente jusqu'à donner une tension d'environ 1000
kg/cm2, le décalage / ne diminue que de 10 %. De cet exemple,
on déduit que / est relativement petit et peu sensible à
l'influence de la tension initiale S, et qu'en pratique on peut se
servir de la formule (10) en lieu et place de (8).

Pour montrer l'application de la formule (9) sans devoir
entrer dans des calculs trop étendus, nous supposons que les
forces de résistance du bois agissent à mi-distance entre les
deux volants. Nous avons donc c — a/2; il s'en suit:

ßp up et — ßu ait
La formule (9) se simplifie alors et devient:

H + M «¦M («! + «,) EJ (at+a3)
Cip

+
(ll> + <p)

Cip

(a, — as)

0

+ ¦

Cip
(Feq + S,q) 4-

Nous pouvons écrire aussi:

_ M EJ(13) H — y, 4- -^ (fteq 4- seq) y, + EJ
a

y« a
«M

ra
4 «s + «a

(0 + 9) y„

Yi E J apap «j — a2 " ap
La variation de ces trois dernières fonctions est indiquée

par le tableau I et la figure 8. Il est évident que ces valeurs

ne sont valables que dans un certain
domaine de p o. La limite inférieure de ce
domaine est donnée par la valeur de la force
de tension minimum nécessaire pour bien
faire adhérer la lame sur les volants. Cette
force est essentiellement fonction de
l'importance des bombés et d'un éventuel
«tensionnage» de la lame. La limite supérieure
de validité est fixée par la limite d'élasticité
du métal de la lame, compte tenu dans la
pratique d'une certaine marge de sécurité.
L'étude de cette figure montre en premier
lieu que le coefficient 71 ne varie que très
faiblement en fonction de p a et donc de S.
Pour simplifier, on peut admettre dans le
domaine d'applications normales: 71 ~ 2,2.
Les deux fonctions 72 et 73 varient par

contre bien plus sensiblement, et on peut en approcher la
variation par les courbes suivantes:

y2 I 8 + 0,15 (PO)2

73 16 4 1,8 (pa)2

Une fois les coefficients de ces formules déterminés pour
chaque cas particulier, ces dernières permettent d'étudier
facilement la variation de H en fonction de p a, c'est-à-dire de
la force S. Il est clair que les calculs que nous venons
d'indiquer doivent s'effectuer dans chaque cas d'espèce, et qu'il
n'y a donc pas lieu de pousser plus loin les développements
théoriques.

Nous mentionnons encore la possibilité d'établir pour
toute machine des abaques permettant de trouver chaque fois
la valeur optimum de la force de tension initiale en fonction
du point d'impact des réactions du bois, de la largeur de la
lame et d'autres facteurs. Lors de ce choix, il faudra
évidemment se référer constamment aux sollicitations de la lame.

10. Essais

Il nous a été donné de procéder à quelques essais de
vérification sur la machine décrite au paragraphe précédent. Nous
avons choisi une tension initiale de 1000 kg/cm2, soit 580 kg
par brin. D'après (12): pa 2,2. La réaction du bois était
représentée par l'appui d'un galet monté sur roulement à
billes agissant à mi-distance des deux volants.

Sans entrer dans le détail du calcul et des essais, nous en
donnons les résultats par la figure 9 qui représente la relation
entre l'effort horizontal H appliqué et le recul de la lame.
La courbe (1) donne les valeurs mesurées, la courbe (2) celles
obtenues par les formules simplifiés (10) et (11), et la courbe
(3) celles calculées par les formules exactes (8) et (9). On
constate une bonne concordance entre calcul et essais, car il
y a tout lieu de croire que les différences trouvées restent dans
les limites des inévitables erreurs d'expérimentation et
qu'elles sont dues en grande partie à des différences probables
entre le profil réel du volant et celui qui a été admis pour le
calcul.

Remarquons pour terminer que, dans notre cas, la différence

entre les résultats obtenus par les deux calculs est
relativement petite et que, ici au moins, la méthode simplifiée
donne des résultats suffisants, sans que l'on puisse
évidemment généraliser cette constatation.

11. Conclusions

L'exemple ci-dessus montre que contrairement à une
opinion assez répandue, l'augmentation de la force de tension
n'entraîne pas nécessairement un accroissement de la résistance

de la lame au recul. D'autre part, nous pouvons affirmer

que les résultats acquis au cours de cette note, joints
aux méthodes habituelles de la résistance des matériaux,
permettent au constructeur de machines d'étudier à fond le
problème de l'équilibrage des lames sur les volants. Il y a
lieu de penser qu'il sera ainsi possible d'améliorer la construction

des métiers et de choisir en connaissance de cause les
divers paramètres influant sur l'équilibrage de la lame.

Une première amélioration déjà réalisée, et dont
l'expérience a montré l'efficacité, est celle qui consiste à rendre
le métier symétrique. D'autres perfectionnements sont sans
doute possibles; ils auront pour conséquence d'augmenter le
rendement des métiers à ruban et d'en étendre le champ
d'application.
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