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Kr Randträgereinfluss bei Plattenbrücken
Von Ing. Dr. B. GILG, Zürich.

1. Einleitung und Problemstellung'
Unter einer Plattenbrücke verstehen wir eine Brücke,

deren Fahrbahnplatte ein Haupttragelement darstellt. Die
Lasten werden also nicfl|ivon der Fahrbahn auf die Hauptträger
und von diesen auf die Auflager übertragen, sondern die
Fahrbahn jBrträgt ihr Eigengewicht und die Nutzlast direkt
auf die Auflager. Im ersten Fall sind die Hauptträger gegenüber

der Brückenplatte sehr steif, eventuell wirken noch
Querträger und sekundäre Längsträger bei der Lastverteilung
mit. Im zweiten Fall sind überhaupt keine Hauptträger nötig,
oder — wenn solche vorhanden sind — ihre Steifigkeit ist von
der selben Grössenordnung wie die der Platte.

Ueber die trägerfreie Plattenbrücke besteht heute schon
eine umfassende Literatur, wobei wir nur das Tabellenwerk
von Olsen und Reinitzhuber^) erwähnen wollen. Dieser Ideal-
fall tritt aber praktisch selten auf. Die meisten Plattenbrücken

weisen am Rand mehr oder weniger massive
Verstärkungen auf, seien es nun die Brüstungsträger einer
Strassenbrücke oder die Schottertrogabschlüsse einer Eisenbahnbrücke.

Würde die neutrale FlSlhe der Platte mit der Neutralachse

des Randträgers in einer Ebene liegen, so hätten wir
den Spezialfall einer längs zwei gegenüberliegenden Seiten
elastisch gestützten Platte; diese letzte wäre dann nur durch
Momente und Querkräfte, nicht aber durch Normalkräfte
beansprucht. Aber auch dieser Fall, welcher schon mehrfach
behandelt wurde s), ist in der Praxis nicht häufig anzutreffen.

Wir werden deshalb den allgemeinen Fall einer Platte
untersuchen, welche längs zwei Seiten durch Randträger
verstärkt ist. Die Randträgerachse hat einen beliebigen Abstand
von der PlattenmittelfläS®. Sowohl Platte als auch Träger
werden durch Momente, Querkräfte und NorrffiSlkräfte
beansprucht. Für die weiteren Untersuchungen werden wir uns
auf die RecAœckplatte beschränken, deren zwei andere Seiten
frei drehbar auf festen Auflagern liegen. Die Resultate können

aber auch auf die über mehrere Oeffnungen gespannte
Platte angewandt werden.

2. Differentialgleichungen einer durch Momente, Quer- und
Normalkräfte beanspruchten Platte

Wir betrachten eine dünne Platte, deren Dicke klein ist
gegenüber den andern Abmessungen und deren Durchbiegungen

wiederum klein sind gegenüber der Dicke. Für diese
Platte stellen wir folgende Hypothesen auf3):

a) jede zur Plattenmittelebene senkrecht stehende
Gerade steht nach der Belastung senkrecht zur verformten
Plattenmittelflache,

b) die verformende Wirkung der zur Mittelfläche senkrecht

verlaufenden Schubspannungen kann vernachlässigt
werden.

In Bild 1 ist die Verschiebung einer Senkreclœn S
(Hypothese a) dargestellt:

Dabei bezeichnet u die Verschiebung in der »-Richtung
und w die Verschiebung in der «-Richtung. Analog soll v die
Verschiebung in der zu x und z senkrecht fronenden y-Räpp|A

i) Olsen u. Reinitehuber: Die zweiseitig gelagerte Platte, Bd. 1

u. 2, Berlin 1961.

*) Vgl. z. B. 8. Timoshcnko: Theory of Plates and Shells, S. 219,
New York and London, 1940.

3) Diese Hypothesen sind für die Berechnung dünnerrfjBlatten
üblich.
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tung darstellen. Der Index s deutet auf die Plattenmittel-
fläche. Es l_Msen sich aus Bild 1 leicht folgende Beziehungen
ableiten:

(1) U(Z)=zUs _S_-i-dx
und analog

v (z) v, — ;

dut,
c'y

Aus den Verschiebungen (1) Ehalten wir durch Differentiation
die Verzerrungen (Dehnungen) gjc und £ und die

Winkeländerung y :

,„, du d'w,(2) ^§g==-^—= (£x)s _ «—__dx'
d'w,
dy'

dx
ôv
dy (Sv). — ¦

du âv d'w,^wwBmÊ^Ê ^^
Nun bestehen zwischen den Spannungen und den Verzerrungen

bekanntlich folgende Beziehungen:

(3) ox
w

w

l_v» (-sy + vex)

E
2 (1 + v)

Dabei »zeichnet E den Elastizitätsmodul und v die Poisson-
oder Querdehnungszahl.

Fassen wir jetzt die Normalspannungen zu Biegemomenten

und Normalkräften, die Schubspannungen zu
Drillungsmomenten und Schubkräften zusammen, so erhalten wir
die folgenden Ausdrücke:

(«,). + "(Sy),

Normalkräfte :

h

2

(4) Nx=Jaxds ¦
i— 2

Eh
1 — v»

1
2

Ny [dy dlS
h

~2

Eh
1 - v'

Schubkräfte in horizontaler Richtung
__
2

TXy TyX j XXy d Z
Eh

_h_
|

Biegemomente :

__
2

Mx jaxzdz
_ __

2

h

2(1 + v)
(y«r>.

(5)
12

Äfv : I OyZdZ
J y 12

Eh3 l d"ws d'w, \
l — v») V dx' + v

dy'

Eh* l d'w, d'w, \
(i — v») \ dy* "** ' dx'

Drillungsmomente:

M, M r Eh3 ,„ o'w.
yx VxyZdZ=— —— 1—v)-^-^hJ j 12(1 —v») oxdydy

In diesen Formeln bezeichnet h die Plattendicke.
Betrachten wir nun an einem unendlich kleinen Plattenelement

das Gleichgewicht der Kräfte und Momente, welche
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Bild 3

in den Bildern 2 a und 2 b skizziert
folgende zwei Differentialglei(^ungen :

(6) JJF 0

sind, so erhalten wir

(7) j^tw, 4r

Hiebei bedeutet A den Laplaceschen Operator JL
dx'

0'
~dy*

F die Airysche Spannungsfunktion3;l),
p die von x, y abhängige BelastŒœ und

Eh'
D die Biegesterfigkeit: D —

I§2(1 — v2)
Die Beanspruchung der Platte wird also durch die
Scheibengleichung (6) und die Plattengleichung (7) charalierisiertSa),
wobei die Funktionen F und w, durch die Randbedingungen
voneinander abhängig sind. Die Airysche Spannungsfunktion
ist durch folgende différentielle Ausdrücke mit den Kräften
Nx, Ny und Txy verbunden:

(8) JV*

JVv

d'F

d'F
dx'

Txy=- fF' dxdy
3. Formulierung der Randbedingungen an den durch
Randträger verstärkten Rändern

Wir setzen voraus, dass der in Bild 3 skizzierte
Querschnitt über die ganze Länge des Tragwerks konstant bleibt.
Wir legen die »j/-Ebene eines rechtwinkligen Koordinatensystems

in die Plattenmittelfläche, die s-Achse zeigt hiebei
senkrecht nach unten; die Breite der Platte bezeichnen wir
mit b, ihre Dicke mit h, die Breite des Randträgers mit b«
und seine Höhe mit är. Der Abstand der Randträgerachse von
der Plattenmittelfläche sei s, und zwar ist dieser Abstand
positiv, wenn die Platte in der oberen Hälfte des Gesamtquerschnittes

liegt. Wir vernachlässigen sowohl die Torsionssteif

igkeit als auch die horizontale Biegesteifigkeit des
Randträgers. Somit können also von der Platte auf den Randträger
keine Biegemomente und keine Normalkräfte in der »-Richtung

übertragen werden. Wir betrachten zuerst den allgemeinen

Fall zweier verschiedener Randträger; für alle Rand-
trägergrössen soll in Zukunft der Index 1 sich auf den Rand
x + b/2 der Index 2 auf den Rand x — 6/2 beziehen.

An jedem Rand x= ± b/2 lassen sich folgende vier
Bedingungen formulieren:

a) Das Biegemoment in der »-Richtung soll verschwinden,

b) Die Normalkraft in der »-Richtung soll verschwinden.
Diese beiden Bedingungen resultieren aus der Annahme, dass
der Randträger keine horizontale Biegesteifigkeit und keine
Torsionssteifigkeit besitzt.

c) Die Querkraft der Platte stellt die Vertikalbelastung
des Randträgers dar; dieser wird noch durch eine Normalkraft

Nr im Abstand s von seiner Achse beansprucht. Die
dadurch erzeugte Biegelinie der Randträgerachse soll parallel
zur Biegelinie der Platte verlaufen.

d) Die horizontale Verzerrung der Plattenmittelfläche soll
gleich der horizontalen Verzerrung des Balkens in der selben
Höhe, also im Abstand s von der Randträgerachse, sein.

Die Bedingungen a) und b) lassen sich mathematisch
leicht mit Hilfe der Ausdrücke 5) und 8) annulieren. An-

1946.
8") Vgl. dazu Oirkmann, Flächen tragwerke, Abschnitt 2 u. 3, Wien

statt w, schreiben wir nur noch w, da ja die Durchbiegung
aller Punkte mit gleichem * und y konstant (von z
unabhängig) ist.

(9) D
mmol
dx* + v

d'w \
~dvr) o

/ d'F\
\dy*

Für die Bedingung c) müssen wir die Querkraft Qx am
Plattenrand kennen. Diese setzt sich zusammen aus der
eigentlichen Querkraft Qx und der durch die Drillungsmomente

Mxy hervorgerufenen Belastung*):

Qx
dMXy

Qx + -dy-
Setzen wir die Formeln für Qx und Mxy ein, so erhalten wir^) :

(10) g, -D^r^+(2-v)Jpndx |_ dx' ' dy' J

Die Normalkraft Nr, welche den Randträger in der Höhe s
angreift, berechnen wir durch eine Gleichgewichtsbetrach?
tung am Querschnitt von Bild 3. Da sowohl Platte als auch
Randträger auf die Auflager keine Horizontalkräfte
übertragen, ist die Resultierende der Schnittkräfte dieses
Querschnittes in der j/-Richtung ein reines Biegemoment. Die
Summe aller Normalkräfte muss also verschwinden. Ferner
dürfen diese Normalkräfte kein resultierendes Moment um die
s-Achse bilden. Wir erhalten somit folgende zwei
Gleichgewichtsbedingungen :

+ 1
(JVfi). + {Nr)3 + J Ny dx — 0

___2
(Gleichgewicht der Kräfte),

(tf«)i y - iNR)3^-+JNyXdx 0

2

(Gleichgewicht der Momente bezüglich Koordinatenursprung).

Der Hebelarm der Randträgernormalkräfte ist streng

genommen s—— • Wir vernachlässigen aber die Randträgerbreite,

da sie gegenüber der Plattenbreite klein ist
Setzen wir für N die Ausdrücke (4) ein, so ergibt sich:

(11) (Nr), *['(¦&) -«2 +»2]

<»">.--![-»(-£) + <",-<')]

Das totale Randträgermoment setzt sich nun zusammen
aus einem Anteil Mr (p), welcher von der Vertikalbelastung
herrührt, und einem Anteil Mr (jV) —Nr •«, welcher von

4) Vgl. z. B. Timoshenko, loc. cit. S. 220.

6) Für Qx erhalten wir den Ausdruck aus einer Gleichgewichtsbetrachtung

am unendlich kleinen Plattenelement, für Mxy siehe (5).
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der Normalkraft stammt. Zwischen der Biegelinie wr des

Randträgers und seinem Moment besteht aber folgende
Beziehung:

d'WR MR

dy' (EJ)r
(EJr) Biegesteifigkeit des Randträgers.

Leiten wir diese Gleichung zweimal nach y ab und
berücksichtigen wir, dass die zweite Ableitung des Momentes Mr (p)
gleich der negativen Vertikalbelastung des Balkens ~QX ist
und dass die Vertikalverschiebung wr der Balkenachse gleich
der Vertikalverschiebung w der Plattenmittelfläche sein
muss, so können wir die Randbedingung c) folgendermassen
formulieren:

(EJ)R ö*w

ô'Mr 'N)
dy' ~

d'MR
dy'
Qx + s

>MR (p)
dy'

d'NR
dy'

Da wir, wie Bild 2 a zeigt, die Querkraft Q als positive
Kraft angenommen haben, wenn sie nach unten zeigt, so

zeigt die Balkenbelastung als Reaktion senkrecht nach oben
und ist somit negativ, was wir oben behauptet haben6). Wir
setzen nun die BBHisdrücke (10) und (11) in die obige
Gleichung ein und Erhalten den endgültigen Ausdruck für die
dritte Randbedingung:

(12) (EJ)R

l d3F \
\dxdy-

iiiL d: (2-v) dx dy'
+4

Dabei ist jflhon berücksichtigt, dass die zweite Ableitung
von F nach y am Rand verschwindet (9).

Die Randbedingung d) lässt sich wieder leicht formulieren.

Die Verzerrung der Plattenmittelfläche in der y-Royl
tung berechnen wir aus den Formeln (4):

(8v), m
Eh Eh dx'

Die Verzerrung der Randträgerfaser im Abstand s von der
Achse beträgt bekanntlieHSH

m m Abst

NR

(«y) Ramlträgerachse + s
d'w
dy2

+ s
hRbRER M dy'

Diese beiden Verzerrungen sind einander gleichzusetzen. Wir
leiten beide zweimal nach y ab, weil sich die Gleichung
dadurch vereinfacht. Die vierte Randbedingung lautet also:

(13) JL Ô*F \ I1 Ô*F IP 1 I diw\Eh\dx'dy') ^{dxdy* hRbRER + \ dy1

±4
4. Berechnung der zweiseitig frei drehbar gelagerten
Rechteckplatte

Die bisherigen Betrachtungen bezogen sich nur auf die
verstärkten Ränder, welche normalerweise keine Lagerung
aufweisen. In der 2/-Rich|Big ist der Verlauf der Platte noch
uneingeschränkt. WfBuntersuchen nun den Fall einer Platte
von der Länge l, welche längs der beiden Randlinien y M 0,1

frei drehbar gelagert ist. Es müssen also längs dieser Ränder

folgende Bedingungen erfüllt sein:
a) Die Durchbiegung w der Platte (sowie natürlich auch

des Randträgers) muss verschwinden.

b) Die Krümmung der Platte in der «-Richtung _— muss
dy'

ebenfalls verschwinden, damit die Biegemomente My 0

werden.
c) Die Normalkräfte JTy;senkrecht ZOT Auflageriinie müssen

verschwinden.
d) Die Verzerrungen längs der Auflagerlinie müssen null

werden, was unter der Voraussetzung von verschwindenden

6) Für den Rand x
der Fall.

b/2 ist dann allerdings das Gegenteil

Normalkräften Ny nichts anderes bedeutet als: Nx =0.
Wir suchen nun zwei Funktionen F und w, welche

sowohl die Differentialgleichungen (6) und (7) als auch die
eben zitierten Randbedingungen erfüllen. Es sind dies die
Funktionen:

CO

(14) F 2(Em Cos am » -(- F,n Sin ccm » -\- Gm am » Cos am x +
m 1 1,2

+ Hmam»Sinam»)sinam3/
CO

w gS E(AmCoa amx -\- Bm Sinamo; -)- Cm am » Cos am » -)-
m 1,2...
WÊ3fa<xmxSinumx + Pm)ainamy

mji
l

¦A-m > Bm, C,„ D,„ Em, Fm Gnl und Hm sind Konstanten, welche
mit Hilfe del Randbedingungen aus dem Abschnitt 3 zu
bestimmen sind. Pm ist das Belastungsglied der Fourier-Reihe
und kann mit Hilfe der GleMhung (7) bestimmt werden:

P
D(15) Z(ocMtPmainamy

m 1,2

Die Belastungsfunktion p(x, y) muss also zuerst in eine
Fourieüfeeihe entwickelt werden.

Zur Bestimmung der Integrationskonstanten sind natürlich

acht Gleichunge__ftiötig. Beachten wir, dass jede der vier
Randbedingungen [s. GleSungen (9), (12) und (13)] an zwei
Rändern, nämlich für » ± b/2, erfüllt werden muss, so
erhalten wir gerade die gewünschte Anzahl Beziehungen.

5. Numerische Auswertung für die Rechteckplatte mit
symmetrischen Randträgern unter konstanter Belastung p

Als Anwendung untersuchen wir den einfachsten, praktisch

häufig auflietenden Fall einer Platte, deren beide
Randverstärkungen die selben Abmessungen besitzen. Der Quer-
schnittlgjn Bild 3 ist dann symmetrisch zur j/-Achse. Setzen
wir nun noch eine konstante Lastverteilung p voraus, so ist
die Beanspruchung und die Deformation der Platte ebenfalls
symmetriscEBgaîptf-AchsejBpodurch die Konstanten Bm, Om,Fm
und Gmder Funktionen F und to [s. (14)] alle null werden. Die
Randbedingungen für die beiden verstärkten Ränder sind
identisch, wir müssen sie also nur für einen Rand (z. B. x=-\-bJ2)
erfüllen. Setzen wir die Funktionen (14) in die Gleichungen
(9), (12) und (13) ein, so erhalten wir das System der

||ä||ähungen 16 (Sei« 704).
Zu derKjHBi Gleichung des Systems ist zu bemerken, dass
wir in ihr den Faktor Pm durch den Wert ersetzt haben,
welchen die erste Gleichung dafür liefert, weil sich der Ausdruck
dann 'Bsreinfacht.

Den Belastungsfaktor Pm erhalten wir aus der Gleichung
(15):

m - m»3i»D

Die grössten Spannungen treten längs der Mittellinie y
1/2 auf, was aus Bild 4 ohne weiteres hervorgeht. Wir haben
deshalb im Mittelpunkt [y Z/2, » 0] die Biegemomente
Mx und M.. und die Normalkräfte Nx und Ny und ferner im
Randpunkt [y 1/2,
x — b/2] das
Biegemoment My sowie die
Normalkraft Ny
berechnet. Alle diese
Schnittgrössen greifen

in der Plattenmittelfläche

an. Sie sind
pro Längeneinheit
resp. Breiteneinheit
gerechnet, deshalb
besitzen die Momente
die Dimension einer
Kraft und die Kräfte
die Dimension einer
Kraft pro Längeneinheit.

Für den
Randträger haben wir
ebenfalls im Mittel- Bild 4

festes Auflager
» ¦

b

H..N.
Mx.N

-l
M„ N M...N.ff«"* yi-y

-j
festes I Auflager
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Am Cos

BmCos-

2

amb

m
mm

v) +D
m Sin-

(EJ)RamCoa-

+ Dm\

— sEm Sin-

(EJ)RCCm

b

DSin

2

— sH

Sin-

2

— D

b a„
— Cos-

AmCos-

4-E,

+ H„

l| Eht

+ Or

Cos

1
Sin

+

B
/ «n Sin

ERbRhRSa„

[-2 Cos -^

punkt (y — 1/2) das

Biegemoment und die
Normalkraft bestimmt,
wobei der Angriffspunkt;
dieser Schnittgrössen in
der mittleren Faser liegt,
also im allgemeinen Fall
in einer von der
Plattenmittelfläche entfernten
Ebene.

Die Variation der
Platten- und
Randträgerabmessungen haben
wir in vier Parametern
berücksichtigt:

1. Parameter:
Verhältnis der Spannweitll
zur Plattenbreite l/b.

2. Parameter: Verhältnis der Plattenbreite zur
Randträgerbreite b/bR

3. Parameter: Verhältnis der Randträgerhöhe zur Plattenhöhe

hßjh
4. Parameter: Abstand der mffleren Faser des

Randträgers von der Plattenmittelfläche s.

(Diese Abmessungen sind alle in Bild 3 dargestellt.)
Die Querdehnungszahl v wurde so gewählt, dass sie dem

Eisenbeton entspricht, nämlich v 0,16.

Die Diagramme7) lund2 zeigen die Abhängigkeit
des Längsmomentes My im Plattenmittelpunkt von dem
Verhältnis der Spannweite zur Breite. Das erste setzt dabei ein
Verhältnis der Plattenbreite zur Randträgerbreite von 15, das

zweite ein solches von 25 voraus. Für dazwischenliegende
Verhältnisse kann linear interpoliert werden. Ferner ist für
kleine Ueberschreitungen der Zahl 25 resp. Unterschreitungen
von 15 eine lineare ExtraSilation erlaubt. Das Verhäffiüs der
Höhen wird mit n bezeichnet. Wir haben die vier Fälle n 0

(das ist die normale Platte ohne RandträgerHj 2, 3 und 4

untersucht. Die Variation des 4. Parameters wird durch die
Buchstaben s und s' und die Zahl 0 ausgedrückt. Dabei
bezeichnet s eine Platte, deren Oberfläche mit dem oberen Rand
des Randträgers zusammenfällt (Bild 5 a), 0 eine Platte, deren
Plattenmittelebene mit der mlraleren Faser des Randträgers
zusammenfällt und s' den dazwischenliegenden Fall (Bild 5 b

und 5 c).
Liegt die Platte unterhalb der mittleren Randträgerfaser,

so gelten die selben Werte, also für —s' diejenigen von s' und
für —s diejenigen von s. Ein positives Moment erzeugt oben

Druck- und unten Zugspannungen.
Das Diagramm 3 bzw. 4 zeigt in der selben Art die

Abhängigkeit des Längsmomentes My am Rand der Platte.
Für die veBchiedenen Parameter gelten die selben
Erläuterungen wie oben. Wir sehen, wie für eine (sehr breite Platte
der Randträgereinfluss auf das Mittelmoment stark abnimmt
und im Grenzfall verschwindet (Diagramm 1 und 2), wogegen
das Plattenrandmoment mit zunehmender Breite immer mehr
abnimmt, da dann der Randträger einen grösseren Prozentsatz

der Beanspruchung übernimmt. Der Verlauf des My vom
Plattenrand zur Plattenmitte ist angenähert parabelförmig.
Dabei liegt der Scheitel der Parabel natürlich in der Mitte.
Je länger die Platte im Verhältnis zu ihrer Breit»!wird, desto

mehr nähern sich die beiden Werte, und von ca. Z/Zn_g= 4 an
ist das Plattenmoment My über die ganze Breite konstant.
Diese Konstante ist als Zahl am rechten Ende des Diagramms
angegeben. Das Längsmoment kann dann übrigens nach der
klassischen Biegelehre berechnet werden, wobei die Platte
samt beiden Randträgern wie ein einfacher Balkenquerschnitt
anzusehen ist.

Zu der Darstellungsart der Diagramme ist noch zu
bemerken, dass die dimensionslose Aufzeichnung gewählt wurde,
indem die Abszisse die Variable l/b trägt und auf der Ordi-

^Isin^2 2 (l_v) -f-2 Cos- vP„
(16)

an ()•-
amb

D +

Cos.

i+Sin^
2

- 2 Cos

1) +Sin-f^(l + v)

(EJ)RumP„

Sin bl +

+ ERbfi hRs
Cos- L_ + sin-î

T) Die Diagramme 1 bis 14 sind auf Tafel 40/41 vereinigt.

ïï

nate die Grösse M/pV* abgetragen wird. Wie wir früher
gezeigt haben, besitzt M die Dimension einer Kraft, p die einer
Kraft pro Fläche und l natürlich die einer Länge. Somit ist
der Quotient eine reine Zahl.

Das Diagramm 5 bzw. 6 zeigt die Abhängigkeit des

Längsmomentes Mr im Randträger von den verschiedenen
Plattendimensionen. Für die Darstellungsart gelten die zu den
Diagrammen 1—4 gemachten Bemerkungen. Die Dimension
dieses Momentes ist eine Kraft mal eine Länge, denn es
bezieht sich auf den ganzen Randträger und nicht nur auf die
Einheilpeiner Breite. Deshalb muss auch auf der Ordinate die
Grösse M/pla abgetragen werden, damit eine dimensionslose
Darstellung möglich ist. Die Zahlen am rechten Ende der
Kurven geben wiederum den Verlauf für l/b grösser als 4 an.
Diese Werte sind aber noch mit dem Reziprokverhältnis b/l
zu multiplizieren. Wäre der Ordinatenwert als M/pbP
aufgezeichnet, so würde das Moment für grosse Längen konstant
bleiben, da man es wiederum nach der klassischen Biegelehre
berechnen kann, indem die versteifte Platte als Balkenquerschnitt

angesehen wird. Der Wert p' pb ist dann eine Last
pro Längeneinheit und der Ordinatenwert musste als M/p'P
abgetragen werden. Da wir aber der oben zitierten Darstellung

den "Vgfflzug gegeben haben, nimmt das Randträgermoment

hyperbolisch ab gegen l/b co. Im allgemeinen ist
festzuhalten, dass der Randträger mit zunehmender Steifigkeit

gegenüber der Platte natürlich dieser die Momente
entzieht und dass sowohl im Träger als auch in der Platte die
Biegemomente mit abnehmendem Abstand s (vgl. Bild 5)
grösser werden.

Diagramm 7 bzw. 8 zeigt das Verhalten des
Quermomentes Mx in der Plattenmitte. Es ist im Verhältnis zu
den Längsmomenten klein, sofern die Randträger schwach
sind oder die Spannweite l gross. Dagegen kann es für nahezu
quadratische Platten mit relativ steifen Randträgern ziemlich

hohe Werte annehmen.

Im ganzen ist zu bemerken, dass schon bei
geringer Versteifung des Randträgers eine
beachtliche Reduktion der Längsmomente
My eintritt, welche nicht übersehen werden sollte, und
dass für versteifte Plattenträger, deren Verhältnis l/b > 4 ist.
die komplizierte Berechnung mit Hilfe der Plattentheorie für
die Beanspruchung in der Längsrichtung durch die klassische
Biegelehre ersetzt werden kann. Für die Querbeanspruchung
dagegen liefert diese Berechnung keine Resultate!

Die Diagramme 9 bis 12 veranschaulichen die im
Plattenmittelpunkt und am Rand auftretenden Normalkräfte
in Längs- und Querrichtung. Dabei ist zu beachten, dass auf
der Ordinatenachse der Wert

hN
pl'

Bild Bild 6b Bild 5c

abgetragen ist. Wir haben also die mit der Plattendicke h

multiplizierte Normalkraft aufgetragen. Dies wiederum im
Hinblick auf eine dimensionslose Darstellung. Ferner entsprechen

die über der Abszisse liegenden Werte einer negativen
Normalkraft, d. h. einer Druckkraft. Für

0 den Fall von Bild 5 c, wo s 0 wird,
verschwinden sämtliche Normalkräfte. Liegt
die Plattenmittelfläche unterhalb der
Randträgerachse, so wechseln sie das Vorzeichen.

Für —s' resp. —s erhalten wir
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Diagramme zur Berechnung des Randträgereinflusses bei Plattenbrücken
Von Dipl. Ing. Dr. sc. techn. B. Güg, Zürich

n-o

9.075

0.0606

0.050

0.025

V.S

n-1-.s
000

M
PI* 1

_h-Ü

\
X

0,100 1
\\

^Ikx"
0,075 J»^ _(

J^zs?

m -»

0/150 \
J?¦̂m" -J*_"

J*•4
js^PSS^J^

¦cl
So?

0025 ^"4^ i

/7« _s
__l

0,000 i

0,0763

00716

0,0396
110331

0.0228
0,0205

0,0161

0,0099

Diagramm 1: p konst., My im Plattenmittelpunkt
b/b r 15; hR/h — n

Diagramm 2: p konst., My im Plattenmittelpunkt
b/b r 25; hR/h n

M
pl>

7-
0,125

—

0,100

0.075

.7 n

n-l;S'
i L

n ¦2, s

0,025
n-3.0 —

^ |

—h/7-J;5J—J n-3, S _,
17 *^-~-i t~jl n-u-.o\

0000
^-;^—1—1— -wV -TT

-0,0506
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.0,027!
•¦0/1229

r0.0IS6
-00131
"0,0105

M '
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0,100

0,075 rr.7 o äjg
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1

n-2:S
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1 1
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0000

1
1 1

0,0763

0,0716

^ 0,0396

0.0331
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-0,0205

0,0161

0,0099

4« jr
Diagramm 3: p konst., My am Plattenrand
b/6jj 15; hR/h n

Diagramm 4: p — konst., My am Plattenrand
b/b r 25; hR/h n

M
W

-

\\\, \\\ï\ï\

\<
^v/"N?

N. ^*V" -1^/ /ÎH. r" ^V, v,
s

/ / So 1 -
—/n+s

=:n-2/F "**

T~1~~

0,010
I7T

—n——
tl'toA n-2.S'

0000

Diagramm 5: p — konst., Mr im Randträger
b/br 15; hR/h n

.00560
f.aon9
"00UU8
*MW2
.00323
taoioo
-W2S2

0021.6

i

pp
ooso

^- IMM_L

0.050 VV\\\ IX 1

V ^5
A§k
^v

0.0i>0 VK
V

Vtf

£.'

s '^
* 0

-y^^ ri-*.

2_**,Z-s^^z.§3>a

0,010
oTy

L-
("

Diagramm 6: p konst., Mr im Randträger
b/b r 25 ; hR /h n

-0,05211

taot27
"00361
.00252
*tiQ2ltit
-00229
was.

30 7
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Ol'
l'U-.S

0050 n-i.o
H-3.S

^n-3 o

0025

n-o
0.000

Diagramm 7: p konst., Mx in Plattenmitte
b/b r 15; hR/h n

M

w
0050

n-4)S

| ,n-3-.s'* n 1:0/ / '.nmm
¦0 C/ / / '// / / // / '

'<^y~~^ * Z11

Hlm ' m
s_j S&J.

zi^^SSATTr ¦—r-4—.
¦n-o\\\ i

Diagramm 8: p konst., Jf* in Plattenmitte
b/b r 25; hR/h n

h-N
"W -T-

«*S^

' ^n*

i n^c-p-
-Jn=3:s
—| n**t;$
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\ n Ü"
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t
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i i? ;0 ^'1

«aw?
0/1356
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W
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V x X' h-2.
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m%- i I l^r5^
0000
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F¦- 1 i y 1 1

^ W 20 3.0 4
^r—r5i

00501

00352

00296

Diagramm 9: p konst., Wj,, jV, in Plattenmitte
b/b r 15; hR/h w

Diagramm 10: p konst., Ny, Nx in Plattenmitte
b/b r 25 ; hR /h w
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Diagramm 11: p
b/b r 15; hR/h

Diagramm 12: p konst., Ny am Plattenrand
b/b r 25; hR/h n

h-N
Plk

|
*>/
V y*/ > M «•?

y 7 f /7-i1

/ U y / / / /,

/ 2 J)*p

_
"?-

/ ?T>X
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Diagramm 13: p
b/bfl 15; hK/h

konst., Nr im Randträger
n

h-N
n!3
0.020
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y
1 v n-2

n-2\ A ,n-3
IVj^ 1 /?¦«

—!* Ys

0,010 yjtyp s'

ïr~
y ^
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Diagramm 14: p konst., Nr im Randträger
b/b r 25; hR/h n

.0,0265'
•0,0252
.0.0216
-0J191
td.0176

0.0118
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also die selben Kräfte wie für s' resp. s, aber mit umgekehrtem

Vorzeichen.
Was die Normalkräfte Nr in Längsrichtung anbelangt, so

ist festzuhalten, dass sie für Platten mit kleinem Verhältnis
l/b am Rand sehr gross sind und gegen die Mitte stark
abnehmen, ja sogar in gewissen Fällen das Vorzeichen wechseln.

Diese Abnahme ist wiederum angenähert parabelförmig.
Wird l/b gross, so gleicht sich der Unterschied immer mehr
aus, und wir erhalten eine konstante Verteilung der Ny
entsprechend der Berechnung nach der klassischen Biegelehre.
Die Normalkräfte Nx fin Querrichtung sind für die quadratische

Platte am grössten, verlieren aber für grosse Längen
rasch an Bedeutung.

Die beiden letzten Diagramme 13 und 14
veranschaulichen das Verhalten der Normalkräfte Nr im Rand-
träger. Während die Plattenkräfte — wie sch<m§|||Haer
erläutert — die Dimension einer Kraft pro Länge besitzen, so
ist die Dimension von Nr eine Kraft, da sie sich auf den ganzen

Randträger bezieht. Wechselt s resp. s' das Vorzeichen, so
wechselt es auch Nr.

Im allgemeinen ist folgendes über SBe Normalkräfte zu
sagen:

a) Liegt die Platte in der Druckzone des Querschnittes,
so erhält der Randträger eine zusätzliche Zugkraft, und
umgekehrt.

b) Der Einfluss des Randträgers nimmt bei breiten Platten

gegen den Mittelpunkt rasch ab, dagegen können lange
Tragwerke (l/b > 4) ohne Berücksichtigung der Platten-
theorie berechnet werden.

c) Beim Uebergang von s (Bild 5 a) zu s' (Bild 5 b)
nimmt die Normalkraft ab, und zwar um ca. einen Drittel.

d) Nimmt das Höhenverhsttnis n ab, so sehen wir, dass
die Normalkräfte von n S 4 nach n 3 immer zunehmen,
von n 3 nach n 2 z. T. zunehmen und z. T. abnehmen.
Da für n — 1 alle Normalkräfte unbedingtlierschwinden, ist
bei der Interpolation für nicht ganzzahlige Werte von n den
Verhältnissen entsprechend vorzugehen. Lineare Interpolation
dürfte im allgemeinen nicht am Platz sein.

Aus den Momenten und Normalkräften lassen sich natürlich

sofort auch die Spannungen berechnen. Hierzu bedarf es
noch einer Erklärung. Wir haben die bisherigen Ableitungen
immer unter der Voraussetzung durchgeführt, dass wir es mit
einem homogenen Material zu tun haben. Bei Eisenbeton z. B.
ist das allerdings nicht der Fall. Da aber, wie die Erfahrung
zeigt, Eisenbetonplatten unter den tatsächlich auftretenden
Belastungen auch im Beton die Zugspannungen übertragen
können, ohne nennenswerte Risse zu erhalten, so ist die
Durchführung der Berechnung nach Stadium 1 (Mitwirken
der Betonzugzone) durchaus zulässig. Das selbe Verfahren
wird ja auch bei der Berechnung von Rahmentragwerken mit
variablem Trägheitsmoment angewandt. Natürlich muss dann
bei der Berechnung der Spannungen aus Sicherheitsgründen
nach Stadium 4 vorgegangen werden. Dabei müssen wir uns
aber bewusst sein, dass für eine kreuzweis armierte Platte
das Stadium 4 erst bei Ueberlastung auftritt, so dass wir uns
die noch zu untersuchende Frage erlauben, ob nicht beim
heutigen Stand der Betonfabrikation bei Flächentragwerken eine
teilweise Berücksichtigung der Zugzone am Platz wäre.
6. Weitere Anwendungen

Wir haben für eine zweiseitig frei drehbar gelagerte
Rechteckplatte mit beliebiger Randverstärkung und unter
beliebiger Last alle notwendigen Formeln abgeleitet8). Dabei
wurde immer vorausgesetzt, dass der Querschnitt der
Randträger ein rechteckförmiger sei. Bei Eisenkonstruktionen
wird das nicht der Fall sein. Es ist natürlich leicht, die
aufgestellten Formeln einer Stahlplatte mit profilierten
Randträgern oder sogar einer Verbundkonstruktion (Betonplatte,
Stahlrandträger) anzupassen. Doch können wir vorläufig nicht
näher darauf eintreten.

Eine weitere Anwendung wäre der durchlaufende
Plattenträger. Hier lassen sich — wie bei der gewöhnlichen
durchlaufenden Platte — die gewonnenen Resultate als gute Näherung

auf die Feldabschnitte zwischen den Momentennulllnien
übertragen, indem für deren Abstand die Länge l eingesetzt
wird. Die Momentennulllnien entsprechen direkt den
Momentennullpunkten beim durchlaufenden Träger. Zu lösen bleibt
dann nur noch das Problem der Verteilung des Stützenmomentes

auf Platte und Randträger. Ist das Verhältnis l/b

gross, so können die Momente und Normalkräfte wiederum
nach der klassischen Biegelehre ohne Berücksichtigung der
Plattentheorie bestimmt werden. Für kleine Verhältnisse l/b
ergibt sich eine angenäherte Lösung dadurch, dass die
Stützenmomente und -normalkräfte aus den Feldmomenten und -nor-
malkräften analog den Verhältnissen eines durchlaufenden
Balkens berechnet werden. Wir geben nachstehend das
Vorgehen an: Ersetzen des Plattenträgers durch einen Balken —
Bestimmung der Stützen- und Feldmomente sowie des Ab-
standes l der Momentennullpunkte für die verschiedenen
Oeffnungen — Berechnung der Feldmomente und -normalkräfte
nach dem oben bescBBebenen Verfahren — Bestimmung des

Stützenmoment
Verhältnisses k am Ersatzbalken für die ver-

Feldmoment

schiedenen Oeffnungen — Multiplikation der für den Plattenträger

bestimmten Feldschnittgrössen mit dem Faktor fc

ergibt die Schnittgrössen über den Stützen.

Nebenbahnen und Verkehrsteilung
Schiene - Strasse DK 656.078.12

8) Für p (x, v) ¥* konstant sollen in einer Fortsetzung noch num
rische Auswertungen folgen.

Anlässlich der Jahrestagung des Kuratoriums des
Verkehrswissenschaftlichen Instituts an der Technischen
Hochschule Stuttgart vom 2. Juli 1953 sprach der Leiter des

Instituts, Professor Dr. Carl Pirath, über das Thema: «Die
volkswirtschaftliche Bedeutung der Nebenbahnen als Grundlage

für die Verkehrsteilung Schiene - Strasse in
verkehrsschwachen Gebieten». Davon dürften u. a. folgende Feststellungen

von Interesse sein.
Ganz allgemein betrachtet beträgt der Binnenverkehr

der Nebenbahnen, d. h. der Verkehr, der in ihrem Bereich
beginnt und endet, im Personenverkehr 40 bis 44 %, im
Güterverkehr nur 1 % des Versands und Empfangs der
Nebenbahnen. Der Rest ist Uebergangsverkehr nach und von den

Hauptbahnen, an die sie angeschlossen sind, so dass die
Nebenbahnen vor allem im Güterverkehr eine grosse Fernwirkung

besitzen.
Dieser allgemeine Verkehrswert der Nebenbahnen bedarf

einer Vertiefung durch den speziellen Verkehrswert, der darin
zu sehen ist, dass die Nebenbahnen im Personenverkehr den
Berufsverkehr besonders billig und sozial bedienten und im
Güterverkehr trotz des verhältnismässig geringen Verkehrsbedarfs

die Verkehrsleistungen sehr preiswert angeboten
haben. Zur Klärung dieser Fragen wurden für die
Nebenbahnen die räumliche Verteilung und der Umfang des von
ihnen bedienten Berufsverkehrs festgestellt und der
Güterverkehr nach Güterarten, Tarifklassen und Transportweiten
erfasst.

Das hierbei gewonnene Bild über die Bedeutung der
Nebenbahnen für die Versorgung der in ihrem Bereich
vorhandenen Industrie und der von ihnen abseits liegenden
gewerblichen Schwerpunkte mit Arbeitskräften lässt erkennen,
dass bereits eine gewisse Verkehrsteilung zwischen den
Nebenbahnen und der Strasse eingetreten ist, die als
volkswirtschaftlich gesund angesehen werden kann, obgleich im
Berufsverkehr die Eisenbahn noch rund 1 Dpf. pro Personenkilometer

billiger ist als der Omnibusverkehr der Strasse.
Anders liegen die Verhältnisse im Güterverkehr. Die

für ihn in umfangreichen Einzeluntersuchungen aufgestellte
Stufenstatistik gibt ein sehr aufschlussreiches Bild darüber,
wie sehr die Nebenbahnen am Versand und Empfang von
Gütern mit grossen Transportweiten beteiligt sind und die
Wirtschaft ihrer Einzugsgebiete sich weniger auf den
Nahverkehrsbereich als vielmehr auf grossräumige Verkehrsbeziehungen

stützen muss. Zweifellos ist dieser Tatbestand
nicht zum wenigsten auf die gemeinwirtschaftliche
Verkehrsbedienung der Eisenbahn zurückzuführen, durch die den
wirtschaftsschwachen Gebieten weit unter Selbstkosten in
Tarifeinheit mit den wirtschaftsstarken Gebieten die
Verkehrsleistungen geboten wurden. Besonders auffallend ist der
grosse Anteil der zu Ausnahmetarifen beförderten Güter. Er
beträgt mengenmässig in vorwiegend landwirtschaftlichen
Gebieten 80 bis 84 % gegenüber 67 bis 70 % im Gesamtgebiet
der Deutschen Bundesbahn.

Im Vergleich der Transportkosten des Personen- und
Güterverkehrs in der bisherigen Form auf den Nebenbahnen
mit den Transportkosten Eisenbahn—Strasse ergibt sich der
Transportkostenunterschied bei Fortfall der Nebenbahnen.
Es wurden dabei sämtliche Kosten erfasst, die beim Trans-
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