Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 70 (1952)

Heft: 46

Artikel: Schienenfahrzeug für hohe Fahrgeschwindigkeiten

Autor: Meyer, Rudolf

DOI: https://doi.org/10.5169/seals-59711

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schienenfahrzeug für hohe Fahrgeschwindigkeiten

Von Dr. RUDOLF MEYER, Oberingenieur, Zürich

DK 625.1

Es wird in letzter Zeit wieder viel davon gesprochen, dass man sich dem alten Problem der Fernschnellbahn zuwendet, weil man zweifelsohne einen wirtschaftlichen, leistungsfähigen und sicheren Schnellverkehr braucht. Diese Frage beschäftigte schon mehrfach die Oeffentlichkeit, die Forscher und die Regierungen daran interessierter Länder. Zuletzt war es in Deutschland das Reichsverkehrsministerium unter Dr. Dorpmüller, das diese Dinge systematisch untersuchen liess. Man kam zur Ueberzeugung, dass dafür nur eine Zweischienen-Standbahn geeignet sei. Eine diesbezügliche Ausführungsmöglichkeit wird hier in knapper Form beschrieben.

Bild 1 zeigt ein Eisenbahnfahrzeug der heute üblichen Bauart. C ist der Schwerpunkt, h seine Höhe oberhalb der Unterstützungsebene, die durch die Schienen AA gebildet wird, und s ist die Spurweite. Die Bilder 2a und 2b zeigen ein solches Fahrzeug in der Kurve, wo es der Zentrifugalkraft Z unterworfen ist. Die Gleichungen für die Raddrucke Q_1 und Q_2 laufen:

(1)
$$Q_1 = \frac{G}{2} + Z \frac{h}{s}$$
 und $Q_2 = \frac{G}{2} - Z \frac{h}{s}$

wobei G das Gewicht des Fahrzeuges ist. Man sieht, dass Q_1 umso grösser wird, je grösser G und Z und insbesondere h, und je kleiner s wird. Man sieht auch aus Bild 2b, dass das grössere Q_1 des a u f s t e i g e n w ollenden en Spurkranzes des führenden Rades einer Entgleisung entgegenwirkt, und man erkennt, dass somit mindestens in jeder Kurve ein Druckwechselspiel Q_1 gegenüber Q_2 dann auftritt, wenn die Geschwindigkeit des Fahrzeuges $v > R \cdot g$ tg α ist, wobei R den Krümmungsradius der Kurve, g die Erdbeschleunigung

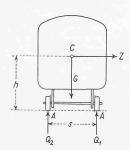


Bild 1. Das heutige Eisenbahnfahrzeug im Querschnitt

und α den Ueberhöhungswinkel bezeichnen. Nur im Falle $v = R \cdot g \cdot \operatorname{tg} \alpha$ d. h. bei der «ausgeglichenen Geschwindigkeit», sind beim heutigen Fahrzeug die Raddrucke gleich gross. Alsdann steht die resultierende Q aus G und Z senkrecht zum freien Schenkel von α . Dieser Fall tritt jedoch im heutigen Gleissystem normalerweise nicht ein.

Nicht nur das beschriebene Spiel der Kräfte Q_1 und Q_2 ist am unruhigen Lauf des Fahrzeuges im Gleis beteiligt, sondern auch die Notwendigkeit, die heute üblichen Radsätze mit Spiel im Gleis führen zu müssen. Die Klingelsche Formel

$$(2) \qquad l = 2\pi \sqrt{\frac{s}{2} \frac{r}{\gamma}}$$

sagt aus, dass die Wellenlänge l des Sinuslaufes des Fahrzeuges um so grösser wird, je grösser die Spurweite s und der Radhalbmesser r, und je kleiner die Konizität γ der Radreifen wird. Diese Konizität selbst ist umstritten, ebenso wie die Spurkranzführung selbst. Denn Konus und Spurkranz verändern sich rasch durch Verschleiss. Dieser ergibt weitere Unruhe im Fahrzeuglauf und zwar die bedeutendste. Ist dies schon im geraden Gleis der Fall, so wachsen die Schwierigkeiten noch in der Kurve. Dort setzt durch die feste Verbindung der Räder mit der Achse eine Längsgleitung ein. Diese ist aber weniger bedeutend als vielmehr die Quergleitung, die das vom führenden Rad durch die Kurve gezwungene Fahrzeug ausführt. Die erheblichen Reibungskräfte, die beim Gleiten der Räder auftreten, rufen schwere Abnutzungen an Rad und Schiene hervor, wodurch weitere Unruhe im Fahrzeuglauf ausgelöst wird. Diese Unruhe gilt es zu beseitigen.

Um einen Körper entlang einer Richtungsbahn schnell und sicher zu führen, muss er spielfrei entlang dieser Bahn geführt werden. Dazu ist es nötig, vom bisher an den Spurkranz gebundenen System der Unterstützung und Führung des Fahrzeuges im Gleis abzugehen. Die Untersuchungen führten zu einer Anordnung gemäss den Bildern 3 bis 6, bei der die Fahrbahnebene X — X durch den Schwerpunkt des Fahrzeugkörpers geht. Das Kräftespiel ist in Bild 2c schematisch dargestellt. Die Schwerpunktshöhe h ist gleich Null, und aus den Gleichungen (1) folgt $Q_1 = Q_2 = G/2$. Die Raddrucke werden somit gleich gross, und beim Durchfahren von Kurven tritt das oben erwähnte Kräftespiel nicht mehr auf. Natürlich müssen für die «nicht ausgeglichene Geschwindigkeit» in der Kurve auch hierbei Seitenkräfte aufgenommen werden. Sie werden durch die Führungsräder F (Bild 6), die spielfrei in der Fahrbahn laufen, an diese übertragen. Tragräder T und Führungsräder F können gummibereift sein und lassen in ihrer elastischen Lagerung gewisse Freiheitsgrade zu; diese beeinträchtigen jedoch im Prinzip den spielfreien Lauf des Fahrzeuges nicht. Die Gleisanlage ist ein Pfeilerbau mit Stahl- oder Spann-

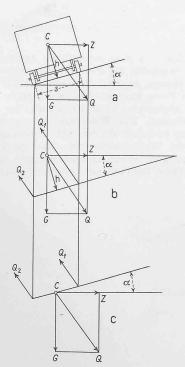
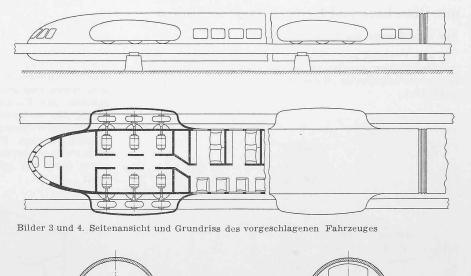
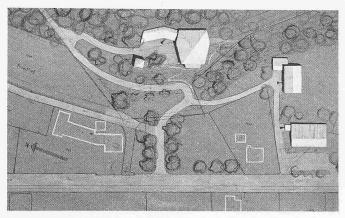




Bild 2. a und b Kräftespiel des heutigen Fahrzeuges in der Kurve, c Kräftespiel des vorgeschlagenen Fahrzeuges in der Kurve.

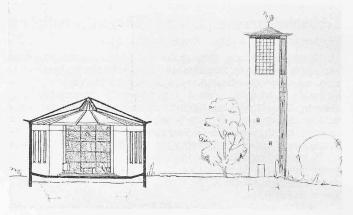
X X F

Bilder 5 und 6, Querschnitt des vorgeschlagenen Fahrzeuges durch den Passagierraum bzw. durch den Motorraum

Lageplan 1:2000

Erster Preis (700 Fr.) Entwurf Nr. 1 Verfasser Dipl. Arch. HANS HAURI, Reinach Mitarbeiter MAX BUHOFER, Boniswil

betonträgern, auf denen unmittelbar gefahren wird. Auch für die Weichen konnte eine einfache Konstruktion gefunden werden. Auf diese einfache und klare Anordnung wurden in den massgebenden Kulturländern Patente genommen. Die hier veröffentlichten Zeichnungen entstammen der USA-Patentschrift Nr. 2,503,120 vom 4. April 1950. Die beschriebene Konstruktion dürfte die bislang grösste Sicherheit bieten.


Auch die Wirtschaftlichkeit hat man eingehend untersucht und festgestellt, dass bei nur 75% Auslastung der Züge und einer jährlichen Verkehrsleistung von 460 Mio Personenkilometern über eine Strecke von 700 km Länge bei 280 km/h Fahrgeschwindigkeit die Selbstkosten 6,6 RPf/Pers.-km (Preisstand 1938) betragen. Damit liegt die Wirtschaftlichkeit für einen kontinentalen Schnellverkehr gegenüber demjenigen mit Flugzeugen so günstig, dass von daher gesehen sowie von der Seite der Witterungsunempfindlichkeit dieses Verkehrsmittels durchaus ein Anreiz bestehen könnte, die Sache aufzugreifen. Es scheint jedoch wohl nur einer weltumspannenden Organisation wie zum Beispiel der UNO heute möglich, ein solches fortschrittliches Projekt finanzieren und durchführen zu können.

Reformierte Kirche DK 726.5 (494.22) mit Pfarrhaus und Gemeindesaal in Muhen

Aus dem Bericht des Preisgerichtes

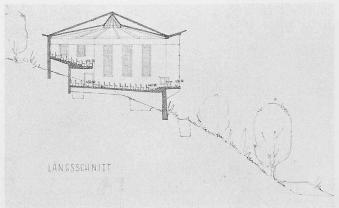
Vier Projekte sind rechtzeitig abgegeben worden, die alle zur Beurteilung zugelassen werden. (Die Beurteilungen der beiden erstprämiierten Entwürfe sind bei den Bildern publiziert. Red.)

Querschnitt mit Ostansicht, 1:600

Entwurf Nr. 1. Die beherrschende Lage des Baugeländes ist gut ausgewertet. Der in seiner äussern Erscheinung einem Zentralbau sich nähernde Baukörper der Kirche ist markant in die äusserste Ecke der Waldkuppe gestellt. Kirche und abseits stehender Turm bilden mit den Stützmauern eine überzeugende harmonische Einheit. Der Zufahrtsweg ist gut geführt. Pfarrhaus und Kirchgemeindehaus liegen abseits auf Grundstück B; Pfarrhaus in vorzüglich ruhiger Lage. Diese Situation bedingt ein Freihalten des Grundstückes A von zukünftigen Bauten.

Die Durchbildung der Kirche, vor allem ihr Innenraum, hat leider nicht die überzeugenden Qualitäten der Situation. Die Lichtführung ist vollständig unbefriedigend gelöst. Das grosse frontale Fenster im Chor ergibt für die Gemeinde eine unannehmbare Blendwirkung. Auch für den Fall, dass das grosse dort vorgesehene Glasgemälde sehr dunkel gehalten würde, wäre seine Wirkung durch die zu grossen seitlichen Fenster beeinträchtigt. Als Anlage reizvoll ist der Kirchenvorplatz, der durch Kirche, Turm und Vorhalle eingerahmt ist. Die architektonische Durchbildung in den Einzelheiten wertet die Möglichkeiten, die in der guten Anlage vorhanden sind, nicht aus. Auch zeigt die Kirche im ganzen mehr städtischen Charakter.

Die Grundrissdisposition des Pfarrhauses ist gut gelöst. Beim Kirchgemeindehaus wäre es wünschbar, den Versammlungssaal nicht gegen die Hauptstrasse zu legen.


Umbauter Raum 7833,5 m^3 . Die Eingriffe in das natürliche Terrain halten sich in bescheidenem Rahmen.

Auf Grund der Beurteilung stellt das Preisgericht folgende Rangordnung auf und verteilt die festgesetzte Preissumme von 1800 Fr. wie folgt:

- 1. Rang (700 Fr.) Projekt Nr. 1
- 2. Rang (600 Fr.) Projekt Nr. 4
- 3. Rang (500 Fr.) Projekt Nr. 3
- 4. Rang (Fr.) Projekt Nr. 2

Ausserdem erhält jeder Teilnehmer die vorgesehene Entschädigung von 800 Fr.

Da keines der Projekte sich ohne wesentliche Aenderung zur Ausführung eignet, empfiehlt das Preisgericht der reformierten Kirchgemeinde Muhen, es seien die Verfasser der mit dem ersten und zweiten Preis ausgezeichneten Projekte einzuladen, ihre Entwürfe gegen eine feste Entschädigung von je 800 Fr. weiterzubearbeiten. Die Weiterbearbeitung wird als Projektierungsauftrag bewertet. Sie soll vom Preisgericht beurteilt werden. Für die Weiterbearbeitung sind folgende Richtlinien zu berücksichtigen, sofern Beanstandungen nicht schon durch die schriftliche Beurteilung festgelegt worden sind:

