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Knickprobleme an geraden Stäbe™ Kreisbogensegmenten und Zylindern DK 624.075.2:624,19
Von Oberingenieur H. JTJILLARD, Bern

Diskussionen in der teJBaschen Lite^^^^fcer die
Berechnungsweise von auf Druck beanspruchten Säulei^Kranlassten
den Unterzeichneten vor etwa 25 Jahren, Ifine Studie über
Knickprobleme durc^giführen, die später durch die Berechnung

von auf Aussendruck beanspruBten Rohren ergänzt
wurde. Obwohl die Knick:^Bieln des geraden Stabes seit Euler
(1744) bekannt sind und sich in der Praxis für die M^^B^B
nierung von schlanken Stäben bewährt haben, werdenJKJ
Grundlagen des Knickproblemes hin und wieder neu diskuïHgH
Das Bedürfnis nach einer grundsäMichen Abklärung, sowohl
hinsichtlich der mathematischen Erfassung des Knickvorganges

als auch seiner praktischen Bedeutung, scheint ihm hH^
noch vorhanden zu sein, was jHzur Publikafon dieser Studie
veranlasst.

Ein erster Teil befasse sich mit dem geraden, axial
gedrückten Stab. Es wird gezeigt, wie trotz der Eindeutigkeit
und der scheinbaren Einfachheit der zu lösenden Aufgabe
verschiedene Auffassungen über die grundsätzMie Problemstellung

vertreten werden. Die bisher für die elastische Linie des
knickenden Stabes abgeleiteten Formeln konnten nicht ohne

BlHHmiteinander in Einklang gebracht werden, obwohl sie
HBHBB;h doch zu den EuleShen Formeln führen.Ät den
ïlHsn Theorien, die in der Literatur zu finden sind und zu
etwas anderen Schlussergebnissen führen, wollen wir uns hier
nicht befassen.

Der gegebene Nachweis der Richtigkeit der Eulerschen
Formeln bringt dem StaWer nicht nur eine mathematische
Befriedigung; er gibt ihm auch die MöghcHgfit, ein zuverlässiges

Näherungsverfahren für die praktische Lösung der
Knickprobleme für veränderliche Querschnitte anzffisrenden.

Ferner zeigt die Analyse der Stabilität des auf Druck
beanspruchten geraden Stabes den Weg für die Abklärung der
wesentlich komplizierteren Probleme, welche die im zweiten
Teil dieser Publikation behandelten, auf Aussendruck
beanspruchten Kreisbogen und Rohre stellen.

I. Gerader Stab
1. Erste Berechnung (nach Euler)

Der Mathematiker Euler kam zu der bekannten Knickformel

durch das Studium der Deformation elastischer Federn,
der sog. Elastica. Er leitete davon die Relation ab, die bestehen

muss, damit der ursprünglich gerade elastische Stab (Länge
2 L und Trägheitsmoment J) gemäss Bild 1 durch die Druckkraft

P gebogen werden kann.

¦ 4Z/S

Love («Treatise of the
theory of elasticity», 1906), der
die Untersuchungen von Euler
wiedergibt, rechnet die Form der elastischen Linie einer axial
beanspruchten Säule direkt wie folgt:

Bild 1

M P (2/L — V) dx" EJ

Durch Integration ergibt sich die Gleichung der elastischen
Linie (Bild 2):

(1) y

worin K-

sin [(L — x) K]_
sin LK

P
WT

und J Trägheitsmoment in der Biegungsbzw.

Knickebene
Da die Säule unten eingespannt ist, muss

dy
dec VL-

Kcos [(L — a?)K]
sin LK

null werden für x
woraus folgt:

0,

!__&__

r^

Bild 2

cosZ,K 0; LK

(la) y=. yL Tl—

und BSMiBicklast wie nach Euler:

nx "|

7l*EJ
TWP — —,.^-

Bei^älsem Ergebnis mag auffallen, dass der Wert von yi
keine Rolle spielt und das Endresultat ohne nähere Ueber-
legungen über ^»bilität und Beanspruchungen erhalten wird.
Dies rwrt davon her, dass die untersuchte Säule sich in
einem labilen Grenzzustand befindet: die Last P und der
innere Widerstand der Säule stehen theoretisch (wie bei den
Federn vongEuler) ^ffir einen beliebigen Wert von yi im
GleichgewiSHS Praktisch hat man es aber mit Tragkörpern
zu tun, die nicht so biegsam sind wie Federn und den
Biegungsspannungen, die bereits bei kleinen Werten von yr,
entstehen, jffilht widerstehen könnten. Die Bedeutung des in
diesem Grenzfall bestehenden Zusammenhanges zwischen der
ExzeniBîitat der Belastung und der elastischen Linie geht aus
der unten^Rtenden dritten Berechnungsart ohne weiteres
hervor.

2. Zweite Berechnung
Die Knicklast wird auch (beispiels-

^^ase s. Zt. in den Vorlesungen an der
ETH) von der Annahme ausgehend
berechnet, dass die Last von Anfang an
eine Exzentrizität a gegenüber der Axe
des oberen Säulenendes aufweist (Bild 3).
Dadurch wird die Säule auf Biegung
beansprucht, und das Biegungsmoment
beträgt

M P (a + yL — y)
Die elastisclp Linie ergibt sich wiederum

aus
d*y M

iMk..

1

Bild 3

dx* — EJ
Durch Integration dieser Differentialgleichung und

Berücksichtigung der Bedingung, dass für x 0 die Werte y
und dyjdx gleich 0 sein müssen, ergibt sich:

y (yL + «0 (1 — cos Kx)
yL (3/z, + «0(1 — cos KL)

woraus durch Elimination von yL die Gleichung der elasti-
schenï'Linie

(2) y a-
cos Kx

cos KL
Die Durchbiegung y wächst, wenn der Nenner cos KL

abnimmt, d. h. wenn KL zunimmt, und sie wird unendlich
gross für KL=n/2. Die entsprechende Belastung wird als
Knicklast bezeichnet und beträgt wiederum wie nach Euler

7C*EJ
4 Z/3

Es ist ersichtlich, dass der Ausdruck für die elastische
Linie y nach der Formel (2) wesentlich anders ausfällt als
nach der Formel (1) bzw. (la). Identität wäre nur für 2/l
a cos KL vorhanden; cos KL ist aber null.

Unbefriedigend bei dieser Ableitung der Knicklast ist
besonders die Rolle des Koeffizienten a. Man weiss deshalb nicht,
ob er in Zusammenhang mit einer praktisch unvermeidlichen
Exzentrizität der Lage des Angriffspunktes der Kraft oder mit
einem Form-, bzw. Materialfehler der Säule gebracht werden
muss und ob eine ideale Säule, für welche a 0 wäre, nie
knicken würde. Ferner bleibt unabgeklärt, ob das Knicken
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J
erst erfolgt, wenn P den obenstehenden
Grenzwert erreicht, das heisst, wenn die
Durchbiegung auf der ganzen Säillnhöhe
unendlich gross ist, oder ob be^^^^Seinere
Werte von P die Stabilität gefährden.

3. Dritte Berechnung
Mit dieser soll nun in sehr «fâcher

Weise eine befriedigende Begründung
der Eulerschen Formel dargelegt werden.
Wie aus Bild 4 hervorgeht,w|ird gleich
wie im obenstehend behandeltSj Fall
von einer Exzentrizität a der Belastung
P gegenüber der geraden Stabaxe
ausgegangen. Zunächsl|jibewegt sich P aber

BM^BBit dem beweglichen oberen Ende
der Säule. Das Biegungsmoment infolge

der Exzentrizität a im Punkte mit der Ordinate 1 des Stabes
beträgt

Bild 4

M P(a — y)
Durch Benützung der gleichen Relationen un&lEWaigun-

gen wie in der zweiten Berechnung ^gibt siclpsukzessiv

K: V-
EJ

d*y
dx*

P(a — y)
EJ

für x 0 ; 2/ 0 und dy
dx

y a (1 — cos E as)

Die Durchbiegung des obeÄn Säulenpunktes infolge der
Kraft P und der Exzentamzität a ergibt sich zu

(3) yi a (1 — cos KL)
Setzen wir nun voraus, dass die Last P und mit ihr das

Produkt KL von 0 aus zunimmt: die Durchbiegung yi ist 0
für P 0 und erreicht den Wert a für cos KL — 0. Für den
entsprechenden Wert K n/2 L hat sich also der obere Punkt
der Säule gegenüber der ursprünglichen Lage im unbelasteten
Zustand seitlich um den Betrag yr, a verschoben. In
diesem Moment ist der Gleichgewichtszustand erreicht, von
welchem im letzten Satz des Abschnittes 1 die Rede ist.

Nimmt K, das heisst P noch weiter zu, so sind dann zwei
Fälle zu unterscheiden; entweder bleibt die Last P im Abstand
a von der ursprünglichen Stabaxe oder sie beginnt mit dem
oberen Ende des Stabes zu wandern. Im ersten Falle liegt
nur ein gewöhnliches Biegungsproblem, im zweiten hingegen
ein reines Stabilitätsproblem, das uns allein interessieren kann,
vor. Wenn yr, nach Formel (3) für Werte von K L > re/2 grösser

als a wird und mit dem oberen Ende der Säule wandert,
lässt sich der Vorgang am einfachsten stufenweise verfolgen.
Bei jeder Stufe wird für a der letzte für yr, erhaltene Wert
eingesetzt.

2/i a (1 — cos KL); y2 2/i (1 — cos K L)

2/2 a (1 — cos KL)*; yn

2/„ o (1 — cos KL)

i (1 - cos KL)

Da der Klammefausdruck für K Ly n/2 grösser als 1 ist,
nimmt yL mit n automatisch zu.

Damit die Säule unter der Last P stabil bleibt, darf also
die Durchbiegung, welche durch eine Exzentrizität der
Belastung a verursacht wird, den Wert a nicht erreichen. Mit
andernWorten muss das Verhältnis 2/l/« stets kleiner als 1 bleiben.

Auch bei einem vollständig geraden, in jeder Beziehung
fehlerfreien und homogenen Stab genügt also eine unendlich
kleine Exzentrizität der Kraft, um den Stab zum Knicken zu
bringen, sobald dasVerhältnis 2/t/c 1 erreicht wird. Diesem
Verhältnis entspricht die Bedingung cos K L 0, woraus der
Wert der Knicklast folgt zu

P Tt'EJ
4 £2

Damit wird die Euler'sche Knickformel in einer nun voll
befriedigenden Weise bestätigt. Es war dabei nicht notwen¬

dig, auf unendlich grosse Durchbiegungen oder fehlerhafte
Zentrierungen der Belastung abzustellen. Die sich bei dieser
Berechnung ergebende Definition der Knickstabilität steht in
vollständigem Einklang mit den Grundbegriffen der Statik;
die Stabilitätsbedingung hängt nicht von der Festigkeit des
Materials, sondern nur vom Elastizitätsmodul und selbstverständlich

vom Querschnitt der Säule ab. Sie wird belanglos,
wenn die Materialfestigkeit vor dem Erreichen der Knicklast
erschöpft ist.

4. VierteiHerechnung
Hier wird eirÄK"erfahren mit progressiven Annäherungen

angewendet, das auf elementaren Regeln der Statik beruht
und in Frage kommt, wenn eine mathematische Behandlung
durch Integration von Differentialgleichungen nicht möglich
ist. Unter^ffiit wird zunächst die einfache gerade Säule mit
konstantem Quersci^HBBie in den Berechnungen 1 bis 3,
und i^Binlehnung an die Berechnung 3.

Die Belastung P wirkt im Abstand
a von der Säulenaxe und erzeugt in der
undefoaBerten Säule das Bieguhgs-
mome^MMl P a. Unter diesem
deformiert die Säule und kommt in die
Lage I (Bild 5). Die entsprechende
Ordinate 2/1 im Punkte m mit der Ordinate

x wird mit Hilfe des Prinzips der
B^^mellen Arbeit durch Anbringung
einer horizontalen Kraft H 1 berechnet;

die virtuelle Arbeit dieser äusseren

Kraft ist gleich der Summe der
virtue^H Deformationsarbeit des
Trägers:

1

-SiHXi\

V////A
MMH
EJ dz; Mh=(x—z) Bild 5

2/1 iPa(x — z)
El dZ :

Pa x2

EJ "IT K2a
œ2

Der Wert 2/1 ist grösser als die effektive Durchbiegung:
infolge der Säulendeformation reduzier|||ich das in Rechnung
zu setzende Biegungsmoment und zwar in zweiter Annäherung
im Punkt x um das Entlastungsmoment

Mn — 2/1P ¦¦

x2-K'a — P

Die entsprechende Durchbiegung kann wie oben mit Hilfe
der virtuellen Kraft H 1 bestimmt werden.

2/1 2/II
K*az*P(x — z)

2~Wj dz

K*x*
a^4-

Die so erhaltene Biegelinie II bedingt ihrerseits wiederum
eine Aenderung des Biegungsmomentes, aber im anderen Sinne,
2/II — 2/III wird negativ. Die sukzessiven Korrekturen werden
also immer kleiner mit alternativ wechselnden Vorzeichen.

Es lässt sich zeigen, dass die (w — 1) te Korrektur die
Form

yn 2/n ^ aKin
(2n — 2)!

aufweist. Durch den Uebergang von yn auf yn 4.1 ergibt die
gleiche Methode

2/n — Va + 1 1 bK>»-- 222"-2P(a; — z)
(2» — 2)IEJ dz

+ a K2nxln
(2w)!

Der Wert ist identisch mit dem obenstehenden, wenn das
Vorzeichen geändert und n — 1 durch n ersetzt wird.
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Die Relation stimmt also für alle Werte von n und führt
beim Einsetzen von n 1 bis oo zur Reihe

2/ «¦
K2x2 K4x*

24 + a-
Kexa
720

Diese Reihe ist nichts anderes als a (1 — cos Kx), woraus

y a (1 — cos K x) und

2/L a (1 — cos iE £)
(3)

Diese Formel für die Durchbiegung jHSmit der in der dritten

Berechnung abgeEteten identisch. Es i^Bjiun möglich, die
Genauigkeit der sukzessiven Annäherungswerte anhand des
mathematischen Endresultateäzu bestimmen. Für das
Verhältnis y/a 1, das der Knickbelastung entspricht, ergeben
sich aus der Reihenentwicklung

y_
a

K2L2 K^L*
24

K8Z,°
720

die sukzessiven Werte von K und P.

1. Annäherung, n 1 ; K2

2. Annäherung, w 2 ; K2

L2 '

2,54

und zum Vergleich der genaue Wert

K2
4L2

2EJ
L2

2,54 E J

2,47 E J
L2

Die erste Annäherung gibt eine^Bi 19 Prozent zu geringe
Knicklastej"

Da der Sicherheitskoeffizient einer zu dimensionierenden
Säule dem Berechnungsverfahren angepasst werden kann, wird
in vielen Fällen diese erste Annäherung genügen. Die zweite
weist nur noch einen Fehler von 3 Prozent und die dritte einen
solchen von 0,25 Prozent auf.

Das Verfahren lässt sich für die Kontrolle der Knicksicherheit
von Säulen mit veränderlichen Querschnitten anwenden.

Es wird gleich wie soeben für die mathematische Berechnung
von 2/1 > 2/II — 2/1 abgeleitet, vorgegangen. Die einzelnen

Pa (x — z)Beträge EJ usw. müssen aber für einige Werte von

x zwischen 0 und L gerechnet, graphisch aufgetragen und das
Integral muss durch Planimetrieren ermittelt werden. Der
Sicherheitskoeffizient gegenüber der Knicklast ergibt sich
direkt aus dem Verhältnis a/i/j,, wobei von Anfang an für
den Wert a die Längeneinheit im gewählten Masstab gesetzt
werden kann.

II. Kreiszylinder
a) Voller Kreiszylinder

Das Knicken von kreisförmigen Hohlkörpern, die durch
einen gleichmässig verteilten, radialen Aussendruck belastet
werden, ist in vielen Beziehungen identisch mit demjenigen
des auf axialen Druck beanspruchten Stabes. In beiden
Fällen wird das Knicken durch eine Deformation, die man
sich so klein als möglich vorstellen muss, eingeleitet. Für
einen bestimmten Grenzwert der Belastung, die sog. Knicklast,
wird jene, wenn auch unendlich kleine Exzentrizität der Drucklinie

automatisch vergrössert und somit das System unstabil.
Der unterhalb der Knickgrenze gleichmässig belastete

Kreisring erleidet nur eine in allen Punkten gleich grosse
radiale Deformation, die ohne Einfluss auf die Beanspruchung
ist. Bei Erreichung der Knickgrenze erfolgt ein Ausweichen
nach innen und nach aussen in gleichem Masse, ohne dass in
diesem Augenblick die Länge des Zylindermantels eine Aende-
rung erfährt. In diesem Zustand dürften die Durchbiegungen
mit genügender Genauigkeit als nur von den Biegungsmomen-
ten abhängig (wie beim geraden Stab) betrachtet werden.
Maurice Levy gab die Lösung dieses Knickproblems 1884
bekannt. Die Relation zwischen der Durchbiegung y und dem
Biegungsmoment M ergibt sich aus der bekannten Formel:

d2y y
r2d'x2~ + r2

M
EJ

pry
~WJ~

y weist die allgemeine Form auf

(4) y y0 cos (n x c)

wo n eine ganze Zahl sein muss, damit y den gleichen Wert
für x 0 und für x 2n aufweisen kann; c ist eine
Konstante und wird null wenn y I y0 für x 0. Durch
Einsetzen des Wertes y in die Differentialgleichung (4) ergibt
sich die Bedingung

prs
EJ

n2 — l
Wenn diese erfi« ist, steht der Zylinder, der n Deformationswellen

der Amplitude + y0 aufweist, mit dem äussern
Druck p im Gleichgewicht. Wie beim axial belasteten geraden
Stab handelt es sich aber um einen Grenzzustand, und das

^Bphgewicht ist bereits für unendlich kleine Werte von y0
labil, sobald die Belastung p den Grenzwert erreicht:

TP T
(4 a) pk —— (n2 — 1)r3

Die schematische Form der elastischen Linie des Zylinders
unter dem Druck p Pk, also unmittelbar vor dem Knicken,
ist aus Bild 6 für n 2 und n 4 ersichtlich, wobei in Wirk-

BiPHkeit die Deformation unendlich klein ist.

n 2

Bild 6

Die Lösung mit n 1 kommt nicht in Frage. In diesem Falle
würde die elastische Linie kreisförmig bleiben und der ganze
Zylinder lediglich die seitliche Bewegung 2/0 erfahren, n muss
also mindestens gleich 2 sein, wofür sich die kleinste äussere
Belastung, die das Knicken verursachen kann, ergibt zu

(4b) pk
3EJ

Für den Zylinder ohne Aussteifungen mit Wandstärke e
ergibt sich :

Pk
E

Die Knicklast eines durch Aussendruck belasteten, nicht
ausgesteiften Rohres wächst demnach mit der dritten Potenz des
Verhältnisses der Wandstärke zum Radius.

Wenn in Analogie mit dem geraden Stab (Bild 1) die
halbe Knicklänge mit L bezeichnet wird, so ist

2 L n % r und n S Ttr
~2L

Durch Einsetzen von n in die Formel (4a) ergibt sich

EJ t n2r2 \
Pk r" \ 4L2 }

oder die Ringkraft, unter welcher das Knicken erfolgt
3tz 1

L~2 r2
(4c) Pkr EJ (i
Für einen Kreis mit unendlich grossem r, also einen geraden
Stab, ergibt sich wiederum

Pk
ii2EJ
iL2

Dies ist der Wert, der direkt für den geraden Stab abgeleitet
wurde.

b) Kreissegmente
Schlanke Bogen, deren Axe mit der Seillinie der Belastung

zusammenfällt, können Knickerscheinungen aufweisen.
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Die beiden Segmente eines gleichmässig belasteten Drei-
gelenkbogens verhalten sich gleich wie die entsprechenden
Teile eines vollen Kreiszylinders, solange ihre Axen im|
belasteten Zustand auf dem gleichen Kreis bleiben. Die Gelenke
spielen die Rolle der Wendepunkte bei der Knickdeformation
des Zylinders (siehe Bild 6), und die Knickbelastung kann
ohne weiteres mittels der Formel (4b) be^Mimt werden. In
dieser Formel bezieht sich der Wert 2*ffl auf die Länge eines
Bogensegmentes zwi^aen zwei Gelenken.

In allen belasteten, statigli unbestimmten Bogen treten
Biegungsmomente und Verformungen auf, die wesen^^^
unübersichtlichere Verhä^ffiisse als beim zentrisch belasteten
geraden Stab oder beim EMgichmässig belasteten Kreiszylinder
schaffen. Im Endeffekt sind aber die ^gickerscheinungen die
gleichen. Portsetzung folgt

Neuer Sulzer-Zweitakt-Schiffsmotor
DK 621.436:629.12

Die bestbewährten Zweitakt-Schiffsmotoren, die die
Firma Gebrüder Sulzer, AktiengesellslRft, Winterthur, seit
vielen Jahren in ihren eigenen Werken in Winter^Sr baut
und die auch bei zahlreSœn Lizenznehmern in grosser Zahl

ÖJ

m

t=^r h
Q — 22

l
-'-

und bis zu sehr hohen Leistungen hergestellt werden, weisen
kräftige gusseiserne Grundrahmen und Gestelle auf, die dem
Motor die nötige Stabilität verleihen. Bei einzelnen
Lizenznehmern, namentlich in England, bereitete die Beschaffung
dieser Gusstücke etwelche Schwierigkeiten, die bei einer
durch Schweissung zusammengefügten Blechkonstruktion
nicht bestehen. Diese Ausführungsart bietet sonst keine
wesentlichen Vorteile. Bei den grossen in Frage kommenden
DjgHungen beträgt die Gewichtsersparnis nur 15 bis 20 %,
und die Herstellungskosten können je nach der Leistungsfähigkeit

der Giesserei bei Gussausführung nicht unbeträchtlich
unter denen bei geschweisster Ausführung liegen. Bei

dieser Sachlage stellte sich den Konstrukteuren die Aufgabe,
einen Motor zu entwerfen, dessen Hauptteile sowohl in Stahlblech

als auch in Gusseisen ausgeführt werden können und
zwar unter BerücI^Shtigung der Leistungsfähigkeit der
Werkstätten der vei^Kiedenen hierfür in Frage kommenden
^^Btznehmer.

Der in den Winterthurer Werkstätten ausgeführte Prototyp,

der gegenvsMtig auf dem Prüfstand den erforderlichen
Probeläufen und Messungen unterzogen wird, ist von der
Firma A. Stephen & Sons, Glasgow, bestellt worden, die
gleichzeitig den Zwillingsmotor und die Schale des schnellen

Frachtschiffes baut, für das die
beiden Motoren bestimmt sind.
Auftraggeber des Schiffes ist die
New Zealand Shipping Co. Die
beiden Motoren arbeiten über
elektromagnetische Kupplungen
auf ein gemeinsames Reduktionsgetriebe

von 225/100 U/min, das
die Propellerwelle antreibt. Ihre

//'^^-4—~2ï Hauptdaten sind:
V^h Bohrung 580 mm

Hub 760 mm
Zylinderzahl 10

Dauerleistung 2X4500 PSe

Leistungsgewicht :

des Motors allein 40 kg/PSe
Motor, Getriebe,

Kupplungen 50 kg/PSe
Bei der Konstruktion waren

die bewährten Grundsätze
massgebend, die Sulzermotoren von
jeher kennzeichneten, nämlich
grosse Betriebssicherheit und
Dauerhaftigkeit. Sie führten zur
Beibehaltung des Kreuzkopfes.
Mitbestimmend war dabei die
Rücksicht auf die Verwendung
von billigem Schweröl als Treibstoff,

dessen Verbrennungsprodukte
sich möglichst nicht mit

dem Schmieröl für das Triebwerk
mischen dürfen. Zu diesem Zweck

Bild 1. Querschnitt, Masstab 1:30.
1 Grundrahmen (geschweisst)
2 Gestell (geschweisst)
3 gusseiserner Zylindermantel
4 gusseiserne Zylinder-Laufbüchse
5 Zylinderdeckel
6 Kreuzkopf
7 Kolbenstange
8 Kolben
9 Kolbenstangen-Stopfbüchse

10 Kreuzkopf-Gleitschuh
11 Kreuzkopf-Geradeführung
12 Zylinder der Spülluftpumpe
13 Arm zum Antrieb der Spülluftpumpe
14 Kolbenstange der Spülluftpumpe
15 Spülluft-Receiver
16 Spülschlitze in 4
17 Raum unter dem Kolben
18 Auspuffschlitze in 4
19 Auspuffleitung
20 Schwingschieber
21 Deckel zu 20
22 Deckel zu 15
23 Steuerwelle
24 Brennstoffpumpe
25 Brennstoffventil
26 Explosionsklappe
27 Zugstangen zur Verbindung von 3 mit 1
28 Gegenmuttern zu 27
29 Deckel zum Kurbelwellenlager
30 Spannschrauben zu 29
31 Kühlölzufuhr zu 8
32 Oeffnung zur Verbindung der Räume 17
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