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Nummer 32

Knickprobleme an geraden Stiben, Kreishogensegmenten und Zylindern

Von Oberingenieur H. JUILLARD, Bern

Diskussionen in der technischen Literatur iiber die Berech-
nungsweise von auf Druck beanspruchten Sdulen veranlassten
den Unterzeichneten vor etwa 25 Jahren, eine Studie iiber
Knickprobleme durchzufiihren, die spédter durch die Berech-
nung von auf Aussendruck beanspruchten Rohren erginzt
wurde. Obwohl die Knickformeln des geraden Stabes seit Euler
(1744) bekannt sind und sich in der Praxis fiir die Dimensio-
nierung von schlanken Stdben bew&dhrt haben, werden die
Grundlagen des Knickproblemes hin und wieder neu diskutiert.
Das Bediirfnis nach einer grundsidtzlichen Abkldrung, sowohl
hinsichtlich der mathematischen Erfassung des Knickvorgan-
ges als auch seiner praktischen Bedeutung, scheint ihm heute
noch vorhanden zu sein, was ihn zur Publikation dieser Studie
veranlasst.

Bin erster Teil befasst sich mit dem geraden, axial ge-
driickten Stab. Es wird gezeigt, wie trotz der Eindeutigkeit
und der scheinbaren Einfachheit der zu losenden Aufgabe ver-
schiedene Auffassungen iiber die grundsétzliche Problemstel-
lung vertreten werden. Die bisher fiir die elastische Linie des
knickenden Stabes abgeleiteten Formeln konnten nicht ohne
weiteres miteinander in Einklang gebracht werden, obwohl sie
schliesslich doch zu den Eulerschen Formeln fithren. Mit den
andern Theorien, die in der Literatur zu finden sind und zu
etwas anderen Schlussergebnissen fithren, wollen wir uns hier
nicht befassen.

Der gegebene Nachweis der Richtigkeit der Eulerschen
Formeln bringt dem Statiker nicht nur eine mathematische
Befriedigung; er gibt ihm auch die Moglichkeit, ein zuverléds-
siges Ndherungsverfahren fiir die praktische Losung der
Knickprobleme fiir verénderliche Querschnitte anzuwenden.
Ferner zeigt die Analyse der Stabilitdt des auf Druck bean-
spruchten geraden Stabes den Weg flir die Abkldrung der
wesentlich komplizierteren Probleme, welche die im zweiten
Teil dieser Publikation behandelten, auf Aussendruck bean-
spruchten Kreishogen und Rohre stellen.

I. Gerader Stab
1. Erste Berechnung (nach Euler)

Der Mathematiker Euler kam zu der bekannten Knick-
formel durch das Studium der Deformation elastischer Federn,
der sog. Elastica. Er leitete davon die Relation ab, die bestehen
muss, damit der urspriinglich gerade elastische Stab (Lénge
2 I und Tragheitsmoment J) gemdss Bild 1 durch die Druck-
kraft P gebogen werden kann.

2 EJ /\_P
el = o
412 : '
Love («Treatise of the e

theory of elasticity», 1906), der Bild 1

die Untersuchungen von Euler
wiedergibt, rechnet die Form der elastischen Linie einer axial
beanspruchten S#ule direkt wie folgt:

azy

EJ
ax?

M=P(yL— Y =

Durch Integration ergibt sich die Gleichung der elastischen
Linie (Bild 2):

1 1 sin [(L — @) K_]_)
(1) y:“( = SmLE

. P
worin K — VW

und J = Trigheitsmoment in der Biegungs-
bzw. Knickebene
Da die Sule unten eingespannt ist, muss

PR

dy Kcos [ (L — x) K]
dz  F sin LK
null werden fiir x — 0,

woraus folgt:

Bild 2

DK 624.075.2:624,19
T
cos LK — 0; LK‘7

nx
r]

und die Knicklast wie nach Euler:

(la) y—=y; [1 — cos

n?EJ

T 4L
Bei diesem Ergebnis mag auffallen, dass der Wert von YL
keine Rolle spielt und das Endresultat ohne ndhere Ueber-
legungen iiber Stabilitdt und Beanspruchungen erhalten wird.
Dies rithrt davon her, dass die untersuchte Siule sich in
einem labilen Grenzzustand befindet: die Last P und der
innere Widerstand der Sdule stehen theoretisch (wie bei den
Federn von Euler) fiir einen beliebhigen Wert von y; im
Gleichgewicht. Praktisch hat man es aber mit Tragkorpern
zu tun, die nicht so biegsam sind wie Federn und den Bie-
gungsspannungen, die bereits bei kleinen Werten von yy,
entstehen, nicht widerstehen konnten. Die Bedeutung des in
diesem Grenzfall bestehenden Zusammenhanges zwischen der
Exzentrizitdt der Belastung und der elastischen Linie geht aus
der untenstehenden dritten Berechnungsart ohne weiteres

hervor.

2. Zweite Berechnung

Die Knicklast wird auch (beispiels-
weise s.Zt. in den Vorlesungen an der
ETH) von der Annahme ausgehend be-
rechnet, dass die Last von Anfang an
eine Exzentrizitdt a« gegeniiber der Axe
des oberen S&ulenendes aufweist (Bild 3).
Dadurch wird die Sdule auf Biegung be-
ansprucht, und das Biegungsmoment be-
tréagt

M =P(a+ y, —Y)

Die elastische Linie ergibt sich wieder-
um aus
aty M

Qwr T BT

Bild 3

Durch Integration dieser Differentialgleichung und Be-
riicksichtigung der Bedingung, dass fiir x = 0 die Werte y
und dy/dx gleich 0 sein miissen, ergibt sich:

Y= (YL + a) (1 — cos Kx)
Y, — (YL + @) (1 — cos KL)

woraus durch Elimination von yj; die Gleichung der elasti-
schen Linie

1 —cosKx

2 = -
(2) & = cos KL

Die Durchbiegung y wéichst, wenn der Nenner cos K L
abnimmt, d. h. wenn K L zunimmt, und sie wird unendlich
gross flir K L —n/2. Die entsprechende Belastung wird als
Knicklast bezeichnet und betrdgt wiederum wie nach Euler

n2EJ
=

Es ist ersichtlich, dass der Ausdruck fiir die elastische
Linie y nach der Formel (2) wesentlich anders ausfillt als
nach der Formel (1) bzw. (1la). Identitdt wire nur fir yp—
a cos K L vorhanden; cos K L ist aber null.

Unbefriedigend bei dieser Ableitung der Knicklast ist be-
sonders die Rolle des Koeffizienten @. Man weiss deshalb nicht,
ob er in Zusammenhang mit einer praktisch unvermeidlichen
Exzentrizitdt der Lage des Angriffspunktes der Kraft oder mit
einem Form-, bzw. Materialfehler der Siule gebracht werden
muss und ob eine ideale Sdule, fiir welche @ = 0 wére, nie
knicken wiirde. Ferner bleibt unabgeklédrt, ob das Knicken
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erst erfolgt, wenn P den obenstehenden
Grenzwert erreicht, das heisst, wenn die
Durchbiegung auf der ganzen Sdulenhdhe
unendlich gross ist, oder ob bereits kleinere
Werte von P die Stabilitdt gefdhrden.

3. Dritte Berechnung

Mit dieser soll nun in sehr einfacher
Weise eine befriedigende Begriindung
der Eulerschen Formel dargelegt werden.
Wie aus Bild 4 hervorgeht, wird gleich
wie im obenstehend behandelten Fall
von einer Exzentrizitdt a der Belastung
P gegeniiber der geraden Stabaxe aus-
gegangen. Zundchst bewegt sich P aber
nicht mit dem beweglichen oberen Ende
der S#ule. Das Biegungsmoment infolge
der Exzentrizitdt ¢ im Punkte mit der Ordinate x des Stabes
betriagt

Bild 4

M =P ((a—y)

Durch Beniitzung der gleichen Relationen und Bedingun-
gen wie in der zweiten Berechnung ergibt sich sukzessiv

2 s
K:]/P : @y _ P(a—y)
EJ ' daxt B
d
fiir x —0; y—0 und %:o

Yy—=—a(l—cos Kx)

Die Durchbiegung des obersten Sdulenpunktes infolge der
Kraft P und der Exzentrizitdt a ergibt sich zu

(3) Y, — a (1l —cos KL)

Setzen wir nun voraus, dass die Last P und mit ihr das
Produkt KL von 0 aus zunimmt: die Durchbiegung v ist 0
fiir P =0 und erreicht den Wert a fiir cos KL = 0. Fiir den
entsprechenden Wert K— 7n/2 L hat sich also der obere Punkt
der S&ule gegeniiber der urspriinglichen Lage im unbelasteten
Zustand seitlich um den Betrag y; — a verschoben. In die-
sem Moment ist der Gleichgewichtszustand erreicht, von wel-
chem im letzten Satz des Abschnittes 1 die Rede ist.

Nimmt K, das heisst P noch weiter zu, so sind dann zwei
Félle zu unterscheiden; entweder bleibt die Last P im Abstand
a von der urspriinglichen Stabaxe oder sie beginnt mit dem
oberen Ende des Stabes zu wandern. Im ersten Falle liegt
nur ein gewdhnliches Biegungsproblem, im zweiten hingegen
ein reines Stabilitdtsproblem, das uns allein interessieren kann,
vor. Wenn y; nach Formel (3) fiir Werte von K L > /2 gros-
ser als @ wird und mit dem oberen Ende der Siule wandert,
ldsst sich der Vorgang am einfachsten stufenweise verfolgen.
Bei jeder Stufe wird fiir @ der letzte fiir v, erhaltene Wert
eingesetzt.

Y1 =a (1—cos KL); Yo=Yy (1—cos KL)

Yo =a (1—cos KL)2; Yy, = Y, —1(1 — cos KL)

Yp —= a (1 — cos KL')l

Da der Klammerausdruck fiir K L> n/2grosser als 1 ist,
nimmt y; mit n automatisch zu.

Damit die S&ule unter der Last P stabil bleibt, darf also
die Durchbiegung, welche durch eine Exzentrizitit der Be-
lastung @ verursacht wird, den Wert @ nicht erreichen. Mit
andern Worten muss das Verhéltnis y;/a stets kleiner als 1 blei-
ben. Auch bei einem vollstéindig geraden, in jeder Beziehung
fehlerfreien und homogenen Stab geniigt also eine unendlich
kleine Exzentrizitdt der Kraft, um den Stab zum Knicken zu
bringen, sobald dasVerhéltnis yy/a = 1 erreicht wird. Diesem
Verhdltnis entspricht die Bedingung cos K L — 0, woraus der
Wert der Knicklast folgt zu

w2 HJ

P
Damit wird die Euler’sche Knickformel in einer nun voll
befriedigenden Weise bestdtigt. HEs war dabei nicht notwen-

dig, auf unendlich grosse Durchbiegungen oder fehlerhafte
Zentrierungen der Belastung abzustellen. Die sich bei dieser
Berechnung ergebende Definition der Knickstabilitéit steht in
vollstdndigem Einklang mit den Grundbegriffen der Statik;
die Stabilitdtsbedingung héngt nicht von der Festigkeit des
Materials, sondern nur vom Elastizitdtsmodul und selbstver-
stédndlich vom Querschnitt der Sdule ab. Sie wird belanglos,
wenn die Materialfestigkeit vor dem Erreichen der Knicklast
erschopft ist.

4, Vierte Berechnung

Hier wird ein Verfahren mit progressiven Annéherungen
angewendet, das auf elementaren Regeln der Statik beruht
und in Frage kommt, wenn eine mathematische Behandlung
durch Integration von Differentialgleichungen nicht méglich
ist. Untersucht wird zunéchst die einfache gerade Siule mit
konstantem Querschnitt, wie in den Berechnungen 1 his 3,
und in Anlehnung an die Berechnung 3.

Die Belastung P wirkt im Abstand

a von der Siulenaxe und erzeugt in der el =l
undeformierten S#ule das Biegungs- I P
moment M; — P a. Unter diesem de- |

formiert die Siule und kommt in die ' | k

Lage I (Bild 5). Die entsprechende | !
Ordinate y; im Punkte m mit der Ordi- }
nate # wird mit Hilfe des Prinzips der | I
virtuellen Arbeit durch Anbringung ! Tﬁ:/m‘%'
einer horizontalen Kraft H — 1 berech- [} I
net; die virtuelle Arbeit dieser dusse-
ren Kraft ist gleich der Summe der
virtuellen Deformationsarbeit des Tri-
gers:

x

MMy :
= fl = 8 — — Bild 5
y—f T dz; Mg— (x—=2)
0
xPa(x—-z) Pa a2 x?
— — — IR ——
1 f BT Y= EJ 2 “2
0

Der Wert y; ist grosser als die effektive Durchbiegung:
infolge der S&dulendeformation reduziert sich das in Rechnung
zu setzende Biegungsmoment und zwar in zweiter Anndherung
im Punkt x um das Entlastungsmoment

wﬂ
My—=—y1P—=— KzaTP
Die entsprechende Durchbhiegung kann wie oben mit Hilfe
der virtuellen Kraft H =1 bestimmt werden.

xK?azﬂP(x — 2)

di i = TE T

0

K4t
5

Die so erhaltene Biegelinie II bedingt ihrerseits wiederum
eine Aenderung des Biegungsmomentes, aber im anderen Sinne,
Y1 — ymr wird negativ. Die sukzessiven Korrekturen werden
also immer kleiner mit alternativ wechselnden Vorzeichen.

Es ldsst sich zeigen, dass die (n—1) te Korrektur die
Form

aK2n—2x2n —2

yn—l——/lu:i (2”-——2)'

aufweist. Durch den Uebergang von y, auf vy, ergibt die
gleiche Methode

‘wKin—223m —1P (z _ 2)

d
@n _2)EJ &

yn—yn—'}—l:if
0

a K2nx2n

= (2n)!

Der Wert ist identisch mit dem obenstehenden, wenn das Vor-
zeichen gedndert und n — 1 durch n ersetzt wird.
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Die Relation stimmt also fiir alle Werte von » und fiihrt
beim Einsetzen von n =1 bis co zur Reihe
K22

. g Eiwt | Eoa
= 2 %3 t%

Diese Reihe ist nichts anderes als @ (1 — cos K x), woraus

Yy =—=a (1—cosKx) und

(3)
Y, =& (1—cos K L)

Diese Formel fiir die Durchbiegung ist mit der in der drit-
ten Berechnung abgeleiteten identisch. Es ist nun méglich, die
Genauigkeit der sukzessiven Anndherungswerte anhand des
mathematischen Endresultates zu bestimmen. Fiir das Ver-
héltnis y/a =1, das der Knickbelastung entspricht, ergeben
sich aus der Reihenentwicklung

g s K212 K4L4 K6Lso
@ 2 24 720
die sukzessiven Werte von K und P.
2 2EJ
1. Anndherung, n —1; K2 -— To ; P— 73
2,54 254EJ
2: a n—2; 3 = . — =
Anndherung, » 2 K T P 72
und zum Vergleich der genaue Wert
72 247TEJ
2 . —
B® = 412’ P= L2

Die erste Anndherung gibt eine um 19 Prozent zu geringe
Knicklast.

Da der Sicherheitskoeffizient einer zu dimensionierenden
Sdule dem Berechnungsverfahren angepasst werden kann, wird
in vielen Féllen diese erste Anniherung geniigen. Die zweite
weist nur noch einen Fehler von 3 Prozent und die dritte einen
solchen von 0,25 Prozent auf.

Das Verfahren ldsst sich fiir die Kontrolle der Knicksicher-
heit von Siulen mit verdnderlichen Querschnitten anwenden.
Es wird gleich wie soeben fiir die mathematische Berechnung

von Yr, Ym—Yr -« - . . abgeleitet, vorgegangen. Die einzelnen
Pa (x —
Betrige *(E—Jﬂ usw. miissen aber fiir einige Werte von

x zwischen 0 und L gerechnet, graphisch aufgetragen und das
Integral muss durch Planimetrieren ermittelt werden. Der
Sicherheitskoeffizient gegeniiber der Knicklast ergibt sich
direkt aus dem Verhéltnis a/y;,, wobei von Anfang an fiir
den Wert a die Léngeneinheit im gewihlten Masstab gesetzt
werden kann.

II. Kreiszylinder
a) Voller Kreiszylinder

Das Knicken von kreisférmigen Hohlkorpern, die durch
einen gleichméssig verteilten, radialen Aussendruck belastet
werden, ist in vielen Beziehungen identisch mit demjenigen
des auf axialen Druck beanspruchten Stabes. In beiden
Féllen wird das Knicken durch eine Deformation, die man
sich so klein als moglich vorstellen muss, eingeleitet. Fiir
einen bestimmten Grenzwert der Belastung, die sog. Knicklast,
wird jene, wenn auch unendlich kleine Exzentrizitét der Druck-
linie automatisch vergrossert und somit das System unstabil.

Der unterhalb der Knickgrenze gleichmissig belastete
Kreisring erleidet nur eine in allen Punkten gleich grosse
radiale Deformation, die ohne Einfluss auf die Beanspruchung
ist. Bei Erreichung der Knickgrenze erfolgt ein Ausweichen
nach innen und nach aussen in gleichem Masse, ohne dass in
diesem Augenblick die Lénge des Zylindermantels eine Aende-
rung erfdhrt. In diesem Zustand diirften die Durchbiegungen
mit geniigender Genauigkeit als nur von den Biegungsmomen-
ten abhingig (wie beim geraden Stab) betrachtet werden.
Maurice Lévy gab die Losung dieses Knickproblems 1884
bekannt. Die Relation zwischen der Durchbiegung ¥ und dem
Biegungsmoment M ergibt sich aus der bekannten Formel:

a2y Y Mo
r2de? " r2

S
= EJ EJ

y weist die allgemeine Form auf

(4) Y —=1y,co8(nx 4 c)

WO % eine ganze Zahl sein muss, damit y den gleichen Wert
flir =0 und flir # = 2z aufweisen kann; ¢ ist eine Kon-
stante und wird null wenn y =y, fiir # — 0. Durch Ein-
setzen des Wertes vy in die Differentialgleichung (4) ergibt
sich die Bedingung

prd 5

B oW
Wenn diese erfiillt ist, steht der Zylinder, der n Deformations-
wellen der Amplitude -+ yo aufweist, mit dem Hussern
Druck p im Gleichgewicht. Wie beim axial belasteten geraden
Stab handelt es sich aber um einen Grenzzustand, und das
Gleichgewicht ist bereits fiir unendlich kleine Werte von Yo
labil, sobald die Belastung p den Grenzwert erreicht:

BEJ
(ta) pr=—3(n2—1)

Die schematische Form der elastischen Linie des Zylinders
unter dem Druck p — py, also unmittelbar vor dem Knicken,
ist aus Bild 6 fiir n = 2 und n — 4 ersichtlich, wobei in Wirk-
lichkeit die Deformation unendlich klein ist.

Bild 6

Die Losung mit n = 1 kommt nicht in Frage. In diesem Falle
wiirde die elastische Linie kreisférmig bleiben und der ganze
Zylinder lediglich die seitliche Bewegung vy, erfahren. n muss
also mindestens gleich 2 sein, wofiir sich die kleinste #“ussere
Belastung, die das Knicken verursachen kann, ergibt zu

3EJ

(4b)  p ="

Fir den Zylinder ohne Aussteifungen mit Wandstirke e er-
gibt sich:

E [(e\?
7 S I
Die Knicklast eines durch Aussendruck belasteten, nicht aus-
gesteiften Rohres wéchst demnach mit der dritten Potenz des
Verhéltnisses der Wandstdrke zum Radius.
Wenn in Analogie mit dem geraden Stab (Bild 1) die
halbe Knickldnge mit L bezeichnet wird, so ist

Tr

2Ln — und n —
TCT n 5L

Durch Einsetzen von n in die Formel (4a) ergibt sich

HJi i mtrd |
e (4L2 = )

oder die Ringkraft, unter welcher das Knicken erfolgt
72 1
(4c) Plc:ka: EJ(—4L3 _—77)
Flir einen Kreis mit unendlich grossem 7, also einen geraden
Stab, ergibt sich wiederum
w2 EJ
k=212

Dies ist der Wert, der direkt fiir den geraden Stab abgeleitet
wurde.

b) Kreissegmente
Schlanke Bogen, deren Axe mit der Seillinie der Belastung
zusammenfillt, konnen Knickerscheinungen aufweisen.
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Die beiden Segmente eines gleichmissig belasteten Drei-
gelenkbogens verhalten sich gleich wie die entsprechenden
Teile eines vollen Kreiszylinders, solange ihre Axen im
belasteten Zustand auf dem gleichen Kreis bleiben. Die Gelenke
spielen die Rolle der Wendepunkte bei der Knickdeformation
des Zylinders (siehe Bild 6), und die Knickbelastung kann
ohne weiteres mittels der Formel (4b) bestimmt werden. In
dieser Formel bezieht sich der Wert 2L auf die Linge eines
Bogensegmentes zwischen zwei Gelenken.

In allen belasteten, statisch unbestimmten Bogen treten
Biegungsmomente und Verformungen auf, die wesentlich
uniibersichtlichere Verhiltnisse als beim zentrisch belasteten
geraden Stab oder beim gleichméssig belasteten Kreiszylinder
schaffen. Im Endeffekt sind aber die Knickerscheinungen die
gleichen, Fortsetzung folgt

Neuer Sulzer-Zweitakt-Schiffsmotor
DK 621.436:629.12
Die bestbewdhrten Zweitakt-Schiffsmotoren, die die
Firma Gebriider Sulzer, Aktiengesellschaft, Winterthur, seit
vielen Jahren in ihren eigenen Werken in Winterthur baut
und die auch bei zahlreichen Lizenznehmern in grosser Zahl

und bis zu sehr hohen Leistungen hergestellt werden, weisen
krédftige gusseiserne Grundrahmen und Gestelle auf, die dem
Motor die nétige Stabilitdt verleihen. Bei einzelnen Lizenz-
nehmern, namentlich in England, bereitete die Beschaffung
dieser Gusstiicke etwelche Schwierigkeiten, die bei einer
durch Schweissung zusammengefiigten Blechkonstruktion
nicht bestehen. Diese Ausfithrungsart bietet sonst keine we-
sentlichen Vorteile. Bei den grossen in Frage kommenden
Leistungen betrdgt die Gewichtsersparnis nur 15 bis 20 %,
und die Herstellungskosten konnen je nach der Leistungs-
féhigkeit der Giesserei bei Gussausfithrung nicht unbetricht-
lich unter denen bei geschweisster Ausfiihrung liegen. Bei
dieser Sachlage stellte sich den Konstrukteuren die Aufgabe,
einen Motor zu entwerfen, dessen Hauptteile sowohl in Stahl-
blech als auch in Gusseisen ausgefiihrt werden konnen und
zwar unter Berlicksichtigung der Leistungsfihigkeit der
Werkstétten der verschiedenen hierfiir in Frage kommenden
Lizenznehmer.

Der in den Winterthurer Werkstétten ausgefiihrte Proto-
typ, der gegenwirtig auf dem Priifstand den erforderlichen
Probeldufen und Messungen unterzogen wird, ist von der
Firma A. Stephen & Sons, Glasgow, bestellt worden, die
gleichzeitig den Zwillingsmotor und die Schale des schnellen

Frachtschiffes baut, fiir das die

beiden Motoren bestimmt sind.

Auftraggeber des Schiffes ist die
® New Zealand Shipping Co. Die
beiden Motoren arbeiten iiber
elektromagnetische = Kupplungen
auf ein gemeinsames Reduktions-
getriebe von 225/100 U/min, das

=0

die Propellerwelle antreibt. Ihre
Hauptdaten sind:
Bohrung 580 mm
Hub 760 mm
P Zylinderzahl 10
Dauerleistung 24500 PSe
Leistungsgewicht:
des Motors allein 40 kg/PSe
Motor, Getriebe,
Kupplungen 50 kg/PSe

Bei der Konstruktion waren
die bew#hrten Grundsidtze mass-
gebend, die Sulzermotoren von
jeher kennzeichneten, ndmlich
grosse  Betriebssicherheit und
Dauerhaftigkeit. Sie fiihrten zur
Beibehaltung des Kreuzkopfes.
Mitbestimmend war dabei die
Riicksicht auf die Verwendung
von billigem Schwerdl als Treib-
stoff, dessen Verbrennungspro-
dukte sich moglichst nicht mit
dem Schmierdl fiir das Triebwerk
mischen diirfen. Zu diesem Zweck

Bild 1. Querschnitt, Masstab 1:30.

Grundrahmen (geschweisst)
Gestell (geschweisst)
gusseiserner Zylindermantel
gusseiserne Zylinder-Laufbiichse
Zylinderdeckel

Kreuzkopf

Kolbenstange

Kolben
Kolbenstangen-Stopfbiichse
Kreuzkopf-Gleitschuh
Kreuzkopf-Geradefiihrung
Zylinder der Spiilluftpumpe
Arm zum Antrieb der Spulluftpumpe
Kolbenstange der Splilluftpumpe
Spiilluft-Receiver

Spiilschlitze in 4

Raum unter dem Kolben
Auspuffschlitze in 4
Auspuffleitung

Schwingschieber

Deckel zu 20

Deckel zu 15

Steuerwelle

24 Brennstoffpumpe

25 Brennstoffventil

26 Explosionsklappe

27 Zugstangen zur Verbindung von 3 mit 1
28 Cegenmuttern zu 27

29 Deckel zum Kurbelwellenlager
30 Spannschrauben zu 29
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31 Kiihlélzufuhr zu 8
32 Oeffnung zur Verbindung der Réume 17
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