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Der zusammengesetzte Druckstab aus Holz
Ein Beitrag zu seiner Berechnung DK 624.075.22.011.1

Von GIOVANNI LOMBARDI, Dipl. Bau-Ing., Zürich

1. Einleitung
Der zusammengesetzte Holzdruckstab — ein in der

Holzbaupraxis überaus wichtiger Tragkörper — ist bis vor kurzem

wenig untersucht worden. Prof. Dr. F. Stüssi hat den
Fall eines rahmenförmigen Holzstabes mit nachgiebigen
Verbindungen behandelt1). Hingegen scheint es, dass der Fall
einer kontinuierlichen Verbindung der verschiedenen Holzteile

bis heute noch nicht der mathematischen Analyse
unterworfen wurde. Es ist der Zweck der folgenden Arbeit, dieses
Problem zu untersuchen und Formeln aufzustellen, die zur
Bemessung solcher Druckstäbe bzw. ihrer Verbindungsmittel
dienen sollen.

2. Der zusammengesetzte Holzdruckstab
mit kontinuierlichen Verbindungen

Man verstehe darunter einen aus einer beliebigen
Anzahl von parallellaufenden, miteinander verbundenen
prismatischen Holzteilen zusammengesetzten Druckstab. Dabei
seien die Verbindungsmittel zwischen den einzelnen Teilen
nicht wie beim rahmenförmigen Stab in einzelnen Punkten
konzentriert, sondern auf die ganze Länge des Stabes
gleichmässig verteilt angenommen. Da die vorliegende
Untersuchung keine weitere Voraussetzung über die konstruktive
Ausbildung der Verbindungen macht, sind die Ergebnisse auf
jede Verbindungsart anwendbar (z. B. auf Leimung, Nage-
lung oder auf genügend verteilte Bolzen- bzw. Dübelverbindungen).

Als Grundlage der statischen Berechnung dienen folgende
Voraussetzungen :

a) der Druckstab ist gerade und aus geraden Holzteilen ge¬

bildet ;

b) alle Teile haben über die ganze Länge einen konstanten
Querschnitt ;

c) gleich steife Verbindungsmittel seien gleichmässig längs
der Fugen verteilt. Jedoch können sie unter Vorbehalt der
Voraussetzung d) von Fuge zu Fuge verschieden sein;

d) der zusammengesetzte Stab ist im Querschnitt symmetrisch

bezüglich der für Knicken massgebenden Haupt-
axe (2/);

e) das Holz und die Verbindungsmittel sind elastisch;
f) der Stab ist auf zentrisches Knicken beansprucht.

Die im folgenden dargelegte Methode ist auf Druckstäbe
mit beliebig vielen Einzelteilen anwendbar; sie wird jedoch
hier, der Einfachheit der Darstellung wegen, nur für den

dreiteiligen Stab entwickelt. Bei mehr als drei Teilen
gestaltet sich die Berechnung etwas komplizierter, ist aber
ohne zusätzliche Schwierigkeiten durchführbar. Deshalb
begnügt man sich hier, allein die Endergebnisse für den zwei-,
vier- und fünfteiligen Stab wiederzugeben.

3. Qualitative Betrachtung des Knickens des
dreiteiligen Druckstabes

Bild 1 zeigt den der Untersuchung zu Grunde gelegten
dreiteiligen Stab. Es werde zuerst beidseitig gelenkige Lagerung

vorausgesetzt. Im Bilde 2 ist der selbe Stab in ausge-
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knickter Lage gezeigt. Beachtenswert ist die relative Stellung

der Einzelteile und die Verschiebung, die zwischen ihnen
entsteht. Je nach der Steifigkeit der Verbindungen können
verschiedene Fälle unterschieden werden.

Erster Grenzfall. Die drei Teile sind starr miteinander
verbunden, so dass keine Verschiebungen zwischen ihnen
möglich sind. Der Druckstab verhält sich wie ein homogener
Einzelstab. Für die Stellung des Endquerschnittes gilt dann
die Linie 1 in Bild 2.

Zweiter Grenzfall. Die Verbindungen existieren nicht;
die drei Stäbe sind unabhängig, und die Endquerschnitte stellen

sich nach der Linie 3 ein. Die Schwerpunkte der drei
Endquerschnitte bleiben auf einer waagrechten Linie.

Allgemeiner Fall. Die Verhältnisse werden im
allgemeinen zwischen den beiden obigen Grenzfällen liegen. Für
die Endquerschnitte gilt die Linie 2. Zwischen den Einzelteilen
entstehen Schubkräfte, welche die Tendenz haben, den
äussersten Balken zu verlängern und den inneren zu verkürzen,
während der mittlere in der Länge durch das Ausknicken
(nicht die Lastanbringung) unverändert bleibt.

Mit v (x) bezeichne man die Aenderung des Abstandes
des Punktes x eines Stabes vom Mittelpunkt der Knicklänge
aus. Dabei ist natürlich v (x 0) =0. Die Verschiebungen
zwischen den Balken seien mit s (x) bezeichnet. Die Kräfte
F(aj) in den Verbindungsmitteln sind dann proportional diesen

Verschiebungen. Zu diesen Schubkräften können noch
senkrecht zur Stabaxe Zug- oder Druckkräfte p (x)
hinzutreten, die zur Aufgabe haben, die gleiche Durchbiegung w(x)
der drei Teile zu gewährleisten. Die Kräfte F (x) verursachen
die Längenänderung der äusseren Stäbe.

4. Aufstellung der Differentialgleichungen des
Knickens für den zusammengesetzten dreiteiligen

Druckstab
Der im Bilde 1 dargestellte Stab sei mit der noch

unbekannten Knicklast P/c belastet und vorläufig durch seitliche
Stützungen am Ausknicken verhindert. Diese Knicklast
verteilt sich auf die drei Teile. Im allgemeinen jedoch wird die
Verteilung nicht den verschiedenen Holzquerschnitten
proportional sein, so dass die Stäbe sich nicht in gleichem Masse
verkürzen und zwischen ihnen Schubkräfte F0 (x) und
Querbelastungen p0 (x) entstehen. In den verschiedenen Holzbalken
sind die Biegemomente aus F0 und p0 gleich null, denn die
Axe bleibt gerade. Man entferne nun die äussere Stützung,
und der Stab knicke aus. Die entstehenden Verformungen
und Kräfte seien an Hand des Bildes 3 untersucht.
1. Geometrische Bedingung

Aus Bild 3 geht unmittelbar folgende Beziehung
zwischen der Verschiebung s(x), der Stabverlängerung v (x) und
der Neigung der Stabaxe w (x) hervor:
(1) s -4- v + aw' 0

wobei s s (x), v v (x), w w (x) und ' d/dx.
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2. Steifigkeit der Verbindungen
Die auf die ganze Stablänge als konstant vorausgesetzte

Verbindungssteifigkeit sei mit c bezeichnet. Die in den Fugen
auftretenden Schubkräfte F (x) lassen sich schreiben:
(2) dF csdx
mit F F (x)
3. Längenänderung der Stäbe

Die Elementarkräfte d F erzeugen in den äusseren
Holzteilen eine Längskraft:

t/2 L/2
(3) F f dF cf sdx

X X

mit F 0 für x Lj2
Diese Längskraft verursacht die Längenänderung v (x)

der Stäbe.

(4) v
: 0

C Fax

E Elastizitätsmodul des Holzes in der Faserrichtung.
if. Differentialgleichung für die Stablängenänderung

Aus diesen ersten Beziehungen lässt sich die erste
Differentialgleichung des Problems ableiten. Durch Differenzieren
von (4) erhält man:

(5) * ~ssr
welches in (3) eingesetzt nach einer zweiten Differentiation in

(6) v-
ES,

übergeht. Wird nun s aus (6) und (2) eliminiert, so entsteht
die gesuchte Differentialgleichung:

BS.
—v" -\- v -\- aw 0(7)

V(X 0) 0 undDie Lösung v (x) hat die Bedingungen:
v'(.x Li2) 0 zu erfüllen.

5. Aufstellung der Knickgleichung
Durch Gleichsetzen der äusseren und der inneren Momente

für jeden Stab werden die drei Knickgleichungen gebildet:
(8) Stab 1: M1 <x) Ptw — Fbj2 + Mm — EJtw"

E J.w"
EJ„WStab 3 : M3 (x) P3 w — Fbj2 -f M03 -.

Dabei stellen die Moi die Biegemomente dar, die von den
Kräften p (x) verursacht werden. Da aber diese Kräfte p (œ)
im Gleichgewicht unter sich sind, so gilt:
(9) M01 (x) + M03 (x) + M03 (x) 0

Ferner gilt:
(10) Pk P1 + P,+ P3

Die unbekannten Grössen Moi und P; lassen sich durch
Addition der Gleichungen (8), sowie durch Berücksichtigung
von (9) und (10) eliminieren. Es entsteht die gesuchte
verallgemeinerte Knickgleichung.
(11)' E(J, + J2 + Jz) w" + Pkw — (b + d)F 0

Wird Js J, + J2 4- J3 als Abkürzung eingeführt, und
F mit (5) eliminiert, so erhält man schliesslich mit b -\- d 2 a

(11) EJsw" + Pkw — 2aESiv' 0

Diese ist die zweite Differentialgleichung des Problems.
Die Lösung w (x) muss die Bedingungen w(x= Lj2) 0,
w'(x 0) =0 erfüllen.

5. Auflösung der Differentialgleichungen
Die zwei Differentialgleichungen (7) und (11) sind simultan

zu befriedigen.
F Sf

(7) — u" 4- v 4- aw 0

(11) EJsw" + Pkw — 2aES1v' 0

a) Zu den Gleichungen (8) ist noch zu sagen, dass man berechtigt
ist, die Kräfte F am unverformten Stab angreifen zu lassen, d. h. mit
den Hebelarmen b/2 bzw. d 2 wirkend anzunehmen, denn die
Knickbedingung kann aufgestellt werden mit einer von der Geraden beliebig
wenig abweichenden Axe. Es ist aber leicht zu zeigen, dass sich auch
bei grosser Ausbiegung die vorgeschlagene Berechnungsmethode streng
anwenden lässt. Der Beweis wird indessen hier nicht angeführt.

und

Mit den Bedingungen:
x 0 : v 0, w' 0

x — L/2 : v 0 w 0

Es ist ohne weiteres möglich, durch Elimination von v
oder w eine einzige Differentialgleichung höherer Ordnung
für nur eine Funktion zu erhalten. Es liegt jedoch näher,
einen geeigneten Lösungsansatz zu machen:

7CX
(12)

und
naw (x) w„ cos ——

Dadurch sind alle Bedingungen erfüllt. Man hat also nur
den Eigenwert Pk des Differential-Gleichungssystems, damit
Knicken eintritt, zu bestimmen. Gleichung (12) in (7) und
(11) eingesetzt, liefert nach einigen Umformungen:

(13) Pk
En2

mit K

Iß
ES^n*

cL*

y*+ 1 + K.

Diese Gleichung kann in eine gewöhnlichere Form überführt
werden, wenn man ein ideelles Trägheitsmoment Ja einführt.
Es ist dann:

Pk n*EJiA
l?

mit
(14) Jid SJ; 2a2S,

6. Diskussion der Ergebnisse
Formel (14) stellt das Ergebnis der vorliegenden

Untersuchung im Falle eines dreiteiligen Druckstabes dar. Sie
erlaubt, aus der Steifigkeit c der Verbindungsmittel und aus
den Abmessungen des Stabes das entsprechende ideelle
Trägheitsmoment zu rechnen und daraus wie üblich die ideelle
Schlankheit, und aus der zulässigen Spannung die Tragkraft
des zusammengesetzten Druckstabes zu ermitteln.

Anderseits kann diese Formel dazu dienen, die Steifigkeit
der Verbindungen zu errechnen, die nötig sind, um ein

bestimmtes Trägheitsmoment zu erreichen.
Interessant ist, dass das ideelle Trägheitsmoment nicht

nur von den Querschnittseigenschaften (E, J, S, a, c),
sondern auch von der Knicklänge abhängt.

Die früher erwähnten Grenzfälle für die Verbindungssteifigkeit

finden sich hier wieder:
1. Grenzfall. Die drei Teile sind fest miteinander

verbunden, die Steifigkeit c ist also unendlich ; d. h. K 0, und
man erhält:

J^^SJl + 2a*S1 J0

in Uebereinstimmung mit der Formel von Steiner.
2. Grenzfall. Die drei Teile sind unabhängig voneinander ;

man hat also c 0 und K unendlich. Wie zu erwarten war,
folgt:

Jid ZJi
3

Allgemeiner Fall. Im allgemeinen ist c eine positive
Grösse, so dass Ja zwischen den obigen Grenzwerten schwankt.
Man kann dabei K als Kennzahl der Verbindungsmittel
auffassen und 1/(1 + K) als Wirkungsgrad des Beitrages der
äusseren Stäbe zum Gesamtträgheitsmoment bezeichnen.

Im Bild 4 ist der Verlauf des ideellen Trägheitsmoments
in Funktion von K dargestellt.

Formel (14) ist im Falle einer beidseitigen gelenkigen
Lagerung des Stabes abgeleitet worden; es ist aber leicht
einzusehen, dass sie für jede beliebige Lagerung gilt, sobald
man darin L durch Lk (Lk freie Knicklänge) ersetzt. Diese
freie Knicklänge ist die selbe wie für einen Einzelstab.

Die gemachte Voraussetzung e) über das elastische
Verhalten des Holzes und der Verbindungen bedingt, dass die
Formel (14) streng genommen nur für grössere Schlankheiten

als die Grenzschlankheit gilt. Jedoch kann sie dadurch
verallgemeinert werden, dass statt des Elastizitätsmoduls der
Karmansche Knickmodul eingeführt wird. Es besteht dabei
die Schwierigkeit, dass der Modul Tk sowohl von den
Querschnittseigenschaften als auch von den Verbindungen abhängt.
Man geht also im Falle gedrungener Stäbe am besten so
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vor: Im Ausdruck für K wird E belassen. Dadurch wird K
zu gross, das ideelle Trägheitsmoment ein wenig zu klein.
Man befindet sich also auf der sicheren Seite. Der Knickmodul

wird dann nur in der Berechnung der Knicklast eingeführt.

Oder besser rechnet man einfach aus dem Jid die ideelle
Schlankheit und die entsprechende zulässige Knickspannung.

7. Der fünfteilige Druckstab
Die Berechnung geht, wenn auch etwas umständlicher,

analog wie für den dreiteiligen Stab vor sich. Mit den
Bezeichnungen von Bild 5 erhält man für das ideelle Trägheitsmoment:

(15) Jid SJ; 4-
2a2S3

1 4- N

+ 2 /»S,

1 —

(1

Mc1/c8[//a-y/(14-OT)]
1 4. M 4- Mc,/(1 + N) c2

N/(l + N) alt)
1 + M 4- Mcja + N) c,

Als Abkürzungen wurden eingeführt:
ES„tï2 ES,n*N :

c,L
und M

c,L2
Diese Formel hat im wesentlichen einen ähnlichen Aufbau
wie die Formel (14) und könnte auf die selbe Weise diskutiert

werden.

8. Der vierteilige Druckstab
Bild 6 gibt den Querschnitt eines solchen Stabes wieder.

Die Berechnung liesse sich wie für den fünfteiligen Stab
durchführen, jedoch kann man einfacher den vierteiligen Stab
als einen Spezialfall des fünfteiligen auffassen, nämlich als
den Fall, bei dem der mittlere Stab verschwindet. Es gilt
dann Formel (15) wieder, wobei aber die Summe über die
Eigenträgheitsmomente der Einzelteile sich nur über vier
Glieder erstreckt, und wobei

c2 2 c0

zu setzen ist, wenn c0 die Steifigkeit der Verbindungsmittel
in der mittleren Fuge bedeutet. Der Grund hiefür liegt darin,
dass beim Uebergang vom fünfteiligen zum vierteiligen Stab
eine Doppelfuge in der Mitte entsteht, die alsdann mit ihrer
doppelten Steifigkeit zu bewerten ist.

9. Der dreiteilige Stab als Spezialfall des
fünfteiligen

Formel (15) lässt sich für den dreiteiligen Stab spezialisieren,

wenn S1 gleich null gemacht wird. Dabei wird M 0,
und die Formel geht über in (14), da N K.

10. Der zweiteilige Druckstab
Formel (14) ist auf den zweiteiligen Stab anwendbar. Es

gelten hier die gleichen Ueberlegungen wie für den vierteiligen

Stab.
Die Summe über die Eigenträgheitsmomente hat nur zwei

Glieder, und man soll
c c2 2 c0

setzen, wenn c„ die Steifigkeit der mittleren Fuge bedeutet
(Bild 7). Für den zweiteiligen Stab gilt also:

2 a2 S
+(16) ¦¦2 3,

B

mit R
ESns
2c„L2

1.
%

i

'

\\\\
£J;

11. Vergleich zwischen dem zweiteiligen Druckstab
mit kontinuierlichen Verbindungen und dem

Rahmenstab
Der zweiteilige Druckstab mit kontinuierlichen Verbindungen

kann als ein Grenzwert des Rahmenstabes aufgefasst
werden, wenn die Verbindungen zwischen den zwei Teilen
immer dichter werden und schliesslich in eine stetige
Verbindung übergehen. In der oben erwähnten Arbeit hat Prof.
Stüssi die Knickfestigkeit des Rahmenstabes aus Holz untersucht

und die verallgemeinerte Knickformel von Engesser
angegeben :

(17) "-y id — + V
In dem hier in Frage stehenden Fall ist Xt 0, so dass

ß als Wirkungsgrad der Steifigkeit aufgefasst werden kann
und die folgende Beziehung gilt:
(18) 3id ß30

mit dem Ansatz :

(19) ß^Jt+cY-h2 «0

Wird demgegenüber der Wirkungsgrad ß* aus der
Gleichung (16) gewonnen, so gilt mit 30 2«^ -f- 2a2S:

(20) ß* Jii + aY

Die Aehnlichkeit des Aufbaues der beiden Gleichungen
(19) und (20) ist augenfällig. Werden sie noch für den Fall
der satt aneinander anstossenden Einzelteile angewendet,
so ist mit:

h2 b2/12 ; v -- b2/3 und

(19b) ß
1

T + 4°
(20b) ß* l i

2
1,5

1 + R

aus welchen sich durch Vergleich

(21) G
1,5

1 + R

ergibt.
Im Falle einer geleimten Verbindung kann c gleich

unendlich angenommen werden, woraus mit R 0

G 1,5 -

entsteht.
Für andere Verbindungsmittel mit R y 0 ist

0< 1,5

Diese Werte sind von Prof. Stüssi angegeben worden.

11. Zusammenfassung
Die aufgestellten Formeln geben, unter Berücksichtigung

der Voraussetzungen und der Ergebnisse der Diskussion, eine
Grundlage für die Bemessung der mehrteiligen Druckstäbe
aus Holz.

Vor allem die Formel für den dreiteiligen Stab scheint
wegen ihrer Einfachheit nützlich zu sein, während die Formel

für den vier- und fünfteiligen Stab etwas umständlich
zu handhaben ist.

Beim Grenzübergang kann eine gute Uebereinstimmung
mit der verallgemeinerten Engesserschen Formel von Prof.
Stüssi festgestellt werden. Es wäre indessen von grossem
Interesse, wenn obige Formeln an Hand von Versuchen
überprüft werden könnten, um insbesondere deren Brauchbarkeit
im Gebiete der kleinen Schlankheiten feststellen zu können.

0,5

Bild 4. Variation des ideellen Trägheitsmomentes

in Funktion von k
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