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69. Jahrgang
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Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nummer 3

1. Zur Theorie der ebenen, beidseitig
eingespannten Kreisringplatte

Wir betrachten zunächst eine ebene, kreisringförmige
Platte, die am inneren und am äusseren Rand eingespannt
ist und am äusseren Rand aufliegt. Die Anschauung, aber
auch die Rechnung weisen darauf hin, dass die Annahme
beidseitiger Einspannung dem wirklichen Spannungsverlauf,
wie er durch die Kurven der Bilder 1 bis 3 zum Ausdruck
kommt, viel näher liegt als die Annahme freier Auflagerung.

Wir nehmen nun drei verschiedene Belastungsfälle I, II
und III an. Im Fallì, Bild 4a, sei die Platte gleichförmig
mit p belastet; der innere Rand deformiert sich dann um
den Pfeil fp. Der bekannte Verlauf der
radialen und tangentialen Spannungen aT

und at sind in Bild 4 a unten für n

rL/ra 0,5 in Funktion von Ç ——-ra Ti
aufgezeichnet. Im Fallii, Bild 4 b, sei die
selbe Platte am Innenrand durch die Kraft B
belastet und biege sich dort um fß durch.
Der Fall III stellt die Superposition der
ersten beiden Fälle für fp — fB dar, Bild 4 c ;

er gibt also den gesuchten Spannungszustand

einer durch p belasteten, beidseitig
fest eingespannten und beidseitig fest
unterstützten Kreisringplatte. Wie ersichtlich,

ist der Spannungsverlauf bei diesem
Fall grundsätzlich gleichartig wie derjenige
innerhalb des ebenen Teils von Kesselböden,
wie er auf den Bildern 1 bis 3 dargestellt
ist. Es erscheint daher wohl zulässig, die
Spannungen in solchen Kesselböden unter
den selben einfachen Annahmen zu
berechnen, wie sie im Fall III (Bild 4 c)
getroffen wurden. Die Annahme ist jedenfalls
gestattet, dass sich die beiden Ränder
gegenseitig nicht axial verschieben, jeden-

(1)

(2)

(3)

Die Berechnung von flachen, gekrempten Kesselböden
Von Dipl. Ing. B. HÖHN f, Rüsehlikon

Im Kesselbau werden oft Böden von der auf den
Bildern 1 bis 3 dargestellten Form verwendet. Zur Berechnung
der in ihnen auftretenden Spannungen bzw. der zulässigen
Wanddicken benützt man vielfach Faustformeln, da eine
theoretisch begründete, für den praktischen Gebrauch geeignete
Berechnungsmethode bisher fehlt. Einblick in den in solchen
Böden herrschenden Spannungszustand gewährt eine
Forschungsarbeit des Schweizerischen Vereins von Dampfkessel-
Besitzern (SVDB) aus dem Jahre 19291), ohne dass damals
eine Berechnungsmethode bekanntgegeben worden wäre. Die
Bilder 2 und 3 (s. S. 27) entstammen dem genannten Bericht;
Bild 1 (s. S. 26) gibt die Resultate einer ähnlichen Untersuchung

des SVDB aus einer späteren Zeit wieder.
Der auf den Bildern 1 bis 3 dargestellte Spannungszustand

bezieht sich auf die Luftseite ; ar ist die Meridianspannung

in Richtung des Radius, o, die Spannung in Richtung
der Ringtangente. Diese Spannungen sind aus den gemessenen

Dehnungen mit Hilfe der bekannten Gleichungen
berechnet worden, wobei m 10/3 und E 2 10° kg/cm2
gesetzt wurden. Wie ersichtlich ist der Spannungsverlauf
wellenförmig. In der Flachstrecke treten Zugspannungen, in den

Krempen Druckspannungen und im Zylinder in Krempennähe
erhöhte Zugspannungen auf, die mit grösserer Entfernung
von der Krempe auf den der Kesselspannung entsprechenden
Wert abklingen.

In der vorliegenden Studie wird zunächst der Spannungszustand

im ebenen Teil des Bodens auf Grund der bekannten
Theorie ebener Kreisringplatten festgestellt und nachher
gezeigt, wie der Einspannungsgrad beim Uebergang an die
innere und die äussere Krempe in Anlehnung an die
Messergebnisse berücksichtigt werden kann. Die Untersuchung
führt schliesslich zu einer einfachen Formel für die Bestimmung

der Wandstärke solcher Böden, die geeignet sein dürfte,
die bisherigen Faustformeln zu ersetzen.

DK 621.18.0012

falls nicht bei der Druckprobe. Im Betrieb wird eine gewisse
axiale Verschiebung infolge Unterschiede in der
Wärmedehnung auftreten, die aber die Spannungen nicht stark be-
einflusst.

Zur Berechnung der statisch unbestimmten Kraft B
benützen wir folgende Beziehungen:

/p — i a

A + B : nrj>p (1 — w2)

teL/^_
ÌN \ 32 (rai - r,i) 4. in (r2lnr — ra2lnr„)

P c
.(r2 — r„>) + _(r2 - ru2) + din- •r)4ti

Hierin bedeuten:
die elastische Verschiebung in Richtung
senkrecht zur Plattenebene an der Stelle r
Gleichungder elastischen Meridianebene2

die Poissonsche Zahl
den Elastizitätsmodul

m 10/3
E

Em*hs
12 (m2 —1)

die Plattensteifigkeit
die ganze Plattendicke
Integrationskonstanten

N

h
c, d
P

Die Konstanten c und d ergeben sich aus der Einspan-
nungsbedingung, nach der für r=,ri und r ra dwjdr 0 ist.

Für den Fall I ergibt sich :

— nr^p

e — — -|- (ra2 + r;

prt r- ra2lnra2 — r^lnr,-2 ¦

- • a ' i
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Oder durch Einführen von r,-/r0
1 p(4b) /„ 2îf 32 a*| 1 + 3M* 4m2 — 2n2ln-

111^ +

+

ten Bosch: Maschinenelemente, Berlin, 1940, J.Springer.
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Bild 4a. Belastung durch
einen gleichförmig verteilten

Druck p. Um die
Spannungen zu erhalten, sind
die Ordinaten mit (ralh)-p
zìi multiplizieren

33HH*^rrjfcfr

ör,B~

\
6t,ä

n 1

0 0,5 § '

F„ -

Bild 4b. Belastung durch
eine Kraft B längs des
Innenrandes. Um die
Spannungen zu erhalten, sind
die Ordinatenwerte mit
(B, h)2 zu multiplizieren

Bild 4 c. Superposition
der Belastungsfälle nach
den Bildern 4a und 4b, derart,

dass sich die
Vertikalverschiebungen am Innenrand

aufheben

l) 61. Jahresbericht des SVDB, 1929.

Spannungen ar und 0, an der Oberfläche einer ebenen Kreisringplatte mit n rt\ra --

die beidseitig eingespannt ist und aussen fest aufliegt
0,5,
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Mit den aus der Festigkeitslehre bekannten Gleichungen :

w3 Eh I d2w 1 dw

69. Jg. Nr. 3

or
(5)

ot= +
— m2 — 1

m2
2

Eh
m2 — 1

dr2
1 d2w
m dr2 +

M \

L dw \
~drr\

ergeben sich die Biegungsspannungen in den äussersten
Plattenschichten in Richtung des Radius (Meridians) und der
Ringtangente.

r — ?'v

woraus r ra (n -f ç — n'ç)Wir setzen Ç

£ wird von r; aus gezählt, dar) r,. Die Werte t und m sind
echte Brüche. Künftig soll an Stelle von (n + Ç — m£) nur
das Klammerzeichen vermerkt werden. Für den Fall I ist

(6)

(7)

3 p
fc2 |_~ 1,3- ¦ 5,3n2 + 3,3( )2

1,4

0,7
n2

TT* +

+ 2,6n2ln^1-_ i (2,6 + -±L) - In—1T )2 T V
' ^ )2 1 — n2 w2 J

a',
3 pr„2
8 7i2

-f 2,6 m2 In -

1,3 — 2,5w2 4-l,9( )2 4-0,7

+ (2,6 —
1,4

TT2"
n*

1 — n2
-In

O2

-1n2 J)2

An den Rändern (r ra und r r;) folgt aus den
Gleichungen (6) und (7) ot or/m. Bild 4a zeigt den Verlauf
der beiden Spannungen in Abhängigkeit von t, wobei pra2/h2 1
und ra r;/r„ 0,5 gesetzt wurde. Für andere Werte von n
ergeben sich gleichartige Kurven.

Für den Fallii ergeben sich.aus Gleichung (3) die
Integrationskonstanten, indem man p 0 ur.d P B einsetzt.

_
B /ra2lnra2 — r/2lnr;2 \°^ ~%%\ rtetete^ l)
Z? « 2 «.2 r 2

<* + -£ ^L?te^_ln-r"in fj»

(8a)

(8b)

(9)

(10)

fß

/ß

2N
1

2AT 8

3 B

B r

Lr„2[i_M2_

[2 — 1,3 In

ri

in h { )'
1,3 +

0,7

rj
n2 in

te j-la —1 — n2 n

"i, B 1,3 In -

w2 raJ

Der Spannungsverlauf ist auf Bild 4 b für B/h2 1 und
n 0,5 dargestellt. Die Widerlagerreaktion B ergibt sich durch
Gleichsetzen der Gleichungen (4b) und (8b) zu

n Klammerwert von /„' — r..2 « ^_
4

(11) !2>-
Klammerwert von /g

Die Ausrechnung der Klammerwerte ist zeitraubend. Zur
Abkürzung bilden wir zunächst mit Gleichung (2) den
Quotienten

B 11 Klammerwert von fp(12) A -\- B " 4 1 — n2 Klammerwert von fs
Die Werte B/(A 4- B) ergeben als Funktionen von n

parabelförmige Kurven, Bild 5, die mit grosser Annäherung
durch die Parabeln

1 a + b) 0,001875 • (33,33 + 100 n)A + B

ersetzt werden können. Daraus ergibt sich:

(13) 0,0433 ]/33,33 4- 100 n/raA 4- B
An den Stellen r-L 0 und r; ra fällt die genaue Kurve

nach Gleichung (12) mit der angenäherten Kurve nach
Gleichung (13) zusammen; die entsprechenden Werte betragen
0,25 bzw. 0,5. r; 0 bedeutet eine volle Kreisplatte, die
sowohl im Zentrum, als auch an der Peripherie gestützt ist.
Dabei ist die Auflagerkraft im Zentrum gleich einem Drittel
derjenigen an der Peripherie. Mit n l, d. h. mit ra ri,
schrumpft die Kreisringfläche zur Kreislinie zusammen und

172
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Bild 1. Aus den gemessenen Dehnungen ermittelte Radial- und Tan-
gentialspannungen an der äussern (luftseitigen) Oberfläche des oberen
Boiens eines Fieldkessels bei drei verschiedenen Probedrücken
(Ersteller: Buss A.-G., Basel; Besitzer: Gaswerk Basel)

es wird A B. Die Abweichungen der Gleichung (13) von
den genauen Werten nach Gleichung (12) betragen im Maximum

3 >/2 %. Würde man die Parabel mitten durch die
genaue Kurve hindurch legen, so erhielte man für sie die
Gleichung

0,04365 T/34,4 + 100 r;/raA 4- B ' ^ '

und es ergäbe sich eine grösste Abweichung von nur noch
+ 2%-

Mit den nach Gleichung (13) bestimmten Werten für die
Auflagerreaktionen A und B ergeben sich mit Hilfe der
Gleichungen (9) und (10) die Spannungen; sie sind für n 0,5
auf Bild 4 b aufgezeichnet. Für den Belastungsfall III, der
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Krempe, Probedruck 6 atü
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Bild 3. Aus den gemessenen Dehnungen £r und p( ermittelte
Spannungen or und o, an der äussern Oberfläche des ebenen
Bodens eines Fieldkessels mit äusserer Krempe und stumpfer
Verbindung innen. Probedruck 7,5 atti

dem Zustand im ebenen Teil des Kesselbodens entspricht,
ergeben sich die Spannungen durch Superposition der
Spannungen gemäss den Bildern 4 a und 4 b. Für andere Werte
von n erhält man nach dem gleichen Verfahren ähnliche
Kurven für den Spannungsverlauf.

3. Die Balkenmethode
Zur Berechnung der Spannungen in beliebig belasteten

Kreisplatten oder Kreisringplatten wird häufig die von Bach
vorgeschlagene Balkenmethode angewendet. Darnach denkt
man sich die Platte längs eines Durchmessers entzwei
geschnitten, und man betrachtet die Schnittfläche als diejenige
eines auf Biegung beanspruchten Balkens. Die Auflagerreak-
tionen A und B könnten für den bei Kesselböden auftretenden
Belastungsfall nach der oben angeführten Methode nach
Gleichung (13) bestimmt werden, woraus sich die grössten
Biegungsspannungen in einfachster Weise berechnen lassen.
Diese Spannungen wären identisch mit dem Mittelwert der
Tangentialspannungen, die sich aus der Plattentheorie gemäss
Bild 4 c ergeben. In Wirklichkeit sind aber nicht diese
Tangentialspannungen für die Beurteilung der Materialbeanspruchung

massgebend, sondern, wie aus den Bildern 1 bis 3

hervorgeht, die Radialspannungen. Wir verzichten daher auf das
weitere Verfolgen der Balkenmethode und wenden uns einer
andern Methode zu, welche die grössten Radialspannungen
direkt zu berechnen gestattet.

4. Die Methode der maximalen Radialspannungen
Bei dieser Methode berechnet man die Spannung arp nach

Gleichung (6) und arß nach Gleichung (9), wobei für die
Auflagerreaktion B der Wert aus Gleichung (13) eingesetzt wird,
nämlich

(13a) B q(A + B) 0,0433 1/33,33 -f lOOra 7tra2p(l —ra2)

Damit erhält Gleichung (9) die Form

1
(14) Or. B

v 2

¦[n2)qp\ — 2 4- 1,3In +
(¦ „ 0,7 \ «»11+ (1'3 + TTte)T^^ln-^J

Der Klammerwert bedeutet (n -f t — nt). Die
resultierende Radialspannung ergibt sich nun durch
Superposition Or, res Orp -\- O TB zu

(15) Or.
1 a

— 0,4875 — 1,5 q (1 —ra2)

-f. 1,2375 )2 —0,2625

1,9875 n2 4-

1
+

4-0,9750ra2-

h 0,9750 (ra2 + q — qn2) In

qn2 /, 0,5384 \, 1

Die Gleichung gilt für jeden Wert der Klammer d. h.
für jeden Wert von ra und Ç. Ihre Richtigkeit ergibt sich für
Ç 0, d.h. r r;, aus dem Vergleich des Ergebnisses mit
den Werten von Gleichung (6) und (14). Ihre Anwendung
kann aber dem Praktiker nicht zugemutet werden, da sie zu
kompliziert ist. Nun benötigen wir aber für unsere Zwecke
bloss den Höchstwert max or, res. Dieser ergibt sich, statt
durch Differentiation, durch die Annahme, dass er in der
Mitte der Flachstrecke liegt, d.h. für f=0,5, was im
Hinblick auf die Bilder 1 bis 3 durchaus einleuchtet. Hieraus
folgt schon die Vereinfachung

^ÜlUUlül^i*. - ^liliüWU^'

- te

A*B

010k—

A + B
010

te.

"-"/,

020

0.15

:te

0.05

075 0,50 0,25 (1-n) 0

Bild 5. Verlauf der Funktion B\(A + B) in Abhängigkeit
von n r;\rü. Gestrichelt: Näherungsparabel

Bild 6. Verlauf der Funktion g0 in Abhängigkeit
von (1 — n). Gestrichelt: Näherungsparabel
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(16) max or
r„2 V

h2
— 0,4875 — 1,5 q (1 — M2)

— 1,9875ra2 4- 0,3094 (1 4- w)2 — 1,050

4
+ 0,975 (w2 + q — g ra2) In

ra2 4- q — qn2

(l-fra)ï +

0,975 w2 -

r 2

1 — n2

(1 + m2) '

/ 2,1536 1 \-|
l1 + TT+te^^jJ

Der Klammerausdruck [ ] ,g0 ist nur von n abhängig ;

Tabelle 1 gibt einige zusammengehörende Werte. Wie ersichtlich

wird g0 negativ. Das bedeutet Druckspannungen, die auf
der Seite des Innendruckes (bei der Druckprobe des Kessels

auf der Wasserseite) auftreten. Auf der Luftseite kommen

gleich grosse Zugspannungen vor.
Trägt man in einem rechtwinkligen Koordinatensystem

g0 in Funktion von ra auf (Bild 6), so erhält man eine
parabelähnliche Kurve, deren Gleichung wie folgt angeschrieben
werden kann :

(1 —ra)2 27cfif0

Hierin bedeutet 2fc keine Konstante, sondern eine Funktion
von ra, deren genaue Werte in Tabelle 1 aufgeführt sind.
Hieraus kann angenähert gesetzt werden :

(17) 2k 2k0 4- c(l — ra)2

woraus
(1— ra)2

3,75 4- 0,9(1 — ra)2

(18) g0
3,75 + 0,9(1 —ra)2

Für die Radialspannung, die in einer beidseitig
eingespannten Ringplatte in der Mitte des Meridians auftritt und
die angenähert gleich der maximalen Radialspannung ist,
erhält man damit die einfache Gleichung

(19) max Or, res
(1 — n)2

3,75 4- 0,9(1 — ra)2 h2
V

Wie die Durchrechnung einiger Zahlenbeispiele zeigt,
stimmen die nach Gleichung (19) berechneten maximalen
Spannungen weitgehend mit den genauen Werten nach den
Gleichungen (6) und (9) überein.

5. Der Einfluss der Krempen
Die bisherigen Ausführungen gelten für fest eingespannte

Ringplatten. Bei Kesselböden kommen zu den ebenen Teilen,
die als solche Ringplatten aufzufassen sind, die Krempen
hinzu. Sie bilden Teile doppelt gewölbter Schalen, die sich
gegen äussere Einwirkungen (Biegungsmomente) anerkannter-

massen steif verhalten. Weniger steif sind die Krempenränder,
so dass die Ringplatte nicht als «starr», sondern nur als
«halbstarr» eingespannt zu betrachten ist, d. h. es liegt für
die Ringplatte ein Zwischenfall zwischen starrer Einspan-
nung und freier Auflagerung längs den beiden Rändern vor.
Um die dabei auftretenden grössten Radialspannungen
abschätzen zu können, seien folgende Ueberlegungon
angeführt.

Bei der gleichmässig belasteten vollen Kreisplatte gilt
für die Radialspannung die Gleichung

y. 2

Für g gelten die Werte der Tabelle 2.

Der Spannungsverlauf in Funktion des Radius wird
bekanntlich durch eine Parabel dargestellt, die im Falle freier
Auflagerung im Zentrum, d. h. bei r 0, ihren Kulminationspunkt

erreicht und von dort beidseitig bis zum Rand (r r„)
auf Null abfällt. Bei fester Einspannung bleibt die Parabel
unverändert, was sich schon aus der Summe der Werte für
g 0,75 4- 0,49 1,24 ergibt; der 0-Horizont liegt aber um
75 °/0 unter demjenigen bei freier Auflagerung. Bei
halbstarrer Einspannung liegt der 0-Horizont irgendwo zwischen
— 0,75j3ra2/ra2 und 0.

Bei der Kreisringplatte könnte die Nachgiebigkeit des
Krempenrandes in analoger Weise berücksichtigt werden.
Noch einfacher ist es, so vorzugehen, wie es im Falle eines
beidseitig halb eingespannten Balkens üblich ist: man geht
vom fest eingespannten Balken von der Länge l aus und
berücksichtigt die Nachgiebigkeit dadurch, dass man zur
Länge l auf beiden Seiten eine dem Einspannungsgrad
entsprechende Strecke /l l hinzufügt. In unserem Falle fügt man
zur Flachstrecke ra — r; des Bodens aussen und innen je eine
Strecke hinzu, die man zweckmässigerweise als einen
bestimmten Teil des Krempenradius o, gemessen bis zur halben
Blechdicke, ansetzt. Es hat sich als zweckmässig erwiesen,
diesen Teil zu ys zu wählen, also die Flachstrecke aussen
um Qal3, innen um p;/3 zu verlängern, wobei ga den
Krümmungsradius der äusseren, qi den der inneren Krempe
bezeichnen. Damit wird

r; ¦QtP
r« - pa/3

Gleichung (18) nimmt nun die Form an:
n — g iß

(20)
- giß \2
+ g«ß I

3,75 4- 0,9(1 — giß
Ta -f- gaß J

Für die grösste Radialspannung folgt aus Gleichung (19)

(21) max Or, res 9
(ra + &a3)2

h2

Tabelle 1. Zahlenwerte für die Funktionen g0 und 1k

n 0 0,25 0,5 0,75 1

So

2k
- 0,2151

4,65
— 0,1348

4,17
— 0,0622

4,02
— 0,0164

3,81

0

Tabelle 2.

Randbedingung Am Rand Im Zentrum

Frei aufliegend.
Fest eingespannt

0

— 0,75
+ 1,24

+ 0,49

Tabelle 3. Berechnete und gemessene maximale Radialspannungen in kg/cm2 ebener, gekrempter Ringböden

Nr. Bauart
Hauptabmessungen

in cm

Ti h

Rechnungswerte Maximale
Radialspannungen

berechnet gemessen

')
11

10
7

ä)

\ Krempen innen und aussen j

Krempe aussen
Krempe aussen
Krempe aussen
Krempe aussen

| Keine Krempen l

Ra
Ra
Ra
St
Ra
St
Ra
St

94,8
34,7
30,3
30,1
34,7
34,5
39,8
39,6
15,7

9,8

5,1
9,5

9,5

5,1

5,1
0

0

3,5

47,6
15,0
10,8

1,5
10,8

1,5

10,8
1,5

10,5

7,8

3,8
0

0

0

0

0

0

2,5

3,500
0,809
0,800
0,754
0,809
0,809
0,820
0,820
0,450

0,458
0,376
0,322
0,0451
0,297
0,0415
0,2715
0,0379
0,4270

0,0732
0,0905
0,1103
0,1910
0,1178
0,2003
0,1257
0,2020
0,0466

813)
269
272
512
333
563

400
658

92

962)
253

293
420
356
515

402
638

80

') Fieldkessel; 2) Kompensator, Hälfte einer Linse, bei gehemmtem Hub mit 4 atü abgepresst; 3) die Spannungen in kg/cm2
folgen aus Gleichung (22) für p 1 kg/cm2; die gemessenen Spannungen sind ebenfalls auf p 1 kg/cm2 reduziert; 4) Ra
bedeutet Rauchrohr; St zentrale Zugstange als Anker. Für die Berechnung wurden angenommen: m 10/3, E — 2 • 10° kg
pro cm2, £ 0,5.
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Bild 7. Hauptda- Bild 8. Untersuchte
ten der untersuch- Kompensatorschale.
ten Kesselböden Probedruck 4 atti

Hieraus ist ohne weiteres ersichtlich, dass die grösste
Radialspannung grösser ausfällt als nach Gleichung (19).
In Bild 4 c kommt die Berücksichtigung der Nachgiebigkeit
der Krempe dadurch zum Ausdruck, dass die Nullinie höher
hinauf rückt (0' —00 und dass die Schnittpunkte der
Spannungsparabel mit ihr, also die Stellen, da or, res 0 wird, weiter
auseinander rücken. Mit zunehmendem Krempenradius
nehmen die Spannungen in der Flachstrecke allerdings zu,
diejenigen in der Krempe aber ab, was die Hauptsache ist. Die
Krempen wirken also mit zunehmender Weite ausgleichend.
Dass es sich so verhält, findet man zum mindesten qualitativ

in allen Spannungsbildern bestätigt. Ausser dem auf
Bildl dargestellten Boden standen die Messergebnisse von
weiteren elf Böden zur Verfügung, deren Hauptdaten Bild 7 zeigt.

Es stellt sich hier die Frage nach dem geringsten zulässigen

Krempenradius. Bekanntlich wird wie beim krummen
Stab theoretisch für ç 0, o co. Praktisch tritt ein
Abwälzen der Spannungen bei Ueberschreiten der Fliessgrenze
auf. Auch wirkt der Umstand mildernd, dass das Spannungs-
Dehnungsdiagramm beim gebogenen Stab günstiger verläuft
als beim geraden Zugprobestab, worauf besonders Prof. Siebel
aufmerksam gemacht hat. Erst bei einer Biegespannung, die
50 °/0 über der Streckgrenze für reinen Zug liegt, breitet sich
beim Vierkantstab der bildsame Zustand über den ganzen
Querschnitt aus, bei dem sich der Stab ohne weiteren
Lastanstieg zu verformen vermag. Diesen Sachverhalt kann man
in der Rechnung nicht zum Ausdruck bringen, wohl aber
lässt er sich bei der Beurteilung des Sicherheitsgrades
berücksichtigen. Jedenfalls ist es vorsichtig, den Krempenradius
nicht zu klein zu wählen. Als minimaler Radius sei hier
vorgeschlagen ça 3 h ; Qi =2,5h.

Der Vergleich der nach Gleichung (21) ermittelten
maximalen Radialspannung mit den durchgeführten Spannungsmessungen

an acht Böden gemäss den Bildern 1 bis 3 und 7
sowie einer Kompensatorschale nach Bild 8 zeigte, dass die
Messwerte rd. 40 °/0 über den Rechnungswerten lagen. Dieser
Unterschied rührt nicht von einem Fehler im Rtchnungsgang
her, sondern ergibt sich ganz logisch aus dem Umstand, dass
in der mathematischen Entwicklung zuerst nur der Flachring
mit den Radien ra und r; betrachtet wurde, sodann der
beidseitig um <3/3 erweiterte Flachring, während in Wirklichkeit
der Druck die ganze Bodenfläche vom Anker bis zur Zylinderschale,

also das Gebiet von r; — p; bis ra + ça erfasst. Die
endgültige Gleichung für die grösste Radialspannung muss
somit lauten

(22) l,4fir
h2 V

Die nach dieser Gleichung berechneten Spannungen sind
auf Tabelle 3 den gemessenen gegenübergestellt. Die Ueber-
einstimmung ist befriedigend. Aus Gleichung (22) folgt die
Wandstärke

(23) h 1,2 (ra + e„/3)
V_9P_
' ozu\

Die Formel für h ist einfach ; nur die Berechnung von g
nach Gleichung (20) erfordert einige Aufmerksamkeit. Für
ozu\ werden folgende Werte vorgeschlagen : für Stahl M I
1000 bis 1200 kg/cm2, für Stahl Mil 1200 bis 1400 kg/cm2,
bei Kompensatoren wird man bis an die Streckgrenze herangehen

müssen.

6. Zusammenfassung
An sechs Flachböden mit Krempen und Mittelanker, wie

sie als Dampfkesselböden häufig Verwendung finden, sowie
an zwei Flachböden ohne Krempen wurde der Spannungszustand

durch Messung festgestellt. Der Vergleich mit dem
theoretischen Spannungszustand von eingespannten
Kreisringplatten zeigt eine solche Aehnlichkeit, dass es nahe liegt,
den theoretischen Spannungszustand zur Berechnung ebener
Dampfkesselböden heranzuziehen. Durch Vornahme verschiedener

Vereinfachungen lässt sich für die massgebende maximale

Radialspannung eine einfache Formel ableiten. Die
Einwirkung der Krempen konnte nur empirisch erfasst werden.
Der Vergleich zwischen den Messergebnissen und der
vorgeschlagenen Rechnung befriedigt. Damit sollte sich der
Gebrauch bisheriger Faustformeln erübrigen.

Die Staumauern der Società Adriatica di Elettricità in Venetien
Von Dr. Ing. CARLO SEMENZA, Direktor der SADE, Venedig

C. Die Staumauer Pieve di Cadore am Piave

Dieses Bauwerk ist wohl das wichtigste der Kraftwerkgruppe

Piave-Boite-Vajont, die aus einer Anzahl
aufeinanderfolgender, am Piave und seinen Hauptzuflüssen gelegener
Wasserfassungen mit den dazugehörenden Ausgleichbecken,
Druckstollenverbindungen und Kraftwerken besteht (Bild ll1).
Die grundlegende Aufgabe war die Errichtung eines so

grossen Speicherbeckens im Piavetal, dass ein Ausgleich der
Wasserdarbietung aus dem grössten Teil des Einzugsgebietes
erreicht wird und der 24,6 km lange Zulaufstollen von der
Sperrstelle bis zum Staubecken im Val Gallina, oberhalb der
Zentrale von Soverzene, annähernd für die mittlere Wassermenge

dimensioniert werden konnte.
Die Wahl der Sperrstelle war sehr schwierig, weil im

Piavetal oberhalb Perarolo kein Ort wirtschaftlich und
gleichzeitig technisch befriedigend erschien. Nach systematischen

geologischen Erhebungen, Sondierungen und
Untersuchungen in Kontrollstollen, die sich über zwei Jahre
erstreckten, entschlossen wir uns schliesslich für das uns noch
am günstigsten scheinende Gebiet von Pian delle Ere,
unmittelbar unterhalb Pieve di Cadore.

Die Sperrstelle liegt im Dolomitkalk des oberen Trias.
Das Talprofil besteht aus einem Trapez mit einer mittleren
Höhe von rd. 55 m und einer Basis von rd. 300 m, das durchwegs

in einer felsigen Ebene — dem Pian delle Ere —
verläuft. Auf der rechten Seite dieses Tales hat der Piave eine
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1) Vgl. SBZ 1949, Nr. 14, S. 186*.

enge, etwa 55 m tiefe, gegen die Talaxe stark konvergierende
Schlucht ausgewaschen, Bilder 12 und 13.

Die Vermutung, es könnte sich auf der linken Talseite
ein epigenetisches Flussbett vorfinden, erwies sich auf Grund
geologischer Untersuchungen als unbegründet. Die stark
unsymmetrische Form des Profils und die erwähnte Konvergenz
der Schlucht bei der Sperrstelle erforderte eingehende
Untersuchungen zur Abklärung des günstigsten Staumauertyps.

Die Breite des Talprofils liess anfangs den Gedanken
aufkommen, ein gemischtes Bauwerk anzuwenden, bei dem
die rechtsseitig liegende Schlucht durch eine dünne
Bogenstaumauer abgeriegelt würde, während der übrige Teil die
Form einer vollen oder aufgelösten Gewichtsmauer erhalten
sollte. Dabei hätte ein grosses Widerlager die Bogenmauer
stützen müssen. Die an der technischen Hochschule in Mailand

durchgeführten Versuche ergaben für die Widerlagerbasis

sehr hohe Zugspannungen, deren Beseitigung nur durch
eine die Wirtschaftlichkeit der Lösung stark beeinträchtigende

Mehrkubatur zu erreichen gewesen wäre.
Darauf wurde eine die Terrasse und die Schlucht

durchquerende Schwergewichtsmauer erwogen; in der Schlucht
selbst sah man dabei die Anordnung eines besondern
Abschlussbauwerkes vor, das aber wegen der schiefen Stellung
der Schlucht gegenüber der Talaxe eine sehr grosse
Betonkubatur erfordert hätte. Auch mussten die statischen
Verhältnisse, die sich aus der gegenseitigen Neigung der Axen
der unteren und der oberen Mauerpartie ergaben, eher als un-
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