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69. Jahrgang
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Nummer 3

Die Berechnung von flachen, gekrempten Kesselboden

Von Dipl. Ing. E. HOHN f{, Rilschlikon

Im Kesselbau werden oft Bdden von der auf den Bil-
dern 1 bis 3 dargestellten Form verwendet. Zur Berechnung
der in ihnen auftretenden Spannungen bzw. der zuldssigen
Wanddicken beniitzt man vielfach Faustformeln, da eine theo-
retisch begriindete, fiir den praktischen Gebrauch geeignete
Berechnungsmethode bisher fehlt. Einblick in den in solchen
Boden herrschenden Spannungszustand gewédhrt eine For-
schungsarbeit des Schweizerischen Vereins von Dampfkessel-
Besitzern (SVDB) aus dem Jahre 19291), ohne dass damals
eine Berechnungsmethode bekanntgegeben worden wére. Die
Bilder 2 und 3 (s. S.27) entstammen dem genannten Bericht;
Bild 1 (s. S.26) gibt die Resultate einer #hnlichen Untersu-
chung des SVDB aus einer spiteren Zeit wieder.

Der auf den Bildern 1 bis 3 dargestellte Spannungszu-
stand bezieht sich auf die Luftseite; ¢, ist die Meridianspan-
nung in Richtung des Radius, ¢, die Spannung in Richtung
der Ringtangente. Diese Spannungen sind aus den gemesse-
nen Dehnungen mit Hilfe der bekannten Gleichungen be-
rechnet worden, wobei m — 10/3 und E = 2 . 10° kg/cm? ge-
getzt wurden. Wie ersichtlich ist der Spannungsverlauf wel-
lenformig. In der Flachstrecke treten Zugspannungen, in den
Krempen Druckspannungen und im Zylinder in Krempennéhe
erhohte Zugspannungen auf, die mit groésserer Entfernung
von der Krempe auf den der Kesselspannung entsprechenden
Wert abklingen.

In der vorliegenden Studie wird zun&chst der Spannungs-
zustand im ebenen Teil des Bodens auf Grund der bekannten
Theorie ebener Kreisringplatten festgestellt und nachher ge-
zeigt, wie der Einspannungsgrad beim Uebergang an die
innere und die #ussere Krempe in Anlehnung an die Mess-
ergebnisse beriicksichtigt werden kann. Die Untersuchung
fithrt schliesslich zu einer einfachen Formel fiir die Bestim-
mung der Wandstédrke solcher Bdden, die geeignet sein diirfte,
die bisherigen Faustformeln zu ersetzen.

1. Zur Theorie der ebenen, beidseitig einge-
spannten Kreisringplatte

Wir betrachten zunichst eine ebene, kreisringformige
Platte, die am inneren und am &usseren Rand eingespannt
ist und am #Husseren Rand aufliegt. Die Anschauung, aber
auch die Rechnung weisen darauf hin, dass die Annahme
beidseitiger Einspannung dem wirklichen Spannungsverlauf,
wie er durch die Kurven der Bilder 1 bis 3 zum Ausdruck
kommt, viel niher liegt als die Annahme freier Auflagerung.

Wir nehmen nun drei verschiedene Belastungsfille I, II
und III an. Im FallI, Bild 4a, sei die Platte gleichférmig
mit p belastet; der innere Rand deformiert sich dann um
den Pfeil f,. Der bekannte Verlauf der
radialen und tangentialen Spannungen ¢

DK 621.18.0012

falls nicht bei der Druckprobe. Im Betrieb wird eine gewisse
axiale Verschiebung infolge Unterschiede in der Wirme-
dehnung auftreten, die aber die Spannungen nicht stark be-
einflusst.

Zur Berechnung der statisch unbestimmten Kraft B be-
niitzen wir folgende Beziehungen:

(1) fo =18

(2) A} B=mnrlp(1l—n?)

1 D P

(3) Wi— N (-——32 @t — 1o - T (P?Inr —r2lnr,) —

= (rz_rz)_{_i(rz-—r?)—]-dlnL
4 z 4 = 7
Hierin bedeuten:

w die elastische Verschiebung in Richtung
senkrecht zur Plattenebene an der Stelle r
(Gleichungderelastischen Meridianebene?))

m — 10/3 die Poissonsche Zahl

B den Elastizitdtsmodul

E m2hs3
W : o £
1% G T die Plattensteifigkeit

h die ganze Plattendicke

c, d Integrationskonstanten

P — ;2]

Die Konstanten ¢ und d ergeben sich aus der Einspan-
nungsbedingung, nach der fiir r —=7; und r =7, dw/dr = 0 ist.
Fir den FallI ergibt sich:

o=— L2 (2 42 —
pri? 1 r2lnr,? — r;2lnr;?
=
e D ; v ri2 Ta2
ad= + ?Tazlrlz e —4*1‘—“2_ ’I',:Z TaZT,;zln 72
ak D ; r2
(4a) fp =525 [Ta“ 4 374 — 4ra2r2 — 27,27;2In T‘i‘z 4
72 : T2 \2
Oder durch Einfiihren von r;/r, = n
1 p il
4 e 4 P 9 2
(4b)  fp SN 32ra{1+3n 4m 2n1nn2+
n LN
PLERE AR L G
St (n 2) }

2) ten Bosch: Maschinenelemente, Berlin, 1940, J. Springer.

und o, sind in Bild 4a unten fir m — i L e T
: | o2 o / Dy
: ] = T Al A A A I
7;/re = 0,5 in Fuunktion von §{ = —— i I El | b o= Ifg
T — 05 il M i 47\_%

aufgezeichnet. Im Fall II, Bild 4b, sei die 020 2 | ; BB ! e o
selbe Platte am Innenrand durch die Kraft B | ] \ | ! ‘
belastet und biege sich dort um fp durch. npP Orp S TNE0np0r5 3
Der Fall IIT stellt die Superposition der / )‘) = = LT
ersten beiden Fédlle fiir f, — — fp dar, Bild4c; g [ ’ij;/ £

% =
er gibt also den gesuchten Spannungszu- N~ Op A s foRes "
stand einer durch p belasteten, beidseitig ! | 64P_6f‘r3 T
fest eingespannten und beidseitig fest -2 ! i ! —
unterstiitzten Kreisringplatte. Wie ersicht- | i |
lich, ist der Spannungsverlauf bei diesem T i 1
Fall grundsétzlich gleichartig wie derjenige \ 7 | |
innerhalb des ebenen Teils von Kesselbdden, % | ‘ i T
wie er auf den Bildern 1 bis 3 dargestellt ri i 7] ri { 7 hi | ] [E]
ist. Es erscheint daher wohl zuldssig, die © 02 g 2 % §1 g % &
Spannungen in solchen Kesselbéden unter Bild 4a. Belastung durch Bild 4b. Belastung durch Bild 4c. Superposition

den selben einfachen Annahmen zu be-
rechnen, wie sie im Fall IIT (Bild 4c) ge-
troffen wurden. Die Annahme ist jedenfalls
gestattet, dass sich die beiden Rénder
gegenseitig nicht axial verschieben, jeden-

1) 61. Jahresbericht des SVDB, 1929.

einen gleichformig verteil-
ten Druck p. Um die Span-
nungen zu erhalten, sind
die Ordinaten mit (r4/h)2p
zu multiplizieren

der Belastungsfille nach
den Bildern 4a und 4b, der-
art, dass sich die Vertikal-
verschiebungen am Innen-
rand aufheben

eine Kraft B langs des In-
nenrandes. Um die Span-
nungen zu erhalten, sind
die Ordinatenwerte mit
(B, h)? zu multiplizieren

Spannungen 0, und 0; an der Oberflidche einer ebenen Kreisringplatte mit n = rifra = 0,5,
die beidseitig eingespannt ist und aussen fest aufliegt
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Mit den aus der Festigkeitslehre bekannten Gleichungen:

o =l m?2 Eh (d?w 1 dw)

) s L e ) dr2 rm  dr
ot=+_"_‘2_££(id*_w idi)

=y =—nl =D m dr? AT

ergeben sich die Biegungsspannungen in den #Hussersten Plat-

tenschichten in Richtung des Radius (Meridians) und der

Ringtangente.

r—r7r; .
, woraus r =7,(n 4+ ¢ —ng)

Drai=—15;

¢ wird von r; aus gezihlt, da r > r;. Die Werte { und » sind

echte Briiche. Kiinftig soll an Stelle von (n + {—ng) nur

das Klammerzeichen vermerkt werden. Fiir den Fall I ist

Wir setzen { —

@ Lo %%[_ 1,3 5,303 433 ()2 — 0,7 ("; +
+ 2,6n21n (1)2 + (2,6-|— %)T%ln%]

) e [—1,3--2,5%2 4 910 )2+o,7(L; .
- Y

An den Rindern (r — r, und r — r;) folgt aus den Glei-
chungen (6) und (7) o, = o;/m. Bild 4a zeigt den Verlauf
derbeiden Spannungen in Abhédngigkeit von{, wobei Pro2fhi=1
und n =r;/r, = 0,5 gesetzt wurde. Fiir andere Werte von n
ergeben sich gleichartige Kurven.

Fir den Fall IT ergeben sich aus Gleichung (3) die Inte-
grationskonstanten, indem man P =0 und P — B einsetzt.

S N
200 (R — 58
e
w0 1=y B[ (e
E A b
(ks o %%[2_1,3111(‘1)? s
= (1’3 & :)’)72) 1 ﬁng e ;z
a0 op= o 2 [0s —13m 5, +

0,7 n? 1k 3
& ey ‘”’)twme
Der Spannungsverlauf ist auf Bild 4b fiir B/h? — 1 und
n = 0,5 dargestellt. Die Widerlagerreaktion B ergibt sich durch
Gleichsetzen der Gleichungen (4b) und (8b) zu

T Klammerwert von f
11 B— _"_r2 L2
) g P Klammerwert von fg

Die Ausrechnung der Klammerwerte ist zeitraubend. Zur
Abkiirzung bilden wir zunichst mit Gleichung (2) den Quo-
tienten

(12) B . il 2l Klammerwert von f,

441 B 4 1 _—_n? Klammerwert von fg
Die Werte B/(A - B) ergeben als Funktionen von n

parabelférmige Kurven, Bild 5, die mit grosser Anniherung
durch die Parabeln

B 2
(T—F—B> — 0,001875 . (33,33 - 100 n)
ersetzt werden konnen. Daraus ergibt sich:
B e e
&) g= 7 5 = 00488 /33,33 + 100 r; /7,

An den Stellen 7; — 0 und r; — r, fillt die genaue Kurve
nach Gleichung (12) mit der angenidherten Kurve nach Glei-
chung (13) zusammen; die entsprechenden Werte betragen
0,25 bzw. 0,5. r; -—— 0 bedeutet eine volle Kreisplatte, die so-
wohl im Zentrum, als auch an der Peripherie gestiitzt ist.
Dabei ist die Auflagerkraft im Zentrum gleich einem Drittel
derjenigen an der Peripherie. Mit n—1, d. h. mit r, — T
schrumpft die Kreisringfldche zur Kreislinie zusammen und

o
R
3
!

S 6 kg/cm?
i = % — 1000
| /
: & i 800
e S 183F
Zd Aot 600
| | / [
| | \ | 12at |
I | ! 400
i i v / = \\

|
|
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|
I
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Bild 1. Aus den gemessenen Dehnungen ermittelte Radial- und Tan-
gentialspannungen an der dussern (luftseitigen) Oberfliche des oberen
Bodens eines Fieldkessels bei drei verschiedenen Probedriicken
(Ersteller: Buss A.-G., Basel; Besitzer: Gaswerk Basel)

es wird 4 = B. Die Abweichungen der Gleichung (13) von
den genauen Werten nach Gleichung (12) betragen im Maxi-
mum 31/; °/,. Wiirde man die Parabel mitten durch die ge-
naue Kurve hindurch legen, so erhielte man fiir sie die Glei-
chung

B AL L0 b
o 0,04365 /34,4 1007, /7,
und es ergédbe sich eine grosste Abweichung von nur noch

+ 29,

3 lv{olt den nach Gleichung (13) bestimmten Werten fiir die
Auflagerreaktionen 4 und B ergeben sich mit Hilfe der Glei-
chungen (9) und (10) die Spannungen; sie sind fiir n — 0,5
auf Bild 4b aufgezeichnet. Fiir den Belastungsfall III, der
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kgfem? ¢ |
16001076

1500{

Bild 2. Wie Bild3,der Boden
jedoch innen und aussen mit
Krempe, Probedruck 6 atil

dem Zustand im ebenen Teil des Kesselbodens entspricht, er-
geben sich die Spannungen durch Superposition der Span-
nungen geméiss den Bildern4a und 4b. Fiir andere Werte
von n erhdlt man nach dem gleichen Verfahren &hnliche
Kurven fiir den Spannungsverlauf.

3. Die Balkenmethode

Zur Berechnung der Spannungen in beliebig belasteten
Kreisplatten oder Kreisringplatten wird hdufig die von Bach
vorgeschlagene Balkenmethode angewendet. Darnach denkt
man gich die Platte ldngs eines Durchmessers entzwei ge-
schnitten, und man betrachtet die Schnittfldche als diejenige
eines auf Biegung beanspruchten Balkens. Die Auflagerreak-
tionen 4 und B konnten fiir den bei Kesselboden auftretenden
Belastungsfall nach der oben angefiihrten Methode nach Glei-
chung (13) bestimmt werden, woraus sich die grossten Bie-
gungsspannungen in einfachster Weise berechnen lassen.
Diese Spannungen wéren identisch mit dem Mittelwert der
Tangentialspannungen, die sich aus der Plattentheorie geméiss
Bild 4c ergeben. In Wirklichkeit sind aber nicht diese Tan-
gentialspannungen fiir die Beurteilung der Materialbeanspru-
chung massgebend, sondern, wie aus den Bildern 1 bis 3 her-
vorgeht, die Radialspannungen. Wir verzichten daher auf das
weitere Verfolgen der Balkenmethode und wenden uns einer
andern Methode zu, welche die grossten Radialspannungen
direkt zu berechnen gestattet.

4. Die Methode der maximalen Radialspannungen

Bei dieser Methode berechnet man die Spannung o,, nach
Gleichung (6) und ¢,p nach Gleichung (9), wobei fiir die Auf-
lagerreaktion B der Wert aus Gleichung (13) eingesetzt wird,
nidmlich

‘ £050
A 8l 8 A ‘ =
fiaraads } (s J A‘///

e =

025

1
|
i 030
|
|
\
l
l
|
|
|

T
=11
=l

Bild 5. Verlauf der Funktion B/(4 + B) in Abhingigkeit
von n =ri[ra. Gestrichelt: Ndherungsparabel

|

% 5
S
-~

~

_______\C
=S|

Bild 8. Aus den gemessenen Dehnungen &, und &, ermittelte
Spannungen 6, und 0; an der dussern Oberfliche des ebenen
Bodens eines Fieldkessels mit dusserer Krempe und stumpfer
Verbindung innen. Probedruck 7,5atii

(13a) B=gq (4 4 B) = 0,0433]/33,33 | 1007 mr2p (1 — n?)

Damit erhilt Gleichung (9) die Form

n? 1
+ (13 + ()2)W“‘W]
Der Klammerwert bedeutet () = (n 4 { — n{). Die re-

sultierende Radialspannung ergibt sich nun durch Super-
position o, s = 6, + 0, ZU

(14) Or Bi— 0,7

1l
- @

742
@ Wp[— 0,4875 — 1,5q (1 — n?) — 1,9875n? +
41,2375 ( ) — 0,2625 ( 5+ 0.9750 (n 4 g — qn) In— =
n? - qg —gn? 0,5384 al
2, S
4+ 0,9750n . (1+ - )1 nz]

Die Gleichung gilt fiir jeden Wert der Klammer ( ), d. h.
fiir jeden Wert von n und C. IThre Richtigkeit ergibt sich fiir
t=20, d.h. »r =7r;, aus dem Vergleich des Ergebnisses mit
den Werten von Gleichung (6) und (14). Ihre Anwendung
kann aber dem Praktiker nicht zugemutet werden, da sie zu
kompliziert ist. Nun benétigen wir aber fiir unsere Zwecke
bloss den Hochstwert max ¢, ... Dieser ergibt sich, statt
durch Differentiation, durch die Annahme, dass er in der
Mitte der Flachstrecke liegt, d. h. fiir £ = 0,5, was im Hin-
blick auf die Bilder 1 bis 3 durchaus einleuchtet. Hieraus
folgt schon die Vereinfachung

5 0,275/
0

-020

08, /

00—/
1

975 0,50

025 (1-n) 0

Bild 6. Verlauf der Funktion g, in Abhdngigkeit
von (1 —mn). Gestrichelt: Ndherungsparabel
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69. Jg. Nr. 3

2
@eSmax o e — z’[— UG B Al =
n2

LOsIom e D00 (LR 0 T050 e

4

0,975 (n? —gn?)ln———p-

L (n? + g — qn?) (1+n2)+

n? 4+ q— qn? (1 2,1536 1 )]

l*k

2 —
-+ 0,975 n = GRNEE n—s

742
= _ﬁTp [g,]

Der Klammerausdruck [ ] — g, ist nur von n abhingig;
Tabelle 1 gibt einige zusammengehorende Werte. Wie ersicht-
lich wird g, negativ. Das bedeutet Druckspannungen, die auf
der Seite des Innendruckes (bei der Druckprobe des Kes-
sels auf der Wasserseite) auftreten. Auf der Luftseite kom-
men gleich grosse Zugspannungen vor.

Trigt man in einem rechtwinkligen Koordinatensystem
9, in Funktion von n auf (Bild 6), so erhédlt man eine para-
beldhnliche Kurve, deren Gleichung wie folgt angeschrieben
werden kann:

(1—n)2=2kg,

Hierin bedeutet 2k keine Konstante, sondern eine Funktion
von 7, deren genaue Werte in Tabelle 1 aufgefithrt sind.
Hieraus kann angendhert gesetzt werden:

(17) 2k =2k, +~c(1 —n)?2 =3,75 + 0,9 (1 — n)?
woraus

(1— n)?
3,75 4+ 0,9 (1 — n)?2

Fiir die Radialspannung, die in einer beidseitig einge-
spannten Ringplatte in der Mitte des Meridians auftritt und
die angendhert gleich der maximalen Radialspannung ist,
erhilt man damit die einfache Gleichung

1 —n): 7q*

3,75 +-09(1 —mn)2 h?

(19) max 0, res =

Wie die Durchrechnung einiger Zahlenbeispiele zeigt,
stimmen die nach Gleichung (19) berechneten maximalen
Spannungen weitgehend mit den genauen Werten nach den
Gleichungen (6) und (9) iiberein.

5. Der Einfluss der Krempen

Die bisherigen Ausfiihrungen gelten fiir fest eingespannte
Ringplatten. Bei Kesselboden kommen zu den ebenen Teilen,
die als solche Ringplatten aufzufassen sind, die Krempen
hinzu. Sie bilden Teile doppelt gewoslbter Schalen, die sich
gegen dussere Einwirkungen (Biegungsmomente) anerkannter-

massen steif verhalten. Weniger steif sind die Krempenrénder,
so dass die Ringplatte nicht als «starr», sondern nur als
«halbstarr» eingespannt zu betrachten ist, d. h. es liegt fiir
die Ringplatte ein Zwischenfall zwischen starrer Einspan-
nung und freier Auflagerung lings den beiden Riéndern vor.
Um die dabei auftretenden gréssten Radialspannungen ab-
schétzen zu konnen, seien folgende Ueberlegungen ange-
fiihrt.

Bei der gleichméssig belasteten vollen Kreisplatte gilt
fiir die Radialspannung die Gleichung
TR
h2
Fir g gelten die Werte der Tabelle 2.

Der Spannungsverlauf in Funktion des Radius wird be-
kanntlich durch eine Parabel dargestellt, die im Falle freier
Auflagerung im Zentrum, d. h. bei » — 0, ihren Kulminations-
punkt erreicht und von dort beidseitig bis zum Rand (r — r,)
auf Null abfillt. Bei fester Einspannung bleibt die Parabel
unverédndert, was sich schon aus der Summe der Werte fiir
g9 0,75 4 0,49 — 1,24 ergibt; der 0-Horizont liegt aber um
759/, unter demjenigen bei freier Auflagerung. Bei halb-
starrer Einspannung liegt der 0-Horizont irgendwo zwischen
— 0,75 pr,2/n2 und 0.

Bei der Kreisringplatte konnte die Nachgiebigkeit des
Krempenrandes in analoger Weise beriicksichtigt werden.
Noch einfacher ist es, so vorzugehen, wie es im Falle eines
beidseitig halb eingespannten Balkens iiblich ist: man geht
vom fest eingespannten Balken von der Linge ! aus und
beriicksichtigt die Nachgiebigkeit dadurch, dass man zur
Lénge [ auf beiden Seiten eine dem Einspannungsgrad ent-
sprechende Strecke 41 hinzufiigt. In unserem Falle fiigt man
zur Flachstrecke r, — r; des Bodens aussen und innen je eine
Strecke hinzu, die man zweckméissigerweise als einen be-
stimmten Teil des Krempenradius ¢, gemessen bis zur halben
Blechdicke, ansetzt. Es hat sich als zweckmissig erwiesen,
diesen Teil zu 1/3 zu wahlen, also die Flachstrecke aussen
um g,/3, innen um ;/3 zu verldngern, wobei g, den Kriim-
mungsradius der dusseren, o; den der inneren Krempe be-
zeichnen. Damit wird

ri — 0i /3
Tq — 0q/3
Gleichung (18) nimmt nun die Form an:

e

i — ot]3 \2
g et o)

Fiir die grosste Radialspannung folgt aus Gleichung (19)
(7a + 04'3)?
n2 2

Oor =49gp

(20) 9=

(21) max 0y, res = 9

Tabelle 1. Zahlenwerte fur die Funktionen g, und 2% Tabelle 2.
n 0 0,25 0,5 0,75 1 Randbedingung Am Rand Im Zentrum
9, — 0,2151 | — 0,1348 | — 0,0622 | — 0,0164 0 Frei aufliegend. . . 0 + 1,24
20k¢ 4,65 4,17 4,02 3,81 — Fest eingespannt . — 0,75 -1 0,49

Tabelle 3. Berechnete und gemessene maximale Radialspannungen in kg/cm? ebener, gekrempter Ringbéden

Hauptabmessungen Rechnungs- Maximale Radial-

Nr. Bauart =) in cm werte spannungen

%a | 0a l 7; ‘ 0i | h n g berechnet | gemessen
1) X f Ra 94,8 | 9,8 476 | 7,8 | 3,500 0,458 0,0732 813) 963)
11 } Eeemeninnenund anssen Bl S, isiin 50| 50l 35 0s00)| o0isTe 0,0905 269 253
10 Krempefaussen s i o Ra 30,3 | 9,5 10,8 | O 0,800 0,322 0,1103 272 293
(l Kigemperaussents i s St 30,1 | 9,5 i ) 0,754 0,0451 0,1910 512 420
9 EKremperaussens oS Ra 34,7 | 5,1 10,8 | 0 0,809 0,297 0,1178 333 356
6 Fzempefaussent St 345 | 51 iE | O 0,809 0,0415 0,2003 563 515
8 \ Eoine Kremper Ra 39,8 | O 108 | O 0,820 0,2715 0,1257 400 402
5 J { e St 39,6 | 0 ks | @ 0,820 0,0379 0,2020 658 638
2) — — 157 | 3,5 105 | 2,5 | 0,450 0,4270 0,0466 92 80

1) Fieldkessel; 2) Kompensator, Hélfte einer Linse, bei gehemmtiem Hub mit 4 atii abgepresst; 3) die Spannungen in kg/cm?
folgen aus Gleichung (22) fiir p — 1 kg/cm?; die gemessenen Spannungen sind ebenfalls auf p — 1 kg/cm? reduziert; *) Ra
bedeutet Rauchrohr; St zentrale Zugstange als Anker. Fiir die Berechnung wurden angenommen: m = 10/3, E = 2 . 100 kg

pro cm?, & — 0,5.
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Hieraus ist ohne weiteres ersichtlich, dass die grosste
Radialspannung grosser ausfillt als nach Gleichung (19).
In Bild 4c kommt die Beriicksichtigung der Nachgiebigkeit
der Krempe dadurch zum Ausdruck, dass die Nullinie hoher
hinauf riickt (00 — 0’) und dass die Schnittpunkte der Span-
nungsparabel mit ihr, also die Stellen, da o, res = 0 wird, weiter
auseinander riicken. Mit zunehmendem Krempenradius neh-
men die Spannungen in der Flachstrecke allerdings zu, die-
jenigen in der Krempe aber ab, was die Hauptsache ist. Die
Krempen wirken also mit zunehmender Weite ausgleichend.
Dass es sich so verhilt, findet man zum mindesten qualita-
tiv in allen Spannungsbildern bestéitigt. Ausser dem auf
Bild1 dargestellten Boden standen die Messergebnisse von wei-
teren elf Béden zur Verfiigung, deren Hauptdaten Bild 7 zeigt.

Es stellt sich hier die Frage nach dem geringsten zuléds-
sigen Krempenradius. Bekanntlich wird wie beim krummen
Stab theoretisch fiir ¢ — 0, ¢ = co. Praktisch tritt ein Ab-
wilzen der Spannungen bei Ueberschreiten der Fliessgrenze
auf. Auch wirkt der Umstand mildernd, dass das Spannungs-
Dehnungsdiagramm beim gebogenen Stab glinstiger verlauft
als beim geraden Zugprobestab, worauf besonders Prof. Siebel
aufmerksam gemacht hat. Erst bei einer Biegespannung, die
50 9/, Uiber der Streckgrenze fiir reinen Zug liegt, breitet sich
beim Vierkantstab der bildsame Zustand iiber den ganzen
Querschnitt aus, bei dem sich der Stab ohne weiteren Last-
anstieg zu verformen vermag. Diesen Sachverhalt kann man
in der Rechnung nicht zum Ausdruck bringen, wohl aber
lisst er sich bei der Beurteilung des Sicherheitsgrades be-
riicksichtigen. Jedenfalls ist es vorsichtig, den Krempenradius
nicht zu klein zu wihlen. Als minimaler Radius sei hier vor-
geschlagen g, = 3h; o, = 2,5h.

Die Staumauern der Societa Adriatica di Elettricita in Venetien

Von Dr. Ing. CARLO SEMENZA, Direktor der SADE, Venedig
C. Die Staumauer Pieve di Cadore am Piave

Dieses Bauwerk ist wohl das wichtigste der Kraftwerk-
gruppe Piave-Boite-Vajont, die aus einer Anzahl aufeinan-
derfolgender, am Piave und seinen Hauptzufliissen gelegener
Wasserfassungen mit den dazugehdrenden Ausgleichbecken,
Druckstollenverbindungen und Kraftwerken besteht (Bild 111).
Die grundlegende Aufgabe war die Errichtung eines so
grossen Speicherbeckens im Piavetal, dass ein Ausgleich der
Wasserdarbietung aus dem grossten Teil des Einzugsgebietes
erreicht wird und der 24,6 km lange Zulaufstollen von der
Sperrstelle bis zum Staubecken im Val Gallina, oberhalb der
Zentrale von Soverzene, annidhernd fiir die mittlere Wasser-
menge dimensioniert werden konnte.

Die Wahl der Sperrstelle war sehr schwierig, weil im
Piavetal oberhalh Perarolo kein Ort wirtschaftlich und
gleichzeitig technisch befriedigend erschien. Nach systema-
tischen geologischen Erhebungen, Sondierungen und Un-
tersuchungen in Kontrollstollen, die sich iiber zwei Jahre er-
streckten, entschlossen wir uns schliesslich fiir das uns noch
am giinstigsten scheinende Gebiet von Pian delle Ere, un-
mittelbar unterhalb Pieve di Cadore.

Die Sperrstelle liegt im Dolomitkalk des oberen Trias.
Das Talprofil besteht aus einem Trapez mit einer mittleren
Hohe von rd. 55 m und einer Basis von rd. 300 m, das durch-
wegs in einer felsigen Ebene — dem Pian delle Ere — ver-
lduft. Auf der rechten Seite dieses Tales hat der Piave eine

1) Vgl. SBZ 1949, Nr. 14, S. 186*.

Der Vergleich der nach Gleichung (21) ermittelten maxi-
malen Radialspannung mit den durchgefiihrten Spannungs-
messungen an acht Béden gemé#ss den Bildern 1 bis 3 und 7
sowie einer Kompensatorschale nach Bild 8 zeigte, dass die
Messwerte rd. 40 ¢/, iber den Rechnungswerten lagen. Dieser
Unterschied rithrt nicht von einem Fehler im Rechnungsgang
her, sondern ergibt sich ganz logisch aus dem Umstand, dass
in der mathematischen Entwicklung zuerst nur der Flachring
mit den Radien 7, und r; betrachtet wurde, sodann der beid-
seitig um ¢/3 erweiterte Flachring, wéhrend in Wirklichkeit
der Druck die ganze Bodenfliche vom Anker bis zur Zylinder-
schale, also das Gebiet von r; — g; bis r, + ¢, erfasst. Die
endgiiltige Gleichung fiir die grosste Radialspannung muss
somit lauten

(22) max 0r, res — 149

G
h2
Die nach dieser Gleichung berechneten Spannungen sind
auf Tabelle 3 den gemessenen gegeniibergestellt. Die Ueber-
einstimmung ist befriedigend. Aus Gleichung (22) folgt die
Wandstédrke

gp
Ozul

(28) B —120n 9,,/3)‘/

Die Formel fiir h ist einfach; nur die Berechnung von g
nach Gleichung (20) erfordert einige Aufmerksamkeit. Fir
o,u1 werden folgende Werte vorgeschlagen: fiir Stahl M I
1000 bis 1200 kg/cm?2, fiir Stahl MII 1200 bis 1400 kg/cm?,
bei Kompensatoren wird man bis an die Streckgrenze heran-
gehen miissen.

6. Zusammenfassung

An sechs Flachbdden mit Krempen und Mittelanker, wie
sie als Dampfkesselboden h#ufig Verwendung finden, sowie
an zwei Flachbdden ohne Krempen wurde der Spannungs-
zustand durch Messung festgestellt. Der Vergleich mit dem
theoretischen Spannungszustand von eingespannten Kreis-
ringplatten zeigt eine solche Aehnlichkeit, dass es nahe liegt,
den theoretischen Spannungszustand zur Berechnung ebener
Dampfkesselbdden heranzuziehen. Durch Vornahme verschie-
dener Vereinfachungen ldsst sich fiir die massgebende maxi-
male Radialspannung eine einfache Formel ableiten. Die Ein-
wirkung der Krempen konnte nur empirisch erfasst werden.
Der Vergleich zwischen den Messergebnissen und der vorge-
schlagenen Rechnung befriedigt. Damit sollte sich der Ge-
brauch bisheriger Faustformeln eriibrigen.

DK 627.82 (45)
Fortsetzung von Seite 22

enge, etwa 55 m tiefe, gegen die Talaxe stark konvergierende
Schlucht ausgewaschen, Bilder 12 und 13.

Die Vermutung, es konnte sich auf der linken Talseite
ein epigenetisches Flussbett vorfinden, erwies sich auf Grund
geologischer Untersuchungen als unbegriindet. Die stark un-
symmetrische Form des Profils und die erwédhnte Konvergenz
der Schlucht bei der Sperrstelle erforderte eingehende Un-
tersuchungen zur Abklirung des giinstigsten Staumauertyps.

Die Breite des Talprofils liess anfangs den Gedanken
aufkommen, ein gemischtes Bauwerk anzuwenden, bei dem
die rechtsseitig liegende Schlucht durch eine diinne Bogen-
staumauer abgeriegelt wiirde, wihrend der fiibrige Teil die
Form einer vollen oder aufgeldsten Gewichtsmauer erhalten
sollte. Dabei hitte ein grosses Widerlager die Bogenmauer
stiitzen miissen. Die an der technischen Hochschule in Mai-
land durchgefiihrten Versuche ergaben fiir die Widerlager-
basis sehr hohe Zugspannungen, deren Beseitigung nur durch
eine die Wirtschaftlichkeit der Losung stark beeintréchti-
gende Mehrkubatur zu erreichen gewesen wéire.

Darauf wurde eine die Terrasse und die Schlucht durch-
querende Schwergewichtsmauer erwogen; in der Schlucht
selbst sah man dabei die Anordnung eines besondern Ab-
schlussbauwerkes vor, das aber wegen der schiefen Stellung
der Schlucht gegeniiber der Talaxe eine sehr grosse Beton-
kubatur erfordert hitte. Auch mussten die statischen Ver-
héltnisse, die sich aus der gegenseitigen Neigung der Axen
der unteren und der oberen Mauerpartie ergaben, eher als un-
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