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SCHWEIZERISCHE BAUZEITUNG 69. Jg. Nr. 1

Sonnenuhr und Zeitgleichung dk529.78

Von Prof. H. GUGLER, Zürich

Ingenieur A. Steinbrüchel hat in einem früheren Aufsatz1)
über die Konstruktion von Sonnenuhren berichtet, der jedem,
der sich für die Bewegungen der Gestirne am Himmel interessiert,

das Verständnis der Sonnenuhren vermittelt und ihm
ermöglicht, sich gegebenenfalls eine solche Uhr selber zu
erstellen.

Zeiger der Sonnenuhr ist bekanntlich der Schatten eines
der Erdaxe parallelen und daher auf den Himmelspol
gerichteten Stabes. Da der Schatten den Bewegungen der Sonne
am Himmel folgt, zeigen die Sonnenuhren die «wahre», dem
Meridian ihres Standortes entsprechende Sonnenzeit, die, wie
wir sehen werden, mit der «mittleren» Sonnenzeit, nach der
unsere mechanischen Uhren gehen, nicht genau übereinstimmt.
Der Unterschied rührt zum Teil davon her, dass unsere
Uhren den Mittag dann anzeigen, wenn die Sonne durch den
15. Meridian östlich Greenwich geht ; d. h. sie sind auf
mitteleuropäische Zeit (MEZ) eingestellt. Für Zürich z. B. geht
die MEZ gegen die mittlere Ortszeit 25,8 min vor. Da der
Unterschied zwischen der MEZ und der mittleren Ortszeit
über das ganze Jahr der gleiche ist, kann man Sonnenuhren
auch auf MEZ korrigieren, was in neuerer Zeit manchmal
geschieht; wie diese Korrektur durchzuführen ist, hat A.
Steinbrüchel in seinem Aufsatz angegeben.

Auch eine so korrigierte Sonnenuhr stimmt noch nicht mit
einer auf MEZ eingestellten gewöhnlichen Uhr überein, aus
Gründen, auf die im folgenden eingegangen wird. Die
entsprechenden Korrekturen ändern sich periodisch im Laufe des Jahres
und werden in ihrer Gesamtheit als Zeitgleichung bezeichnet.
So muss für einen bestimmten Kalendertag die Zeitgleichung
(unter Berücksichtigung ihres Vorzeichens) zur wahren
Sonnenzeit addiert werden, damit die mittlere Sonnenzeit
erhalten wird. Sie ist also positiv, wenn die Sonnenuhr gegen
die mittlere Sonnenzeit nachgeht und negativ, wenn die
Sonnenuhr vorgeht.

Die Zeitgleichung kann entweder in Tabellenform
angegeben werden, wie dies in astronomischen Jahrbüchern
geschieht, oder anschaulicher in Form einer Kurve. Im Aufsatz

Steinbrücheis ist die Zeitgleichungskurve dargestellt
(Abb. 1), und es wird dazu bemerkt, dass sie in der
theoretischen Astronomie abgeleitet werde. Bei ihrer Betrachtung
fällt die etwas komplizierte Gestalt mit zwei verschieden
grossen Maxima und Minima auf, ausserdem auch die ziemlich

grossen Beträge der Korrekturen, die bis zu rd. einer
Viertelstunde ansteigen.

Ich habe mich bemüht, die Kurve, die sich aus den
Gesetzen der Planetenbewegung ergibt, in einer dem Ingenieur
leicht verständlichen Weise und ohne Benützung astronomischer

Jahrbücher abzuleiten. Dabei ging es mir hauptsächlich
um das Grundsätzliche und weniger um eine möglichst grosse
Genauigkeit.

Zunächst seien die astronomischen Tatsachen, auf denen
unsere Zeiteinteilung beruht, in Kürze angeführt:

1. Der Erdmittelpunkt bewegt sich um die Sonne in einer
festen Ebene, deren Schnittlinie mit der Himmelskugel
Ekliptik genannt wird.

2. Die Erdbahn ist eine Ellipse, in deren einem Brennpunkt

die Sonne steht.
3. Die Rotationsaxe der Erde steht auf der Ebene der

Erdbahn nicht senkrecht; vielmehr bildet sie mit der
Normalen zur Bahnebene einen unveränderlichen Winkel von
rd. 23,5 °. Dieser Winkel ist konstant, obwohl die Erdaxe ihre
Lage im Raum verändert ; sie beschreibt nämlich den Mantel
eines Kreiskegels um die Normale zur Bahnebene, welche
Bewegung Präzession genannt wird.

4. Die Neigung der Aequatorebene gegen die Ekliptik ist
gleich dem oben genannten Winkel von 23,5 ° und wird als
die Schiefe oder besser die Neigung der Ekliptik bezeichnet.
Die Schnittgerade beider Ebenen ist die Linie der Tag- und
Nachtgleichen (Aequinoktiallinie). Sie verbindet den
Frühlingspunkt mit dem Herbstpunkt der Ekliptik. Wegen der
Präzession liegt diese Linie nicht fest ; vielmehr bewegt sich
der Frühlingspunkt in der Ekliptik stetig weiter, und zwar
entgegengesetzt der Bewegung der Sonne in der Ekliptik.
Die Geschwindigkeit dieser Bewegung ist sehr gering und

') SBZ, Bd. 107, S. 291* vom 27. Juni 1936.

beträgt etwa 50 Bogensekunden im Jahr. Die Präzession
spielt für die Berechnung der Zeitgleichung keine Rolle, muss
aber trotzdem erwähnt werden, weil die Definition des
Kalenderjahres und des mittleren Sonnentages damit
zusammenhängt.

5. Das bürgerliche oder Kalenderjahr ist das sogenannte
tropische Jahr, d. h. die Zeit, welche die Sonne braucht, um
vom Frühlingspunkt bis wieder zum Frühlingspunkt zu
gelangen, und das daher dem Wechsel der Jahreszeiten ange-
passt ist. Es entspricht nicht, wie man zunächst denkt, der
Zeit eines vollen Umlaufes der Sonne in der Ekliptik oder,
was dasselbe bedeutet, eines vollen Umlaufes der Erde in
ihrer Bahn. Da der Frühlingspunkt der Sonne entgegenläuft,
gelangt die Sonne etwas früher zu ihm zurück, als es einem
vollen Umlauf entspricht. Die einem vollen Umlauf entsprechende

Zeit wird als siderisches Jahr bezeichnet und ist rund
20 min länger als das tropische.

6. Wegen der ungleichen Länge der wahren Sonnentage
hat man den mittleren Sonnentag eingeführt durch Bildung
des arithmetischen Mittels der Länge der einzelnen Sonnentage

während eines tropischen Jahres. Das Ergebnis ist, dass
das tropische Jahr 365,24 mittlere Sonnentage hat.

Die ungleiche Länge der einzelnen Sonnentage, die zur
Einführung des mittleren Sonnentages und der Zeitgleichung
geführt hat, ist auf zwei Ursachen zurückzuführen, nämlich
auf die elliptische Gestalt der Erdbahn und die Neigung der
Ekliptik gegen den Aequator. Zur Berechnung der Zeitgleichung

gehen wir nun so vor, dass wir die Wirkung der beiden

Ursachen getrennt ermitteln und die Ergebnisse
summieren. Demnach sind folgende zwei Fälle zu behandeln:

Fall I : Statt der wirklichen Erde wird eine Hilfserde Et
angenommen, die sich in ihrer Bahn mit der dem zweiten
Keplerschen Gesetze entsprechenden variablen Geschwindigkeit

bewegt, deren Rotationsaxe jedoch auf der Bahnebene
senkrecht steht.

Fall II : Es wird eine Hilfserde E2 angenommen, die sich
in ihrer Bahn mit konstanter Geschwindigkeit bewegt, jedoch
sei die Erdaxe gegen die Ebene der Erdbahn um einen
konstanten Winkel geneigt.

Diese Kennzeichnung der beiden Fälle entspricht der
heliozentrischen Betrachtungsweise (Sonne steht still, Erde
bewegt sich). Man kann aber, da für unsere Zwecke nur die
Relativbewegungen eine Rolle spielen, auch die geozentrische
Betrachtungsweise gebrauchen (Erde steht still, Sonne
bewegt sich). Tut man dies, so ist der Fall I wie folgt zu
kennzeichnen : Statt der wahren Sonne wird eine Hilfssonne St

angenommen, die sich das ganze Jahr im Aequator und in
diesem mit variabler Geschwindigkeit bewegt. Beim Fall II
wird eine zweite Hilfssonne S2 angenommen, die sich am
Himmel in der Ekliptik mit konstanter Geschwindigkeit
bewegt. Für den Fall I erscheint mir die heliozentrische
Betrachtungsweise anschaulicher zu sein, während für den
Fall II die Berechnung auf Grund der geozentrischen
Betrachtungsweise bequemer ist.

In Bild 1 ist die Bahnellipse der Erde mit übertriebener
Exzentrizität gezeichnet. Punkt P ist die Stellung der Erde
in Sonnennähe (Perihel) und A die Stellung in Sonnenferne
(Aphel). a, die grosse Halbaxe der Ellipse, ist die mittlere
Entfernung Erde-Sonne ; rx und r2 bedeuten die Extremwerte
der Radien-Vektoren.

Die Dauer eines wahren Sonnentages der Hilfserde Ex ist
zunächst gleich der Dauer einer vollen Axendrehung der
Erde, die mit dem Sterntag identisch ist. Während des Sterntages

hat der Erdmittelpunkt in seiner Bewegung um die
Sonne einen gewissen Winkel r zurückgelegt. Um den
gleichen Winkel muss sich die Erde um ihre Axe weiterdrehen,
bis sie wieder die gleiche Stellung zur Sonne einnimmt. Die
Dauer einer vollen Axendrehung der Erde ist konstant,
solange keine bremsenden, d. h. Rotationsenergie verzehrenden
Wirkungen vorhanden sind. Solche gibt es zweifellos, nämlich

die Flutwellen der Weltmeere und die Windströmungen.
Nun sind ihre Einflüsse im Vergleich zur Rotationsenergie
der Erdkugel so gering, dass eine Verlängerung des irdischen
Tages in der (geologisch gesprochen) sehr kurzen Zeitspanne,
in der genaue Messungen möglich sind, nicht hat nachgewiesen

werden können. Dies erscheint deshalb erwähnenswert,

weil unsere Zeiteinheit, die Sekunde, als der 86400. Teil
des mittleren Sonnentages definiert ist.
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P Pol des Aequators
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W AR Aequator

^Ekliptik
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Demgegenüber ist der Winkel % veränderlich gemäss dem
zweiten Keplerschen Gesetze, das besagt, dass die Radien-
Vektoren der Planeten in gleichen Zeiten gleiche Flächenräume

zurücklegen. Bezeichnen wir die Winkelgeschwindigkeit
des Erdmittelpunktes in seiner Bewegung um die Sonne

entsprechend den Radien-Vektoren rt, rm, r2 mit «,, u>m, <w2,

so gilt:

rlUl 2 — ' m 0-'m~

woraus sich ergibt:

_Cuj_
tum

Für die Erde sind folgende Zahlenwerte einzusetzen:
a rm 150 10» km

Die Exzentrizität ist
c a/59 2,54 IO6 km

folglich :

(150 — 2,54) • 10° 147,46 IO6 km
(150 + 2,54) • 10« 152,54 10" km

150

^ 147,46
: 1,034

Die Winkelgeschwindigkeit im Perihel ist also 1,034 mal so
gross als im Mittel, folglich auch der Winkel t ¦ Da die Erde
in 365 Tagen 360° zurücklegt, ist r mittel 0,99». t im
Perihel 1,034 0,99 1,024 °. Also ist % im Perihel 1,024 —
0,990 0,034 » grösser als im Mittel.

Da ein Winkelgrad vier Zeitminuten entspricht, so
entsprechen 0,034 ° einer Zeit von 0,136 Minuten oder 7,96 Sekunden.

Am Tage, an dem die supponierte Erde E, durch das
Perihel geht, braucht sie also ziemlich genau acht Sekunden
länger als im Mittel, um wieder in die gleiche Lage zur Sonne
zu kommen. Mit andern Worten : an diesem Tage ist auf der
Erde E1 der wahre Sonnentag 8 s länger als der mittlere, und
es besteht zwischen der Sonnenuhr und einer auf mittlere
Sonnenzeit gehenden Uhr eine Gangdifferenz von 8 s täglich
im Sinne des Nachgehens der Sonnenuhr.

Eine entsprechende Rechnung für den Tag des Aphels
ergibt, dass dann eine Gangdifferenz von ebenfalls 8 s
besteht zwischen der Sonnenuhr und einer auf mittlere Sonnenzeit

einregulierten Uhr (wir wollen sie der Kürze halber
Normaluhr nennen) im Sinne eines Vorgehens der Sonnenuhr.

Keine Gangdifferenz besteht nur bei den Punkten B
und B< (Bild 1), wo die Erde sich in der mittleren Entfernung

von der Sonne befindet.
Die Bestimmung der Zeitgleichung, soweit diese von der

elliptischen Gestalt der Erdbahn abhängt, läuft nun darauf
hinaus, die Unterschiede in den Zeitangaben festzustellen
zwischen der einen konstanten Gang besitzenden Normaluhr
und einer auf der Erde Ex aufgestellten Sonnenuhr mit periodisch

variablem Gang. Zu diesem Behufe denken wir uns zu
irgendeiner Stunde des Periheltages die Zeiger beider Uhren
gleichgestellt, so dass voraussetzungsgemäss an diesem Tage
die Zeitgleichung gleich null ist. Bewegt sich nun die Erde
vom Punkte P nach dem Punkt B (Bild 1), so geht während
dieser Zeit die Sonnenuhr ständig nach, anfangs 8 s täglich,
dann mit immer kleiner werdenden Beträgen, bis schliesslich
bei B das Nachgehen aufhört und in ein Vorgehen übergeht.
Bis dahin haben sich also die täglichen Nachgänge bis zu
einem gewissen Höchstwerte aufsummiert. Wandert die Erde
weiter von B nach A, so geht jetzt die Sonnenuhr mit an¬

fangs kleinen und immer grösser werdenden Tagesbeträgen
vor, so dass bis zum Punkte A die aufsummierten Nachgänge
abgebaut werden und in A die Zeitgleichung wieder den Wert
Null annimmt. Auf dem Wege der Erde von A über B' nach
P spielen sich die gleichen Vorgänge mit umgekehrten
Vorzeichen ab : bis B' Aufsummieren der Vorgänge bis zum
Maximalwert, dann Abbau dieses Wertes bis auf Null, weil
bei B' die Sonnenuhr wieder nachzugehen beginnt.

Es muss noch bemerkt werden, dass die Punkte B und
B' wohl geometrisch in der Mitte zwischen A und P liegen,
nicht aber zeitlich. Wegen der im Winterhalbjahre kleineren
Werte der Radien-Vektoren bewegt sich die Erde im Winter
durchschnittlich rascher als im Sommer, so dass das
Winterhalbjahr rd. 8 Tage kürzer ist als das Sommerhalbjahr. Streng
genommen musste sich daher derjenige Teil der Sinuslinie I
(Bild 3), der dem Sommerhalbjahr entspricht, über eine

beidseitig um 4 Tage längere Abszissenstrecke ausdehnen. Für
unsere Zwecke können wir ohne nennenswerten Fehler davon
absehen, weil zu diesen Zeitpunkten die Gangunterschiede der
miteinander verglichenen Uhren verschwindend klein sind.

Jetzt verbleibt uns die Aufgabe, die Beträge zu berechnen,

auf die sich die Nachgänge und Vorgänge der Sonnenuhr

aufsummiert haben, d. h. die Maximalwerte der Zeitgleichung

zu bestimmen. Da es sich um einen periodischen
Vorgang handelt, wird die Zeitgleichung durch eine Sinuslinie
darstellbar sein, die infolge der oben gemachten vereinfachenden

Annahme eine Periode von 365 Tagen aufweist. Die
Gleichung der Sinuslinie lautet: y fesin x. Wählt man als
Einheit auf den Koordinatenaxen den Tag, so entsprechen

einem Abszissenwert 2 m 365 Tage
einem Abszissenwert n/2 365/4 91,25 Tage
einem Ordinatenwert 1 sin^c/2) 365/2 n 58,1 Tage

Die Konstante k gibt die Steigung der Sinuslinie im Ursprung
an, denn dy/dx k cos x ergibt für x 0 den Wert k. Diese
Steigung haben wir berechnet zu 8 s pro 86400 s. Die
Konstante hat also den Wert k 8/86400 oder 1/10800. Wird als
Einheit in der Ordinatenaxe ebenfalls der Tag gewählt, so
ergibt sich als Scheitelwert der Sinuslinie für k 1 der
Betrag von 58,1 Tagen und für k 1/10 800 der Wert von 58,1 :

10800 Tagen. In Bild 3 wurde als Einheit in der Ordinate
nicht der Tag, sondern die Minute gewählt, so dass der
obengenannte Wert noch mit 24 • 60 1440 multipliziert werden
muss. Somit ergibt sich der Scheitelwert zu 58,1 ¦ 1440/10 800
7,8 Minuten.

Entsprechend diesen Berechnungen wurde in Bild 3 die
gestrichelte Sinuslinie als Zeitgleichung für den Fall I
eingezeichnet; sie zeigt also denjenigen Teil der Zeitgleichung,
der durch die elliptische Gestalt der Erdbahn bedingt ist. Zu
erwähnen bleibt nur noch, dass im Jahre 1950 der Tag des
Perihels auf den 3. Januar fiel.

Wir wenden uns nun dem Fall II zu, d. h. der Ermittlung
desjenigen Teils der Zeitgleichung, der seine Ursache in der
Neigung der Ekliptik hat. Wie erwähnt, werden wir hier die
geozentrische Betrachtungsweise anwenden, wie sie in Bild 2
dargestellt ist. In der Astronomie werden zur Kennzeichnung
der Lage eines Gestirnes auf der Himmelskugel zweierlei
Koordinatensysteme gebraucht, nämlich das System Aequator
und Pol des Aequators, oder das System Ekliptik und Pol
der Ekliptik. Das erstgenannte entspricht dem für die
Erdkugel angewendeten System; es besteht lediglich ein Unterschied

in der Bezeichnungsweise, indem anstelle der
geographischen Breite der Ausdruck Deklination und anstelle der
geographischen Länge der Ausdruck Rektaszension verwendet
wird. Beim zweiten, dem Ekliptikalsystem, spricht man wie
bei den geographischen Koordinaten von Länge und Breite.
Steht in Bild 2 die Sonne im Frühlingspunkte F, so erfahre
sie eine tägliche Zunahme in der Länge im Betrage von J L.
Das bei C rechtwinklige, sphärische Dreieck FCB bedeckt
einen so kleinen Teil der Kugelfläche, dass es wie ein ebenes
behandelt werden kann. Folglich ist

AR z/l/cos e

Kurz vor dem Sommersolstitium bei Q stehe die Sonne
in S und erfahre eine tägliche Zunahme in der Länge im
Betrage von /S L. Im bei Q rechtwinkligen sphärischen Dreieck

PQS ist die Seite P Q b 90 — e, die Seite Q S
a AL und der Winkel a — JR. Nach den Formeln für
rechtwinklige Kugeldreiecke ist

tea .„ tgJL tgJLtg a -te— oder tg AR
sin b sin (90 — s) cos e
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Da man bei kleinen Winkeln statt der Tangens auch den
Bogen setzen kann, bekommt man

AR
cos a

Aus diesen Berechnungen geht hervor, dass zur Zeit der
Aequinoktien AR kleiner ist als z/L und zur Zeit der Sol-
stitien grösser. Voraussetzungsgemäss ist für den Fall II der
tägliche Betrag von Ali über das ganze Jahr gleich gross,
während AR in seinem Betrage periodisch wechselt. Der
tägliche Zuwachs der Hilfssonne 8t in der Ekliptik beträgt
360 °/365 ° 0,99 °. Da e 23,5 « ist, ist cos s 0,92 und
1/cos s 1,085. Somit ergeben sich folgende Werte für AR:
zur Zeit der Aequinoktien ist AR min 0,92 0,99° 0,91°

zur Zeit der Aequinoktien ist AR mittel 0,99°
zur Zeit der Solstitien ist ißmax 1,085 • 0,99° 1,07°

Die Differenz zwischen den Extremwerten und dem Mittelwert

beträgt also 0,08 °. Für den Gang einer Sonnenuhr
entsprechend der Hilfssonne S2 ist nun nicht die Zunahme in
Länge, sondern die Zunahme in Rektaszension massgebend,
weil sich im Laufe eines Tages die Sonne in einer Ebene
senkrecht zur Erdaxe, also in einer Ebene parallel zum
Aequator bewegt. Da ein Winkelgrad 4 Zeitminuten oder
240 Zeitsekunden entspricht, so macht ein Winkelunterschied
von 0,08 ° den Betrag von 240 • 0,08 19,2 s aus. Daraus geht
folgendes hervor: Zur Zeit der Aequinoktien geht die
Sonnenuhr der Normaluhr vor, weil zu dieser Zeit die Sonne
sich im Aequator rascher bewegt als in der Ekliptik; zur
Zeit der Solstitien geht die Sonnenuhr im Vergleich zur
Normaluhr nach, weil sie sich zu dieser Zeit im Aequator
langsamer bewegt als in der Ekliptik. Der maximale tägliche
Gangunterschied beider Uhren beträgt wie berechnet 19,2 s.

Zur Berechnung der Zeitgleichung verfahren wir jetzt
ganz entsprechend, wie wir es beim Fall I getan haben und
denken uns an dem Tage, da die Sonne durch den
Frühlingspunkt geht, also am 21. März, die Zeiger der Sonnenuhr
und der Normaluhr gleichgestellt. Da die Sonnenuhr an
diesem Tage 19,2 Sekunden vorgeht, summieren sich die Beträge
des Vorgehens wiederum auf bis zu dem Tage, wo das
Vorgehen der Sonnenuhr in ein Nachgehen übergeht, was in der
Mitte zwischen den Aequinoktien und den Solstitien der Fall
ist. Von diesem Tage an bis zum Solstitium wird der
aufsummierte Betrag wieder abgebaut, so dass zur Zeit der
Solstitien die Zeitgleichung wiederum zu Null wird.

Man erkennt daraus, dass im Falle II die Zeitgleichung
eine Sinuslinie sein wird mit einer Periode von einem halben
Jahr 182,5 Tagen. In diesem Falle entsprechen

dem Abszissenwert 2 n 182,5 Tage
dem Abszissenwert jt/2 45,5 Tage
dem Ordinatenwert 1 sin jt/2) 182,5/2« 29 Tage

Die Konstante k bekommt den Wert 19,2 s/86400 s 1/4500.
Folglich betragen die Scheitelwerte der Sinuslinie 29/4500 Tage
oder 29 1440/4500 min 9,3 min.

Entsprechend diesen Zahlenwerten wurde in Bild 3 die
Zeitgleichung, soweit sie durch die Neigung der Ekliptik
bedingt ist, eingezeichnet (schwach ausgezogen). Die resultierende

Zeitgleichung ergibt sich nun aus der Ueberlagerung
der beiden Sinuslinien und ist in Bild 3 stark ausgezogen.
Vergleicht man diese resultierende Zeitgleichungskurve mit
der im Aufsatz von A. Steinbrüchel mitgeteilten Kurve, so
erkennt man, dass trotz den gemachten vereinfachenden An¬

nahmen, insbesondere der Annahme, dass das
Winterhalbjahr ebenso lang sei wie das
Sommerhalbjahr, eine sehr gute Uebereinstimmung
vorhanden ist. In Bild 3 wurden bei der
resultierenden Zeitgleichungskurve die Maximalwerte

und die Nullwerte mit den gleichen
Zahlen eingetragen wie sie in Bild 1 im Aufsatz

von A. Steinbrüchel angegeben sind. Ein
kleiner Unterschied besteht lediglich beim
Nullwert der Zeitgleichung, der nach
Steinbrüchel auf den 1. September fallen sollte,
während er in Bild 3 etwa auf den 29. August
fällt.

Man könnte gegen die von mir gezeigte
Berechnung der Zeitgleichungskurve III
folgendes einwenden:

Die wahre Sonne wurde in zwei
Hilfssonnen jSj und 82 zerlegt und angenommen,

dass S, am Tage des Perihels (3. Januar), Sä am Tage
des Wintersolstitiums (22. Dezember) ihren Kreislauf um
die Himmelskugel beginnen, während streng genommen beide
Hilfssonnen genau zum gleichen Zeitpunkt ihren Umlauf
antreten sollten. Zwischen dem 22. Dezember und 3. Januar
bleibt St täglich rd. 8 s und S2 19 s gegen die mittlere Sonne
zurück, folglich schreitet 82 täglich 11 s langsamer vorwärts,
als £,, welcher Betrag sich in 12 Tagen auf 132 s auf
summiert. Wenn also Sj und S2 gleichzeitig durch das Winter-
solstitium gehen, so gehen sie praktisch auch gleichzeitig
durch das Perihel. Der kleine Unterschied von 132 s kann
schon deshalb keine Rolle spielen, weil wir die Zeitgleichung
lediglich für einen bestimmten Kalendertag, nicht aber für
eine bestimmte Stunde dieses Tages zu berechnen haben.

Die Zeitgleichung erklärt auch auf einfache Weise eine
Erscheinung, die wahrscheinlich schon mancher Leser
beobachtet hat. Wenn im Januar die Tage länger zu werden
beginnen, so entfällt die Verlängerung zum grösstenTeil auf
den Nachmittag und nur zu einem kleinen Teil auf den
Vormittag. Die Zeitpunkte des Sonnenauf- und -Unterganges
liegen natürlich symmetrisch zum wahren Mittag. Anfangs
Januar bleibt aber der wahre Mittag gegen den mittleren
zurück, oder der mittlere Mittag eilt dem wahren Mittag
voraus, so dass der mittlere Mittag die Zeit zwischen
Sonnenaufgang und Sonnenuntergang in zwei ungleiche Teile
zerlegt.

So kann z. B. einem Kalender, in dem die Zeiten der
Sonnenauf- und -Untergänge für unsere Breiten täglich
vermerkt sind, entnommen werden, dass in der Zeit vom 7. bis
14. Januar die Tageslänge um 11 Minuten zunimmt, von denen
nur 3 Minuten auf den Vormittag und 8 Minuten auf den
Nachmittag entfallen.

MITTEILUNGEN
Von der Wasserversorgung der Stadt Basel wird im

Monatsbulletin des Schweizerischen Vereins von Gas- und
Wasserfachmännern vom Dezember 1949 berichtet. Der
geschichtliche Rückblick dieser Publikation geht auf das Jahr
1865 zurück, als das heutige Druckwassersystem mit der
Zuleitung von Quellwasser von Grellingen und Angenstein
mit einem Behälter von 4000 m' Inhalt auf dem Bruderholz
erstellt wurde. 1905 ist die Vorratshaltung auf 14 000 m3
erhöht und eine Doppelfilteranlage errichtet worden. Da der
Quellerguss zwischen 2500 und 12 000m3/Tag schwankt (Minimum

1947 nur 1500 m3/Tag) und bald nicht mehr genügte,
ging man schon 1880 an die Ausnützung des Grundwasserstromes

längs der Wiese. Heute bestehen dort 28 Entnahmestellen

mit einer normalen Ergiebigkeit von 110 000 m3/Tag.
Der Wasserverbrauch der Stadt betrug zu Beginn des
Jahrhunderts etwa 25 000 m3/Tag und stieg bis 1925 auf das
Doppelte. Eine erhebliche Zunahme des grössten Tagesverbrauches

war wegen der Hochkonjunktur der Industrie vom Jahre
1945 mit 87000 m3 auf das Jahr 1946 mit 103 C00 m3 zu
verzeichnen. In der Trockenperiode 1947 ging die Grundwasserergiebigkeit

auf 60 bis 70000 m3/Jahr zurück, so dass
empfindliche Einschränkungen verhängt werden mussten. In
letzter Zeit ist die Wasserabgabe an die gewerblichen
Betriebe (ohne Grossindustrie, die meistens über eigene,
umfangreiche Wasserversorgungen verfügt) fast gleich gross wie
der Wasserbedarf der Haushaltungen. Die spezifischen
Verbrauchsziffern liegen in ähnlicher Grössenordnung wie in
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