Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 68 (1950)

Heft: 3

Artikel: Freitragende Rohrbrücken der Ruhrgas-A.-G.

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-57956

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bild 20. Drei Aufnahmen der Schwingungsrichtung am Schaufelkopf für das Seitenverhältnis 10/1 und 15° Verdrillung. Die Schwingungsrichtung ist gegen die 2. Hauptträgheitsaxe des Fussquerschnittes und damit gegen die Erregungsrichtung um 21° verschoben.

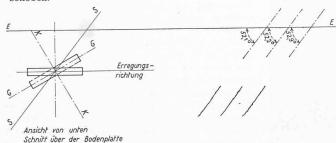


Bild 21. Drei Aufnahmen der Schwingungsrichtung am Schaufelkopf für das Seitenverhältnis $10/1\,$ und $30^{\,0}$ Verdrillung. Die Schwingungsrichtung SS ist gegen die Hauptträgheitsaxe des Fussquerschnittes um $52.4^{\,0}$ verschoben.

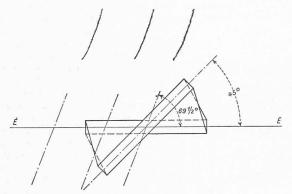


Bild 22. Drei Aufnahmen der Schwingungsrichtung am Schaufelkopf für das Seitenverhältnis 10/1 und 45° Verdrillung. Die Erregungsrichtung EE fällt wie bei den Bildern 20 und 21 mit der 2. Hauptträgheitsaxe des Fussquerschnittes zusammen. Die Schwingungsrichtung ist gegen sie um $69^{1/2}$ ° verschoben. Die Schwingungsform ist eine schwach gekrümmte Kurve.

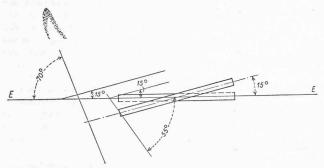


Bild 23. Schwingungsform (links oben, schwach sichtbar) am Schaufelkopf bei einem Seitenverhältnis 20/1 und 15° Verdrillung. Die Erregungsrichtung EE fällt mit der 2. Hauptträgheiteaxe des Fussquerschnittes zusammen. Die Schwingungsform ist keine gerade Linie, sondern eine verwickelte Kurve, deren Hauptrichtung um 40° gegen die 2. Hauptträgheitsaxe verschoben ist.

[Die Ausschläge auf den Bildern 9, 20 bis 23 sind von nicht reproduzierfähigen Kopien der Originaldiagramme nachgezeichnet worden. Die Red.]

Diese Schwingung ist deshalb so besonders eigenartig, weil bei ihr im Gegensatz zu der Erfahrung bei sämtlichen bisher bekannten Resonanzerscheinungen an Körpern, die dem Geradliniengesetz gehorchen, die Frequenz der Ausschläge nicht mit der Frequenz der rein sinusförmigen Erregung übereinstimmt, wie man dies sowohl nach den bisherigen Erfahrungen, als auch aus theoretischen Gründen zunächst unbedingt erwartet. Die einzige, aber noch ziemlich leicht verständliche Ausnahme der Theorie ist der von Mettler²) be-

handelte Fall der Biegeschwingungen eines Stabes unter pulsierender Axiallast, der aber erstens lediglich eine halb so rasch wie die Erregung wechselnde Schwingung ergibt und zweitens meines Wissens versuchsmässig noch nicht untersucht worden ist.

Das gegenüber den gedrungeneren Profilen einschliesslich dem Profilverhältnis 10/1 bei der Hochkantschwingung stark abweichende Verhalten des Profils 20/1 zeigen endlich auch die am Stabkopf aufgenommenen Diagramme der Schwingungsform (Bilder 20 bis 23). In guter Annäherung ist bei allen drei Verdrillungen die Schwingungsform eine gerade Linie bei 15° Verdrillung ist diese leicht gekrümmt (Bild 20), bei 30° fast genau geradlinig (Bild 21), und bei 45° ist sie ein sehr schlankes S (Bild 22). Im auffallenden Gegensatz hierzu ist sie beim Profilverhältnis 20/1 bereits bei 15° von viel verwickelterer, etwa nierenförmiger Gestalt (Bild 23), während bei 30° und erst recht bei 45° Verdrillung neben der weiteren Verwicklung der Schwingungsform die Ausschläge so vielmals grösser wurden, dass sie infolge starken Ueberschreitens der Diagrammbreite nicht mehr verzeichnet werden (Schluss folgt)

Freitragende Rohrbrücken der Ruhrgas-A.-G.

DK 624.21:621.532.3

Zur Wiederherstellung des Gasversorgungsnetzes, das durch Kriegsschäden stark gelitten hatte, hat die Ruhrgas A.-G. die im Zuge ihrer Hauptleitung liegenden Kreuzungen des Rhein-Hernekanals durch freitragende Rohrbogen mit

Spannweiten von 60 bis 70 m überbrückt. Dabei wurde das Hauptrohr von 600 mm l.W. und 8 mm Wandstärke durch zwei angenähert parallel geführte Rohrbogen gegen die Beulgefahr infolge der Windkräfte ge-

SCHWEIZERISCHE BAUZEITUNG

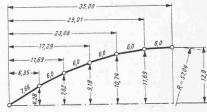


Bild 1. Abmessungen des Brückenbogens

schützt, so dass der Verbundquerschnitt gemäss den Bildern 2 und 3 entstand. Mit Rücksicht auf die zu erwartenden beträchtlichen Verschiebungen der beiden Widerlager infolge des Bergbaues (Kohlenzechen) mussten die Brücken als Zweigelenkbogen ausgeführt werden, was besondere Gelenkstücke erforderlich machte, für die eine einfache Lösung gefunden wurde. Der Berechnung wurden Temperaturschwankungen zwischen + 45° und - 20°C, eine einseitige Windbelastung senkrecht zum Bogen, eine ein- oder eine beidseitige Schneebelastung senkrecht zum Bogen, eine einseitige Widerlagerabsenkung von 1,5 m oder eine horizontale Widerlagerverschiebung von 0,2 m, ferner eine Widerlagerdrehung um 1º um die Bogenaxe zu Grunde gelegt. Die ersten beiden Brükken wurden aus 6 m langen Elementen auf beiden Kanalufern durch Schweissung auf Lehrgerüsten zu je einer Hälfte aufgebaut, dann mit zwei Derricks eingeschwenkt und im Scheitel geschweisst. Bei der dritten Brücke konnten die beiden Hälften im Werk fertig gestellt, auf einem Kahn an den Aufstellungsort gebracht und dann mit einem Derrick und einem Schwimmkran aufgestellt und eingeschwenkt werden. Eine ausführliche Beschreibung hat H. Geilenkeuser, Essen, in «Das Gasund Wasserfach», Nr. 21 vom November 1949 veröffentlicht. Ueber Flusskreuzungen mit frei aufgehängten Rohrleitungen berichtet W. Bauser in der selben Zeitschrift, Nr. 14 vom 1. August 1949. Dabei handelt es sich um Rohre von 200 bis 440 mm l.W., die an Tragwerken mit Rundstäben von 16 bis 20 mm Durchmesser aufgehängt sind. Diese «Zügelgurt»-Rohrbrücken weisen Spannweiten von 64 m (Enz bei Pforzheim), 90 m (Neckar), 2×45 m (Donau bei Ulm) auf und zeichnen sich durch kurze Bauzeiten aus.

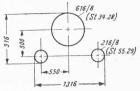


Bild 2. Verbundquerschnitt der freitragenden Rohrbrücke

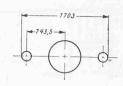


Bild 3. Verbundquerschnitt am Fuss der Brücke

²) E. Mettler: Biegeschwingungen eines Stabes unter pulsierender Axiallast. «Mitt. Forsch.-GHH-Konz.» 1940, Heft 1.