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Nr. 13

Berechnung des Belastungsausgleiches in Verteilanlagen

Von Dipl.Ing. R. HENZI, Ziirich

I. Einleitung

Bei der Dimensionierung von Verteilanlagen irgendwel-
cher Art, z. B. von Rohrleitungen fiir Gas, Kalt- und Warm-
wagsser, Heizwasser, Kabel fiir elektrische Energie usw. ist
die Bestimmung der in den einzelnen Leitungsstrédngen maxi-
mal durchfliessenden Mengen die schwierigste Aufgabe.
Wird von einem Leitungsstrang nur ein einzelner Apparat
bedient, so ist die maximal durchfliessende Menge gleich
seinem Anschlusswert a. Sind dagegen an ihm m solcher
Apparate angeschlossen, die nur zeitweise und kurzfristig
im Betrieb stehen und betrieblich vollkcmmen voneinander
unabhingig sind, so wird der Praktiker seiner Berechnung
nicht die Menge ma, sondern eine kleinere Menge m'a zu-
grunde legen. Er erachtet es mit Recht als «sehr unwahr-
scheinlich», dass gerade alle m Apparate gleichzeitig im Be-
triebe stehen, wiahrend die Wahrscheinlichkeit fiir gleichzei-
tigen Betrieb von m’' Apparaten schon sehr viel grosser sei.
Ueber den Quotienten m’'/m <1 liegen, sofern es sich im be-
treffenden Arbeitsgebiet um h#ufig vorkommende normale
Verhiltnisse handelt, meist Erfahrungswerte vor. Im andern
Falle ist der projektierende Ingenieur auf Schétzungen ange-
wiesen.

Hier vermag die Wahrscheinlichkeitsrechnung helfend
einzugreifen. Die Telephonverwaltungen beniitzen die Er-
kenntnisse dieser mathematischen Disziplin, besonders auf
Grund der Arbeiten von Erlang, Lubberger und anderen,
schon seit mehr als 30 Jahren zur Berechnung ihrer Netze
und Wéhler. Gerade die hohe Betriebssicherheit dieser Anla-
gen, verbunden mit einer hervorragenden Betriebsgiite, die
sich in kaum wahrnehmbaren und seltenen Wartezeiten aus-
driickt, lassen den grossen Nutzen systematischer Forschun-
gen und die Verwertung theoretischer Ergebnisse in der Pra-
xis erkennen.

W. Kummer [1], [2], [3] *) hat in mehreren Publikatio-
nen auf die Anwendung der Wahrscheinlichkeitsrechnung bei
Problemen dieser Art, besonders bei der elektrischen Bahn-
traktion, hingewiesen. Er behandelt das Problem unter dem
Gesichtspunkt, dass die Belastungsstruktur aller Elemente
gleich sei, fithrt also gewissermassen eine Interpolation durch
und setzt ferner eine grosse Zahl von Elementen voraus. Dies
fiihrt ihn auf die Poissonsche Haufigkeitsverteilung. Diese
setzt zusammenfassend voraus:

1. Die Anzahl der angeschlossenen Apparate ist gross;

2. die Einzelwahrscheinlichkeit eines Apparates, d. h. die
Wahrscheinlichkeit, dass ein Apparat im Betriebe steht, ist
klein;

3. die vom einzelnen Apparat bezogene Energiemenge
ist konstant, d. h. der Apparat steht entweder voll oder gar
nicht im Betrieb, Zwischenbelastungen sind also ausge-
schlossen.

H. Schellenberg [4] hat auf Grund der Arbeiten von Kum-
mer theoretische Kurven mit den aus zahlreichen Versuchen
an Wasserverteilanlagen ermittelten praktischen Kurven ver-
glichen. Die Uebereinstimmung ist im Gebiet grosser Appa-
ratemengen sehr gut. Die Abweichung wird aber umso er-
heblicher, je weiter er auf kleinere Apparatemengen zuriick-
geht, je mehr er sich also von den Bedingungen 1 und 2 ent-
fernt.

In den folgeénden Ausfithrungen wird von der allgemei-
nern Bernoullischen oder binomischen Verteilung ausgegan-
gen, die ohne die unter 1 und 2 genannten Voraussetzungen
auskommt und aus der die Poissonsche Verteilung erst als
Spezialfall hervorgeht. Ferner wird gezeigt, wie sich der Be-
lastungsausgleich zwischen 2 und mehr Apparategruppen mit
verschiedener Einzelwahrscheinlichkeit abspielt; es wird also
die «Belastungssynthese» von Gruppen von verschiedenarti-
gem Charakter behandelt. Schliesslich wird dargelegt, wie
sich die Gesamtbelastung herriihrend von einer Gruppe von
Apparaten mit variabler aber gesetzmissiger Belastung (z. B.
Kochherde) verteilt.

Bei allen Untersuchungen dieser Art muss man selbst-
verstdndlich auf die Verhiltnisse in der Hauptbelastungszeit

*) Siehe Literaturverzeichnis am Schluss des Aufsatzes.

DK 519.24 : 62

abstellen. Beim Telephon spricht man von der Hauptver-
kehrsstunde oder regsten Stunde, die in der Regel zwischen
10 und 11 Uhr liegt. Die vorwiegend die Haushaltkiiche mit
Energie beliefernden Werke (Elektrizitdts- und besonders die
Gaswerke) haben ihre Spitzenbelastung meist zwischen 117/,
und 121/, Uhr. Fiir Ein- und Mehrfamilienhduser, sowie Grup-
pen von mehreren Mehrfamilienhdusern, die mit Gasbadedfen
ausgeriistet sind, treten dagegen zuweilen am Abend, speziell
Freitag- oder Samstagabend, kurze aber intensive Belastungs-
spitzen auf, die die Mittagsspitze der betreffenden Abonnenten-
gruppe iibertreffen konnen.

II. Apparate mit konstanter Belastung und gleicher Einzel-
wahrscheinlichkeit 1)
Es bedeuten:
T die Beobachtungszeit (z. B. die Stunde der maxi-
malen Belastung)
t die Betriebszeit des Apparates wihrend der Beob-
achtungszeit

die relative Beniitzungsdauer — die Einzelwahr-

scheinlichkeit des Apparates — die Wahrscheinlich-
keit, dass der betreffende Apparat in irgend einem
Zeitpunkt wéhrend der Beobachtungszeit T gerade
im Betrieb steht
t
1— T = 1 — p die Gegenwahrscheinlichkeit — die Wahr-

scheinlichkeit, dass der betreffende Apparat in ir-
gend einem Zeitpunkt widhrend der Beobachtungs-
zeit T gerade nicht im Betrieb steht.

Sind m gleiche Apparate mit der Einzelwahrscheinlich-
keit p angeschlossen, so soll B (x) die Wahrscheinlichkeit
bedeuten, dass in irgend einem Zeitpunkt wahrend der Beob-
achtungszeit T gerade z von den m Apparaten im Betriebe
und (m — x) Apparate ausser Betrieb stehen. B (z) berechnet
man dabei nach den Gesetzen der Wahrscheinlichkeit geméss

m— x

(1) B(w):(’;)px(l —p)

(Bernoullische oder binomische Verteilung)
Gelegentlich wird dieses Verteilungsgesetz auch nach
Newton benannt.
Zur Kontrolle dient die Gleichung:

xX=m
(2) 2 B(x)=1
=0
Diese Verteilungsfunktion ergibt im Cartesischen Koor-
dinatensystem das bekannte glockenfdérmige Bild, das, an-
finglich noch unsymmetrisch — nur bei p =12 =1 — p ist
es stets symmetrisch — umsomehr einer Symmetrie zustrebt,
je grosser die Apparatezahl m ist (Bild 1). Die Rechtecke iiber
den einzelnen Abszissenabschnitten stellen die Wahrschein-

1) Fiir Leser, die mit der Wahrscheinlichkeitsrechnung weniger
vertraut sind, mogen die folgenden Bemerkungen niitzlich sein:
Unter einer Wahrscheinlichkeit fiir das Eintreten eines Ereignis-
ses versteht man immer den Quotienten
W— Anzahl der g_llnstigen Fille
~  Anzahl der moglichen Fille
z. B. ist die Wahrscheinlichkeit, mit einem Wiirfel in einem Wurf eine

bestimmte der sechs moglichen Zahlen zu werfen W = é

I. Die Wahrscheinlichkeit, mit einem Wiirfel in einem Wurf z. B.
entweder eine 4 oder eine 5 zu erhalten, ist % + B %

Also: Entweder-Oder-Fall: Einzelwahrscheinlichkeiten addieren.

Die Wahrscheinlichkeit, in einem Wurf irgend eine der sechs Zah-
len zu werfen, ist gleich 1 (mathematische Gewissheit).

II. Mit zwei Wiirfeln sind 36 Wertepaare moglich, die Wahrschein-
1 g .l
36 6 6°
Die Wahrscheinlichkeit also dafiir, sowohl mit dem ersten Wiirfel eine
2, als auch gleichzeitig mit dem zweiten Wiirfel eine 4 zu erhalten, ist
gleich dem Produkt betder Einzelwahrscheinlichkeiten.
Also: Sowohl-als auch-Fall: Einzelwahrscheinlichkeiten multiplizieren.

III. Fragen wir nach der Wahrscheinlichkeit, dass einer der bei-
den Wirfel zwei, der andere vier zeigt, also entweder Wertepaar (2, 4)
) 1 1 1 1

oder Wertepaar (4, 2) sicl ebe, so finde ir: = v = M i
P ( ) h erge o finden wir 5 6 + 5 6 18

lichkeit fiir ein bestimmtes Wertepaar, z. B. (2, 4) ist
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lichkeit dar fiir den betreffenden Abszissenwert, B(x) B(x) - ot 1
die ganze Fliche zwischen Treppenkurve und p-1 B e
Abszisse somit den Wert 1. 03 5 0,05 ] m= 50
Durch Reduktion des Abszissenbereiches 02 m=5 ok I,JJ‘HJ
auf 1 und gleichzeitige Korrektur der Ordina-
1 . . 0,1
tenwerte im entgegengesetzten Sinne — damit H’J‘IH
die Gesamtfliche gleich 1 bleibt — entsteht 00 L 0,05 j y\\ m =100
Bild 2. Mit zunehmender Apparatezahl wird die 0
Kurve immer steiler mit dem Maximum im 02 m=10 025 b
Abszissenmittelwert und die Wahrscheinlichkeit o1 r
fiir eine Abweichung ¢ vom Mittelwert ¢ wird o 0.20 F
also immer kleiner. Bei m — co reduziert sich £
die Kurve auf eine vertikale Gerade von der - m = 50 DAl m = 1000
Linge 1, errichtet in der Abszisse des Mittel- ' erLLH\ T
wertes; die Wahrscheinlichkeit fiir eine Ab- 00 F
weichung vom Mittelwert wird in diesem Grenz- on% m= 100 0,05 £
fall also gleich Null. Dies erkldrt die Stabili- ' k E
tit von Belastungsspitzen bei Versorgungsbe- 0'06 N s P DO’O 6,» B o 01 oy.s 0"6 0:7 %

trieben, solange die dusseren Verhéltnisse, wie
angeschlossene Apparate, Wochentag, Witte-
rung (Jahreszeit, Aussentemperatur, Sonnen-
schein usw.) unverdndert bleiben. Die Stabilitdt ist umso
besser, je grosser der Betrieb ist.

Auf dem absteigenden Kurventeil werden die Werte der
Verteilungsfunktion B (z) immer rascher klein, wie die Ab-
nahme des Quotienten B (xz + 1)/B () fiir wachsendes x zeigt.
Augenfillig wird diese Eigenschaft bei Darstellung der Ver-
teilungsfunktion im logarithmischen Koordinatensystem (siehe
Bild 3, Polygonziige I und II) ?).

Nach diesen einfithrenden Bemerkungen kehren wir zu
unserem Hauptproblem zuriick: Es ist fiir ein System von m
gleichen Apparaten, von denen jeder einzelne mit der Wahr-
scheinlichkeit p = ¢/T' im Betrieb steht, diejenige Apparate-
zahl z;, so zu berechnen, dass Ueberlastungen des Systems
nur sehr kurzzeitig auftreten kdnnen, so dass sie weder zu
Apparate-Beschéddigungen noch zu Betriebsstérungen fithren
konnen. Diese Kurzzeitigkeit ist gegeben durch die Wahr-
scheinlichkeit, dass entweder x;, 4+ 1 oder x, 4+ 2, ......
oder m Apparate gleichzeitig im Betrieb stehen, und sie soll
einen bestimmten kleinen kritischen Wert P, nicht {iberschrei-
ten. Py richtet sich naturgeméss nach der Art der Apparate
und des Betriebs. Es muss also sein

Bild 1.

(3) Y B(xz) =P
a1 L

Aus dieser binomischen Reihe bestimmt sich zj, fiir wel-
che Apparatezahl die Anlage zu dimensionieren ist. Wird
beispielaweise P) = 0,01 festgesetzt und die Anlage entspre-
chend dimensioniert, so ergibt sich, dass, bezogen auf die
Hauptbelastungsstunde, widhrend 36 Sekunden Ueberlastungen,
die unter Umstdnden sehr erheblich sein konnen, auftreten.
Dies ist in den meisten Féllen zu viel. P, wird daher zweck-
méissigerweise auf 0,002 oder 0,001 festzusetzen sein.

Wegen der Abnahme des Quotienten B (x - 1)/B (%) im
absteigenden Kurvengebiet der Verteilungsfunktion geniigt
es meist, nach einer ersten Abschitzung von z; den Wert
von B (z) + 1), event. noch denjenigen von B (x; 4 2) zu
berechnen?).

III. Zusammenhinge zwischen binomischer, Poissonscher
und Normal-Verteilung

Die beiden wichtigsten charakteristischen Grossen einer
statistischen Verteilungsfunktion ¢ (x) sind:

m m
2) Weil die Endwerte B (0) — (1 —p) und B (m)=p besonders
leicht zu rechnen sind, kénnen die iibrigen Werte mittels der Rekur-
sionsformel Bt n—32
B (z) 1-p 41

auf einfache Weise ermittelt

werden.
Fur die spiter erwiihnte Poissonsche Verteilung (Gleichung (8))
lautet die Rekursionsformel 1@ =) =
W (x) x+1
%) Im Hinblick auf Formel (3) ist zu erwiihnen, dass das Integral
der in der mathematischen Statistik verwendeten F-Verteilung eben-
falls eine Teilsumme einer binomischen Reihe ist, in welcher aber die

Binomialkoefﬂzicnten(T) und die Exponenten von p und (1 — p)

Funktionen zweier Parameter n, und n, sind. Fiir gewisse ganzzahlige
Werte von n; und n, liegen Tabellen vor. Ein Uebergang auf die F-
Verteilung hitte aber nur einen Sinn, wenn aus dem gegebenen m
und p solche n, und n, errechnet werden, fiir die die Tabellen F-Werte
angeben oder durch Interpolation bestimmt werden kdnnen. In #hn-
licher Weise ist die z-Verteilung eine Teilsumme einer Poisson-Reihe

Binomische Verteilungen

/L
Bild 2. Binomische Verteilungen

a) der Durchschnitt

E z g (%)
X = 0
b) die quadratische Streuung

(4) U=

By P

=

Fiir die Bernoullische Verteilung wird

(z —u)?g (2)

(6) der Durchschnitt u = mp
(48] die quadratische Streuung ¢? = mp (1 — p)

Lisst man in der Bernoullischen Gleichung m wachsen,
theoretisch bis zu co, p gleichzeitig aber immer kleiner wer-
den, theoretisch also gegen Null abnehmen, jedoch so, dass
das Produkt mp eine endliche Zahl 1 ist, so geht die Glei-
chung (1) iber in das Gesetz

—mp -(mp)x

W(x) =€ i
oder, wenn mp — . gesetzt wird:
R x

A

(8) W(x) =e ==
(Poissonsche Verteilung)

Wiahrend Gleichung (1) zwei Parameter m, p und die
Variable x aufweist, enthdlt Gleichung (8) nur einen Para-
meter 2 und die Variable . Fiir die Poissonsche Verteilung
werden:

9) =y

(10) 62 = A

Durchschnitt und quadratische Streuung haben bei der
Poissonschen Verteilung also den selben Wert 2. Das H&u-
figkeitsmaximum liegt, sofern 1 ganzzahlig ist, bei =2
und x — A — 1. Ist dagegen A eine gebrochene Zahl, so tritt
die maximale H#ufigkeit bei der néchsten kleineren Zahl
auf, z. B. fiir A = 2,9 bei x = 2.

Die Poissonsche Verteilung ist die Verteilung der seltenen
Ereignisse und gibt umso genauer die tatséichlichen H&ufig-
keiten wieder, je kleiner p und je grosser m ist.

Setzt man in der binomischen Verteilung p —= 1! =1—p
und ldsst ferner m wiederum wachsen und zu Unendlich wer-
den, so geht diese Verteilung iiber in die Gleichung

(x — )2

20¢

(11) () = ——¢€
* 4 V2 b1

(Normalverteilung oder Gauss-Laplacesche Verteilung)
Fiir den Uebergang von der binomischen zur Normal-

verteilung gelten die Beziehungen:
w=mp und ¢ = |/mp (1 — p)
w ist hier zugleich der x-Wert fiir die gro:ste Hiufigkeit.
Selbst wenn p + '/s, m jedoch gross, d.h. mp > 10 ist,

so gibt die Normalverteilung die Verhiltnisse in einer fiir
die Praxis durchaus geniigenden Genauigkeit wieder.
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1IV. Apparate mit konstanter Belastung und verschiedenen
Einzelwahrscheinlichkeiten

a) Wir betrachten zuerst zwei Apparategruppen von je
m/2 Apparaten mit gleichem Anschlusswert a aber mit ver-
schiedenen Einzelwahrscheinlichkeiten p, und p,. Eine be-
triebliche Abh#ngigkeit eines Apparates einer Gruppe von
einem andern Apparat der gleichen Gruppe oder einem Ap-
parat einer andern Gruppe soll grundsétzlich ausgeschlossen
gein (stochastische Unabhingigkeit). Fiir jede Gruppe soll
eine binomische Verteilung gelten, ndmlich:

fiir die erste Gruppe mit der Einzelwahrscheinlichkeit p,
Bo@) = (" )" a—p)
fiir die zweite Gruppe mit der Einzelwahrscheinlichkeit p,
B, (x,) — (m/Z ) Py (1 —py)

Ly
Es sei nun W (z) die Wahrscheinlichkeit dafiir, dass ge-
rade z Apparate im Gesamten im Betrieb stehen, dass also,
weil ja der Anschlusswert a der Apparate beider Gruppen
gleich ist, die Netzbelastung a > entstehe. Diese Netzbelastung
tritt ein fiir:

¢, =0 und z, =2

1n/2 ml2 — x;

m[2— %,

mit der Wahrscheinlichkeit

w, () = B, (0) B, (x)

oder z, = 1 und @, —  — 1 mit der Wahrscheinlichkeit
w, () = B, (1) B, (z — 1)

— 2 und 2, = # — 2 mit der Wahrscheinlichkeit
: w, (2) = B, (2) By (z — 2)

oder @,

mit der Wahrscheinlichkeit
w, (z) == B, (z) B, (0)

oder , — 2 und x, =
Daher ist schliesslich
5 =0
X =0

2 B, (w) B, (z,)
¥ =
Xg =T
wobei fiir jeden Summanden x = ax, + «, gelten muss. Fer-
ner sind die folgenden Einschrdnkungen zu beachten:

(12) W (x) =

0§z<m;0§xlgm/2;053m,<m/2

Die Anzahl der Produkte, die fiir die Bestimmung des
numerischen Wertes von W () von 0 bis m zu rechnen sind,
betrédgt:

(13) Z— (% + 1)2

Die Vermutung liegt nahe, W () sei wiederum eine bi-
nomische Verteilung mit der Variablen x und einer noch un-
bekannten Einzelwahrscheinlichkeit p, so dass also zu gelten
hitte:

m x m —
a w@=(7)pra—»

Wenn dem so wire, so miisste diese Gleichung auch er-
fiillt sein fiir die Spezialféille:

W (0) = B, (0) B, (0), woraus geméss Fussnote?)

@) 1—p=)@—p) @ —p)
und
m m
W (m) —= B, (T) B, (T) woraus
(16) p=|pp,

Die beiden Wurzelausdriicke (15) und (16) sind aber nur
vereinbar fiir p, = p, = p. Fiir p, + p, hingegen ist W (x)
nicht eine binomische Verteilung.

Fiir grosse Werte von m ist die Rechenarbeit, die sich
durch die Zahl Z (Gleichung (13)) ausdriickt, sehr erheblich.
Mittels der Gleichungen (14) und (16) ist es immerhin mog-
lich, W (x) fiir die hoheren Werte von z, die fiir den vor-
liegenden Zweck allein massgebend sind, ndherungsweise zu
berechnen, weil sich ja fiir # — m vollstdndige Uebereinstim-
mung, fiir die vorangehenden z-Werte auf dem absteigenden
Kurventeil jedoch noch eine geniigende Genauigkeit ergibt,
die zur Bestimmung des z; ausreicht.

Der allgemeine Fall von ¢ Apparategruppen von je m/c
Apparaten mit gleichem Anschlusswert fiir alle Apparate-

Wix) 1
Bx)

1

|
F

=

—

-

e

-
~
@
w
S
>
IS}
o

khomo. Belastung + 10, = %o, m,=4)+(p,<%; my=4%) gensve Rechnung
- - (p=0183, m=8) Néherungsrechnung zu I

1p,* Yoy M=20)+(p,=V;; m=10) genave Rechnung

L " (p= 0149, m=30) Néherungsrechnung v ¥

MKEE -

Bild 3. Belastungsverteilungen

gruppen, jedoch mit den verschiedenen Einzelwahrscheinlich-
keiten p,, p,, p. ergibt die Gleichung

a7) W (z) = 2B, (%,) B, (%,) B, (x.)

wobei wiederum fiir jeden Summanden » 2 4 x4 ...

...+ . gelten muss und die Einschridnkungen 0 <z <m;
m

¢
sind. Die Anzahl der zu berechnenden Produkte ist schliess-
lich gegeben durch:

(18) Z— (_’ci + 1)c

Auch hier gilt die Kontrollgleichung

m m
0,<w,7<_70 0sx, < 5 e manes ;0§z¢§—~c zu heachten

x=m
> Wix) =1
==0

Die Nédherungsgleichungen lauten schliesslich:

(19)

c
200 p=Vp,p;...... P

und
m x m —

@) w@=(7)ra—n

b) Sind die Apparatezahlen in den verschiedenen Grup-
pen verschieden, also m, = m, &= m; 4= ...... 4 m,., S0 be-
trdgt die Anzahl der Produkte fiir die Bildung der Glei-
chung (12) im ganzen Bereich:
(18a) Z = (m, 4+ 1) (m, 1)

1
Die Einschridnkungen lauten hier:

O<z<m; 0<z <m,

; 0=z <m,
Die Ndherungsgleichung geht iiber in:

m

[Tmy me m.
(16a) p =l Py Py
wobei m = m, 4+ m, - + m, die Gesamtzahl der im
Zusammenspiel stehenden Apparate und p die entsprechende
fiktive Einzelwahrscheinlichkeit bedeuten.
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Tabelle 1. Kombinierte Belastung:

und vier Apparate P, = LS

R
10 3
(Anschlusswert bei beiden Apparate-Typen gleich)

vier Apparate P, =

x|z B, (x,) Zy B, (x,) B,(x,) (Byx,) | W ()

0|0 0,6561 0 0,197 53 0,129 599 0,129 599
1(0 0,6561 1| 0,39506 0,259 199

1 0,2916 0| 0,19753 0,057 600 0,316 799
210 0,6561 2| 0,296 30 0,194 402
3 0,2916 1| 0,39506 0,115 200

2 0,0486 0| 0,19753 0,009 600 0,319 202
3|0 0,6561 3| 0,098 765 0,064 800
1 0,2916 2 0,296 30 0,086 401
2 0,0486 il 0,395 06 0,019 200

3 0,0036 0 0,197 53 0,000 711 0,171112
410 0,6561 4 | 0,012 346 0,008 100
1 0,2916 3| 0,098 765 0,028 800
2 0,0486 2| 0,296 30 0,014 400
3 0,0036 1 0,395 06 0,001 422

4 0,0001 0 0,197 53 0,000 020 0,052 742
5|1 0,2916 -4 0,012 346 0,003 600
2 0,0486 3 0,098 765 0,004 800
3 0,0036 2 0,296 30 0,001 067

4 0,0001 ]l 0,197 53 0,000 039 0,009 506
6|2 0,0486 4 | 0,012 346 0,000 600
3 0,0036 3 0,098 765 0,000 355

4 0,0001 2| 0,296 30 0,000 030 0,000 985
7138 0,0036 4| 0,012 346 0,000 044

4 0,0001 3| 0,098765 0,000 010 0,000 054

—_— |

8| 4 0,0001 4 0,012 346 0,000 001 0,000 001

Kontrolle: W (x) = 1,000 000

c) Sind schliesslich auch noch die Anschlusswerte a,,

iy 1o ot s o)+ Ko o oo oo a, fiir die verschiedenen Apparate-

gruppen verschieden, so ist die Wahrscheinlichkeit fiir eine
bestimmte Belastung b

(22) W (b) == B, (2,) B, (=,)

wobei die Summe jeweils iiber alle diejenigen Werte zu bil-
den ist, fiir die gilt

c
> aQ;xr; = b
i=1

Der Polygonzug einer solchen Verteilung ist nicht mehr
glatt, sondern weist Unebenheiten auf (siehe Bild 4, Kurve VII),
die im sinkenden Kurventeil allerdings weniger in Erschei-
nung treten.

Z und p konnen wiederum nach den Gleichungen (18a)
und (16a) gerechnet werden; es darf aber nicht iibersehen
werden, dass die Niherungsrechnung nur mehr einen orien-
tierenden Charakter hat, weil ja die Apparategruppen mit
grossen Werten von @, m und p iiberwiegenden Einfluss
haben.

In Bild 3 stellen die Polygonziige I und IT zwei verschie-
dene binomische Verteilungen dar, III eine kombinierte Ver-
teilung von zwei Apparategruppen gleicher Anzahl und von
gleichem Anschlusswert (Fall a, siehe auch Tabelle 1), IV die
entsprechende gen#herte Verteilung, V eine kombinierte Ver-
teilung von zwei Apparategruppen verschiedener Anzahl aber
von gleichem Anschlusswert (Fall b) und VI die entspre-
chende N&herung.

Ein Beispiel fiir Fall ¢ zeigt Bild 4, wobei VII nach der
genauen Methode und VIII nach der Nédherungsrechnung be-
stimmt wurde, VIII ist identisch VII von Bild 3, wurde aber
statt iiber den Apparatezahlen 1, 2, usw. als Abszissen iiber
dem mittleren Anschlusswert eines Apparates, 9, und dessen
Vielfachen aufgetragen. Die Abweichung der Néherung von
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VIl ANsherungsrechnung zv BI  p= 0,183, m=8, a,=9, b =48

Bild 4. Belastungsverteilungen

der genauen Rechnung ist in diesem Fall naturgeméss er-
heblich grosser als in den weiter oben behandelten Féllen.

V. Apparate mit variabler Belastung

Kochherde, sowohl Gasherde als Elektroherde, weisen
eine variable Belastung auf. Beim Elektroherd folgen die
Belastungsinderungen in Stufen (diskontinuierlich), beim
Gasherd dagegen sind alle Belastungswerte zwischen 0 und
dem Anschlusswert moglich (kontinuierlich).

Betriebsmessungen zeigen, dass die Belastungsverteilung
gut durch eine der durch die Gleichungen (1), (8) oder (11)
gegebenen Verteilungsfunktionen dargestellt werden kann.
Auch beim Gasherd darf in erster Annédherung eine diskon-
tinuierliche Verteilung zugrunde gelegt werden, weil fiir die
Auswertung von Belastungsmessungen (direkte Z#hlerable-
sungen oder Diagramm von Registrierapparaten) der Bela-
stungsbereich zwischen 0 und dem Anschlusswert in eine An-
zahl von gleichen Intervallen unterteilt werden muss.

Die Belastung eines Herdes wird also als ein Zusammen-
spiel von u «Elementarbelastungen» aufgefasst und dement-
sprechend geméss Abschnitt IT rechnerisch behandelt. = be-
deutet dann die Anzahl der momentan im Betrieb stehenden
Elementarbelastungen mit der Einzelwahrscheinlichkeit p.
Fiir den einzelnen Herd gilt demnach

u £~ u—
(23) B(2) = (x) p(1—p)

wobei 0 < # <w. Sind m Herde an ein Netz angeschlossen,
so stehen im gesamten mu Elementarbelastungen im Zusam-
menspiel, deren Zugehorigkeit zum einen oder andern Herd
fiir die Gesamtbelastung belanglos ist. Die Wahrscheinlich-
keit, dass gerade x Elementarbelastungen im Betrieb und
(mu — x) Elementarbelastungen ausser Betrieb stehen, ist
daher gegeben durch:

mu-—x

muw\ *
21) B() = < )=
wobei nun aber 0 <x <mu gilt. Aus praktischen Griinden
wird schon bei der Versuchsauswertung der Belastungsbereich
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'F Xk Form der Gleichung (24) ersetzt werden koénnen. Wir erhal-
T mu ten dann entsprechend Abschnitt IIIb sinngeméss als Néhe-
1 — ; rung:
H 1 mu
5 £17 S=—peab=ls ¢ = -4 / myuy i fma u me u,.
i ST X =1=F I=ZESas (34) p= l R R De
3 = S M R e Darin bedeutet:
2 HH R X s : MU = MUy + MUy e + meu, die Gesamtzahl der im
[ I VT T =T Zusammenspiel stehenden Elementarbelastungen;
S 3‘415[ 0 2 ‘3 415I 100 2 3:4:5: 1000 2 3: il e o
G u eine mittlere Anzahl der Elementarbelastungen pro Ap-

X p-03; v=16, R=000/

X p=02, u=15,

X (=03; m=F, y=l6)+(p=02, m=2, v,<l6)
Néherungsrechnung - p= 0,245, u=16

Bild 5. Belastungsanteil des Gesamt-Anschlusswertes

eines Apparates so unterteilt, dass sich fiir ¥ Werte zwischen
10 und 20 ergeben. mu nimmt rasch grosse Werte an und
der Uebergang auf die Normalverteilung ist daher zulidssig
und zweckméissig

— A=)t

1 PP
(25) (0) = ———
. 6]/27r
e e
(26) P(2)—-——|e 20 dg
oVZn

0
(27) U=mup

(28) o= |mup (@ —p)
In manchen Handbiichern iiber mathematische Statistik
und in statistischen Tabellenwerken finden sich Zahlenwerte

fiir die standardisierte Normalverteilung:
lﬁ

29) y—-r_e¢ 2
]/271
1 2
30 v—_2 (e ?a:
]/271
0

Fir ¢{ = 4 co wird ¥ = 0,5, weil ja der Integrations-
bereich von 0 bis -} co bzw. von 0 bis — co je nur die Héilfte
der Wahrscheinlichkeitsfliche umfasst.

Durch Vergleich der sechs letzten Gleichungen folgt so-
fort:

vy _
(31) = = ¢ (%)

(32) t — "
Die Rechnung wird nun fiir unsern Zweck besonders ein-

fach. Analog Gleichung (3) und den daran angeschlossenen

Bemerkungen wird

(33) ch =05 — Py,

Bei festgesetztem P, ldsst sich aus Tabellen fiir ¥ das
zugehorige ) entnehmen. Aus Gleichung (32) berechnet man
schliesslich ;. Bild 5 zeigt die Funktion x;/mu fir p — 0,2
(Kurve IX) und p = 0,3 (Kurve X), beides fiir P, — 0,001.
Dieser Quotient xp/mu gibt den Anteil an von der Summe
aller Anschlusswerte, der der Netzberechnung zu Grunde zu
legen ist.

Bei gewissen Erscheinungen mit unsymmetrischer Hiu-
figkeitsverteilung ist nicht die Funktion des Argumentes x
eine Normalverteilung, sondern die einer von x abhingigen
Hilfsvariablen z — ) (x). Es ist dann sinngemiss zu verfah-
ren, wobei z an die Stelle von z tritt. Der Reihe nach wird
aus dem gegebenen Pj bestimmt: Y, {5, 25, 2.

Bei manchen volkswirtschaftlichen Statistiken z. B. ist
1 () eine logarithmische Funktion, wie Gibrat [5] an zahl-
reichen Beispielen gezeigt hat. Bei andern Verteilungen kann
auch die urspriinglich unsymmetrische Verteilung mit der
Hilfsfunktion 2 — 1/ in eine symmetrische Normalverteilung
iibergefiihrt werden.

VI. Mehrere Gruppen von Apparaten mit variabler Bela-
stung und verschiedener Charakteristilk

Es seien ¢ Apparategruppen mit gleichem Apparatean-
schlusswert, aber verschiedener Normalverteilung gegeben,
die durch entsprechende binomische Verteilungen von der

parat

Im weitern wird nach Abschnitt V verfahren. In Bild 5
gibt Kurve XI das Resultat wieder fiir zwei gleich grosse
Gruppen von Apparaten mit p, = 0,2 bzw. p, = 0,3.

Den Anlass zu dieser Studie gaben Untersuchungen an
Gasleitungsnetzen. Es war hdufig die Frage zu entscheiden,
ob ein vorhandenes Netz den Anschluss neuer Apparate (In-
dustrie, Gewerbe, Gasheizungen, usw.) zulasse, deren Bela-
stungsstruktur sehr stark von derjenigen der bereits ange-
schlossenen Apparate abweicht und deren Einzelwahrschein-
lichkeit sehr gross ist, oder welche Leitungsverstirkungen
gegebenenfalls erforderlich wiren. Eine dem zusétzlichen
Anschlusswert entsprechende Extrapolation, die eine gleich-
bleibende Struktur der Belastungsverhéltnisse voraussetzt,
war daher nicht mdoglich. Dies fiihrte im besondern zu den
im Abschnitt IV erlduterten Ueberlegungen.
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Unterwasserkraftwerke DK 627.8

Unterwasserkraftwerke stehen nun teilweise schon mehr
als zehn Jahre im Betrieb, so dass iiber ihre technische Ent-
wicklung und iiber die bisherigen Betriebserfahrungen zuver-
ldssige Angaben erhiltlich sein sollten. H. E. Fentzloff be-
richtet in «La Houille Blanche» 1949, Nr. 5, dieser Kraftwerk-
typ hitte sich in jeder Beziehung bewdhrt. Zunéchst ist daran
zu erinnern, dass es sich bei den bisher erstellten Anlagen
nach unsern Begriffen um kleinere Kraftwerke bzw. um
Maschinengruppen mit bescheidenen Leistungen handelt (vgl.
Tabelle), dass also Riickschliisse auf Kraftwerke ausserhalb
dieser Grossenordnung nicht ohne weiteres zulédssig sein diirf-
ten. Ausserdem enth#lt der erwdhnte Artikel keine Wirt-
schaftlichkeitsberechnungen; diese wiirden iibrigens im Hin-
blick auf die damaligen Bau- und Geldverhéltnisse in Deutsch-
land auch keinen Vergleich mit normalen Voraussetzungen
gestatten. Wohl war der spezifische Aufwand an Beton und
Stahl fiir die Tiefbauarbeiten pro Leistungseinheit relativ
gering; dies allein kann jedoch kein geniigendes Kriterium
fiir die totalen Bauaufwendungen sein. Abgesehen von der
Beurteilung des baulichen Teiles der Anlagen sind indessen
in maschinentechnischer Beziehung Fortschritte zu verzeich-
nen, welche die urspriingliche Bauweise Arno Fischers!) in
etwas giinstigerem Licht erscheinen lassen. Beispielsweise
ist von geringen Spaltverlusten und einfacher Demontage der
Turbinen sowie von grosser Betriebssicherheit und guter

Tabelle tber einige Unterwasserkraftwerke

Wassore Turbinen )
Betriebs- | Gefélle | durch-
Kraftwerk Fluss bagli fluss | zon L:iostlauI:g
m mé/s PS
Rostin . . . . |Persante| 1936 | 3,75 | 12,6 | 2 530
Steinbach . . . . [Iller 1938 | 8,70 | 100 4 |10 000
(9 Standardwerke) . | Lech 1940 | 8,10 | 120 6 |11100
Freilassing . Saalach | 1942 | 8,23 | 60 3 | 5600

1) Siehe SBZ 1948, Nr. 32, S. 449.
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