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68. Jahrgang Nachdruck von Bild oder Text nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Nr. 13

Berechnung des Belastungsausgleiches in Verteilanlagen
Von DipLIng. R. HENZI, Zürich

DK 519.24:62

I. Einleitung:
Bei der Dimensionierung von Verteilanlagen irgendwelcher

Art, z. B. von Rohrleitungen für Gas, Kalt- und
Warmwasser, Heizwasser, Kabel für elektrische Energie usw. ist
die Bestimmung der in den einzelnen Leitungssträngen maximal

durchmessenden Mengen die schwierigste Aufgabe.
Wird von einem Leitungsstrang nur ein einzelner Apparat
bedient, so ist die maximal durchfliessende Menge gleich
seinem Anschlusswert a. Sind dagegen an ihm m solcher

Apparate angeschlossen, die nur zeitweise und kurzfristig
im Betrieb stehen und betrieblich vollkcmmen voneinander
unabhängig sind, so wird der Praktiker seiner Berechnung
nicht die Menge m a, sondern eine kleinere Menge m' a

zugrunde legen. Er erachtet es mit Recht als «sehr
unwahrscheinlich», dass gerade alle m Apparate gleichzeitig im
Betriebe stehen, während die Wahrscheinlichkeit für gleichzeitigen

Betrieb von m' Apparaten schon sehr viel grösser sei.

Ueber den Quotienten m'jm < 1 liegen, sofern es sich im
betreffenden Arbeitsgebiet um häufig vorkommende normale
Verhältnisse handelt, meist Erfahrungswerte vor. Im andern
Falle ist der projektierende Ingenieur auf Schätzungen
angewiesen;

Hier vermag die Wahrscheinlichkeitsrechnung helfend
einzugreifen. Die Telephonverwaltungen benützen die
Erkenntnisse dieser mathematischen Disziplin, besonders auf
Grund der Arbeiten von Erlang, Lubberger und anderen,
schon seit mehr als 30 Jahren zur Berechnung ihrer Netze
und Wähler. Gerade die hohe Betriebssicherheit dieser Anlagen,

verbunden mit einer hervorragenden Betriebsgüte, die
sich in kaum wahrnehmbaren und seltenen Wartezeiten
ausdrückt, lassen den grossen Nutzen systematischer Forschungen

und die Verwertung theoretischer Ergebnisse in der Praxis

erkennen.
W.Kummer [1], [2], [3]*) hat in mehreren Publikationen

auf die Anwendung der Wahrscheinlichkeitsrechnung bei
Problemen dieser Art, besonders bei der elektrischen
Bahntraktion, hingewiesen. Er behandelt das Problem unter dem
Gesichtspunkt, dass die Belastungsstruktur aller Elemente
gleich sei, führt also gewissermassen eine Interpolation durch
und setzt ferner eine grosse Zahl von Elementen voraus. Dies
führt ihn auf die Poissonsche Häufigkeitsverteilung. Diese
setzt zusammenfassend voraus:

1. Die Anzahl der angeschlossenen Apparate ist gross;
2. die Einzelwahrscheinlichkeit eines Apparates, d. h. die

Wahrscheinlichkeit, dass ein Apparat im Betriebe steht, ist
klein ;

3. die vom einzelnen Apparat bezogene Energiemenge
ist konstant, d. h. der Apparat steht entweder voll oder gar
nicht im Betrieb, Zwischenbelastungen sind also
ausgeschlossen.

H. Schellenberg [4] hat auf Grund der Arbeiten von Kummer

theoretische Kurven mit den aus zahlreichen Versuchen
an Wasserverteilanlagen ermittelten praktischen Kurven
verglichen. Die Uebereinstimmung ist im Gebiet grosser
Apparatemengen sehr gut. Die Abweichung wird aber umso
erheblicher, je weiter er auf kleinere Apparatemengen zurückgeht,

je mehr er sich also von den Bedingungen 1 und 2
entfernt.

In den folgenden Ausführungen wird von der allgemeinern

Bernoullischen oder binomischen Verteilung ausgegangen,

die ohne die unter 1 und 2 genannten Voraussetzungen
auskommt und aus der die Poissonsche Verteilung erst als
Spezialfall hervorgeht. Ferner wird gezeigt, wie sich der
Belastungsausgleich zwischen 2 und mehr Apparategruppen mit
verschiedener Einzelwahrscheinlichkeit abspielt; es wird also
die «Belastungssynthese» von Gruppen von verschiedenartigem

Charakter behandelt. Schliesslich wird dargelegt, wie
sich die Gesamtbelastung herrührend von einer Gruppe von
Apparaten mit variabler aber gesetzmässiger Belastung (z. B.
Kochherde) verteilt.

Bei allen Untersuchungen dieser Art muss man
selbstverständlich auf die Verhältnisse in der Hauptbelastungszeit

*) Siehe Literaturverzeichnis am Schluss des Aufsatzes.

abstellen. Beim Telephon spricht man von der
Hauptverkehrsstunde oder regsten Stunde, die in der Regel zwischen
10 und 11 Uhr liegt. Die vorwiegend die Haushaltküche mit
Energie beliefernden Werke (Blektrizitäts-und besonders die
Gaswerke) haben ihre Spitzenbelastung meist zwischen 111/i
und 12 >/4 Uhr. Für Ein- und Mehrfamilienhäuser, sowie Gruppen

von mehreren Mehrfamilienhäusern, die mit Gasbadeöfen
ausgerüstet sind, treten dagegen zuweilen am Abend, speziell
Freitag- oder Samstagabend, kurze aber intensive Belastungsspitzen

auf, die die Mittagsspitze der betreffenden Abonnentengruppe

übertreffen können.

II. Apparate mit konstanter Belastung und gleicher
Einzelwahrscheinlichkeit ')

Es bedeuten:
T die Beobachtungszeit (z. B. die Stunde der maxi¬

malen Belastung)
t die Betriebszeit des Apparates während der Beob¬

achtungszeit
t

— p die relative Benützungsdauer die Einzelwahr¬

scheinlichkeit des Apparates die Wahrscheinlichkeit,
dass der betreffende Apparat in irgend einem

Zeitpunkt während der Beobachtungszeit T gerade
im Betrieb steht

t1 =- 1 — p die Gegenwahrscheinlichkeit die Wahr¬

scheinlichkeit, dass der betreffende. Apparat in
irgend einem Zeitpunkt während der Beobachtungszeit

T gerade nicht im Betrieb steht.
Sind m gleiche Apparate mit der Einzelwahrscheinlichkeit
p angeschlossen, so soll B (a>) die Wahrscheinlichkeit

bedeuten, dass in irgend einem Zeitpunkt während der
Beobachtungszeit T gerade x von den m Apparaten im Betriebe
und (m — x) Apparate ausser Betrieb stehen. B {x) berechnet
man dabei nach den Gesetzen der Wahrscheinlichkeit gemäss

(1) B(x) m
x p (1 — p)

(Bernoullische oder binomische VerteUung)
Gelegentlich wird dieses Verteilungsgesetz auch nach

Newton benannt.
Zur Kontrolle dient die Gleichung:

x — m
(2) S B(x) =1

* 0

Diese Verteilungsfunktion ergibt im Cartesischen
Koordinatensystem das bekannte glockenförmige Bild, das,
anfänglich noch unsymmetrisch — nur bei p 1/t 1 p ist
es stets symmetrisch — umsomehr einer Symmetrie zustrebt,
je grösser die Apparatezahl m ist (Bild 1). Die Rechtecke über
den einzelnen Abszissenabschnitten stellen die Wahrschein-

') Für Leser, die mit der Wahrscheinlichkeitsrechnung weniger
vertraut sind, mögen die folgenden Bemerkungen nützlich sein:

Unter einer Wahrscheinlichkeit für das Eintreten eines Ereignisses
versteht man immer den Quotienten

H Anzahl der günstigen Fälle
Iff Anzahl der möglichen Fälle

z. B. 1st die Wahrscheinlichkeit, mit einem Würfel In einem Wurf eine

bestimmte der sechs möglichen Zahlen zu werfen W —
6

I. Die Wahrscheinlichkeit, mit einem Würfel In einem Wurf z. B.

entweder eine 4 oder eine 5 zu erhalten, ist — + — » —
6 6 8

Also : Entweder-Oder-Fall : Einzelwahrscheinlichkeiten addieren.
Die Wahrscheinlichkeit, ln einem Wurf irgend eine der sechs Zahlen

zu werfen, ist gleich 1 (mathematische Gewissheit).
II. Mit zwei Würfeln sind 36 Wertepaare möglich, die Wahrscheinlichkeit

für ein bestimmtes Wertepaar, z. B. (2,4) ist — =¦—¦,
Die Wahrscheinlichkeit also dafür, sowohl mit dem ersten Würfel eine
2, als auch gleichzeitig mit dem zweiten Würfel eine 4 zu erhalten, 1st
gleich dem Produkt beider Einzelwahrscheinlichkeiten.
Also: Sowohl-als auch-Fall : Einzel Wahrscheinlichkeiten multiplizieren.

III. Fragen wir nach der Wahrscheinlichkeit, dass einer der beiden

Würfel zwei, der andere vier zeigt, also entweder Wertepaar (2, 4)

oder Wertepaar (4, 2) sich ergebe, so finden wir: — ¦ — + — • — =» —
6 6 6 6 18
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B(x

d.3-

lichkeit dar für den betreffenden Abszissenwert,
die ganze Fläche zwischen Treppenkurve und
Abszisse somit den Wert 1.

Durch Reduktion des Abszissenbereiches
auf 1 und gleichzeitige Korrektur der Ordina-
tenwerte im entgegengesetzten Sinne — damit
die Gesamtfläche gleich 1 bleibt — entsteht
Bild 2. Mit zunehmender Apparatezahl wird die
Kurve immer steiler mit dem Maximum im
Abszissenmittelwert und die Wahrscheinlichkeit
für eine Abweichung e vom Mittelwert fi wird
also immer kleiner. Bei m oo reduziert sich
die Kurve auf eine vertikale Gerade von der
Länge 1, errichtet in der Abszisse des
Mittelwertes; die Wahrscheinlichkeit für eine
Abweichung vom Mittelwert wird in diesem Grenz-
fall also gleich Null. Dies erklärt die Stabilität

von Belastungsspitzen bei Versorgungsbetrieben,

solange die äusseren Verhältnisse, wie
angeschlossene Apparate, Wochentag, Witterung

(Jahreszeit, Aussentemperatur, Sonnenschein

usw.) unverändert bleiben. Die Stabilität ist umso
besser, je grösser der Betrieb ist.

Auf dem absteigenden Kurventeil werden die Werte der
Verteilungsfunktion B (x) immer rascher klein, wie die
Abnahme des Quotienten B (x -)- 1)/B (x) für wachsendes x zeigt.
Augenfällig wird diese Eigenschaft bei Darstellung der Ver-
teilungsfunktion im logarithmischen Koordinatensystem (siehe
Bild 3, Polygonzüge I und H) s).

Nach diesen einführenden Bemerkungen kehren wir zu
unserem Hauptproblem zurück : Es ist für ein System von m
gleichen Apparaten, von denen jeder einzelne mit der
Wahrscheinlichkeit p tjT im Betrieb steht, diejenige Apparatezahl

xk so zu berechnen, dass Ueberlastungen des Systems
nur sehr kurzzeitig auftreten können, so dass sie weder zu
Apparate-Beschädigungen noch zu Betriebsstörungen führen
können. Diese Kurzzeitigkeit ist gegeben durch die
Wahrscheinlichkeit, dass entweder x/t -[¦ 1 oder xj, -l- 2,
oder m Apparate gleichzeitig im Betrieb stehen, und sie soll
einen bestimmten kleinen kritischen Wert P/,. nicht überschreiten.

Pk richtet sich naturgemäss nach der Art der Apparate
und des Betriebs. Es muss also sein

m 5

B(x

J.05

D I

3.05 171 100

m« 50

m - 100

0.25 l
0.20

0.15 | m ¦ tooo

0.10 -

0.05 \
0

¦ *¦

20 30

Bild 1. Binomische Verteilungen

a) der Durchschnitt

0,0 O.t 0.2 03: 0.1 0.5 0.6 0.7 */m

Bild 2. Binomische Verteilungen

(3) B (*) Pk

Aus dieser binomischen Reihe bestimmt sich Xk, für welche

Apparatezahl die Anlage zu dimensionieren ist. Wird
beispielsweise Pk 0,01 festgesetzt und die Anlage entsprechend

dimensioniert, so ergibt sich, dass, bezogen auf die
Hauptbelastungsstunde, während 36 Sekunden Ueberlastungen,
die unter Umständen sehr erheblich sein können, auftreten.
Dies ist in den meisten Fällen zu viel. Pk wird daher
zweckmässigerweise auf 0,002 oder 0,001 festzusetzen sein.

Wegen der Abnahme des Quotienten B (x -|-M/B(a:) im
absteigenden Kurvengebiet der Verteilungsfunktion genügt
es meist, nach einer ersten Abschätzung von xi, den Wert
von B (xt, -f-1), event, noch denjenigen von B (Xk + 2) zu
berechnen3).

IIL Zusammenhänge zwischen binomischer, Poissonscher
und Normal-Verteilung

Die beiden wichtigsten charakteristischen Grössen einer
statistischen Verteilungsfunktion <p (x) sind:

a) Weil die Endwerte B(0) p!|-p) und B (m) •« p besonders
leicht zu rechnen sind, können die übrigen Werte mittels der Rekur-

B (x -f 1)
_ p m — x

B(as) V
auf einfache Weise ermitteltsionsformel

werden.
Für die später erwähnte Poissonsche Verteilung (Gleichung (8))

lautet die Rekursionsformel Wl-X + 1) —î—
W (X) x + 1

8) Im Hinblick auf Formel (3) Ist zu erwähnen, dass das Integral
der In der mathematischen Statistik verwendeten F-Verteilung ebenfalls

eine Teilsumme einer binomischen Reihe 1st, in welcher aber die

Binomialkoef fizienten und die Exponenten von p und (1 — p)

Funktionen zweier Parameter n, und n, sind. Für gewisse ganzzahlige
Werte von n, und m, liegen Tabellen vor. Ein Uebergang auf die F-
Vertellung hätte aber nur einen Sinn, wenn aus dem gegebenen m
und p solche n, und n., errechnet werden, für die die Tabellen F-Werte
angeben oder durch Interpolation bestimmt werden können. In
ähnlicher Weise ist die ^'Verteilung eine Teilsumme einer Polsson-Reihe

(4) n S Xtp (x)

b) die quadratische Streuung
m

(5) o* 2 (x— ^)sç)(a;)
x 0

Für die Bernoullische Verteilung wird
(6) der Durchschnitt fi mp
(7) die quadratische Streuung «! mj(l — p)

Lässt man in der Bernoullischen Gleichung m wachsen,
theoretisch bis zu co, p gleichzeitig aber immer kleiner werden,

theoretisch also gegen Null abnehmen, jedoch so, dass
das Produkt mp eine endliche Zahl X ist, so geht die
Gleichung (1) über in das Gesetz

W(x) (.mp)
xl

oder, wenn mp X gesetzt wird:

(8) W (x)
X

(Poissonsche Verteilung)
Während Gleichung (1) zwei Parameter m, p und die

Variable a; aufweist, enthält Gleichung (8) nur einen
Parameter und die Variable x. Für die Poissonsche Verteilung
werden :

(9) p X

(10) o* X

Durchschnitt und quadratische Streuung haben bei der
Poissonschen Verteilung also den selben Wert X. Das
Häufigkeitsmaximum liegt, sofern X ganzzahlig ist, bei x — X

und x — 1. Ist dagegen X eine gebrochene Zahl, so tritt
die maximale Häufigkeit bei der nächsten kleineren Zahl
auf, z. B. für X 2,9 bei x 2.

Die Poissonsche Verteilung ist die Verteilung der seltenen
Ereignisse und gibt umso genauer die tatsächlichen Häufigkeiten

wieder, je kleiner p und je grösser m ist.
Setzt man in der binomischen Verteilung p '/2 1 — p

und lässt ferner m wiederum wachsen und zu Unendlich werden,

so geht diese Verteilung über in die Gleichung
<x ¦Ii)'

1 2<T»

(11) <p (x) B- e
o \2n

(NormalVerteilung oder Gauss-Laplacesche Verteilung)

Für den Uebergang von der binomischen zur
Normalverteilung gelten die Beziehungen :

fi mp und a j/mp (1 — p)

ß ist hier zugleich der »-Wert für die grösste Häufigkeit.
' Selbst wenn p ^ M, m jedoch gross, d. b. m p ~> 10 1st,

so gibt die Normalverteilung die Verhältnisse in einer für
die Praxis durchaus genügenden Genauigkeit wieder.
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P. (1 — P,)

IV. Apparate mit konstanter Belastung und verschiedenen
Einzelwahrscheinlichkeiten

a) Wir betrachten zuerst zwei Apparategruppen von je
m/2 Apparaten mit gleichem Anschlusswert a aber mit
verschiedenen Einzelwahrscheinlichkeiten p, und p,. Eine be-
tiiebliche Abhängigkeit eines Apparates einer Gruppe von
einem andern Apparat der gleichen Gruppe oder einem
Apparat einer andern Gruppe soll grundsätzlich ausgeschlossen
sein (stochastische Unabhängigkeit). Für jede Gruppe soll
eine binomische Verteilung gelten, nämlich:

für die erste Gruppe mit der Einzelwahrscheinllchkelt p,

_ / m/2
»,(*,) Jt

für die zweite Gruppe mit der Einzelwahrscheinlichkeit pf
(ml2\ ** mlZ-*t

B,(*,) f J \p, (1 -p,)
Es sei nun W (x) die Wahrscheinlichkeit dafür, dass

gerade x Apparate im Gesamten im Betrieb stehen, dass also,
weil ja der Anschlusswert o der Apparate beider Gruppen
gleich ist, die Netzbelastung ax entstehe. Diese Netzbelastung
tritt ein für:

x, 0 und xt=x mit der Wahrscheinlichkeit
w0(x) B,(0)B, (x)

oder x, 1 und x3 x — 1 mit der Wahrscheinlichkeit
to,(x) =B, (DB,

(eroder xl 2 und x2 x — 2 mit der Wahrscheinlichkeit
: ; »,d) =B,(2) B,(x-

1)

2)

oder x, x und x, — 0 mit der Wahrscheinlichkeit
v>x(x) B1(x)B3(0)

Daher ist schliesslich

(12) W(x)= ï B^xJB^x,)
*, 0

xi — X

wobei für jeden Summanden x x, -(- x2 gelten muss. Ferner

sind die folgenden Einschränkungen zu beachten:

0 g x < m ; 0 < x, g m/2 ; 0 < x, < m/2

Die Anzahl der Produkte, die für die Bestimmung des
numerischen Wertes von W (x) von 0 bis m zu rechnen sind,
beträgt:

(13)
/ m \s
(-2- + 1)

Die Vermutung liegt nahe, W (x) sei wiederum eine
binomische Verteilung mit der Variablen x und einer noch
unbekannten Einzelwahrscheinlichkeit p, so dass also zu gelten
hfitte:
(14) W (x) m\J' (1 p)

Wenn dem so wäre, so musste diese Gleichung auch
erfüllt sein für die Spezialfälle:

W (0) B, (0) B, (0), woraus gemäss Fussnote»)

i—p=yw(15)

und

p.) (1 _ p,)

W (m) =B.¦¦(tN
(16) p Vp,P,

Die beiden Wurzelausdrücke (15) und (16) sind aber nur
vereinbar für p, pt p. Für p, rj: pa hingegen ist W (x)
nicht eine binomische Verteilung.

Für grosse Werte von m ist die Rechenarbeit, die sich
durch die Zahl Z (Gleichung (13)) ausdrückt, sehr erheblich.
Mittels der Gleichungen (14) und (16) ist es immerhin möglich,

W(x) für die höheren Werte von x, die für den
vorliegenden Zweck allein massgebend sind, näherungsweise zu
berechnen, weil sich ja für x m vollständige Uebereinstimmung,

für die vorangehenden x-Werte auf dem absteigenden
Kurventeil jedoch noch eine genügende Genauigkeit ergibt,
die zur Bestimmung des Xk ausreicht.

Der allgemeine Fall von c Apparategruppen von je mjc
Apparaten mit gleichem Anschlusswert für alle Apparate-

Wixi 1

BixiI2 -

te_ —

s-->£*^ N -'Nix/ iH r~\^ V t 4Xr / \ \
> ' [\/ \ \\' ^\mlsLm-f F^É

*\ \ - \Xi ' \\
\ \\

i

E£r~r z\ : tV ET' r-t4i iL

li 11

1
1
1

-U-)- -+1-
~*lr~

\ ' II
ZI

u

i

1

M
M
hliti

0.Ì

5
if
3

0,01

5

3

0,001

0,0001

5
<?

3

0,00001
1

I p-Vn, ">-B
I p - JJ m -8
ID /tornò. Belastung.
Q
S -
n

4 5 6 7 8 9 10 ¦x 20

_ PS O.OOI x4-4
**'7

IP, * Vip, "*,*'fì*lp,' /», nt,-4J genaue Rechnung X/,'5
tp .0,163, m ' 8 } Näherungsrechnung zu M xk - 5

tp,' '/toi m.M20/+ffl,-}j t m, - IO) genaue Rechnung xt.12
(p* 0JU9 m * 30J h'ëherungsrechnung zu F tu, - 11

Bild 3. Belastungsverteilungen

gruppen, jedoch mit den verschiedenen Einzelwahrscheinlichkeiten

p,, p, pe ergibt die Gleichung
(17) W (x) SB, (x,) Bj (x,) H Be (xc)
wobei wiederum für jeden Summanden x x1 -\- x, -+- ¦ ¦

-f xc gelten muss und die Einschränkungen 0 < x < m ;

m m I m0 < x, < -V^- ; 0 x, < —— ; ; 0 < x. < - zu beachten
• * — c ¦ *= o c

sind. Die Anzahl der zu berechnenden Produkte ist schliesslich

gegeben durch:
m
c

(18) (M
Auch hier gilt die Kontrollgleichung

x m
(19) 2 W(*) l

x 0

Die Näherungsgleichungen lauten schliesslich:

(20)
und

P VtP,

(21) W (x) p (1 — p)

b) Sind die Apparatezahlen in den verschiedenen Gruppen

verschieden, also m, ^ m, 4: w, ^ • *iffi • ^ mc> so
beträgt die Anzahl der Produkte für die Bildung der
Gleichung (12) Im ganzen Bereich:
(18a) Z — (m, + 1) (m, + 1) (mc -f-1)

Die Einschränkungen lauten hier:
0<x<m; 0^x,<mj ; 0<xc<mc

Die Näherungsgleichung geht über in:

(16 a) p j p, p,
"

pe

wobei m — m, -}.«, + + mc die Gesamtzahl der Im
Zusammenspiel stehenden Apparate und p die entsprechende
fiktive Einzelwahrscheinllchkelt bedeuten.
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Tabelle 1. Kombinierte Belastung:

vier Apparate Pi -r-r- und vier Apparate Pa -5-

(Anschlusswert bei beiden Apparate-Typen gleich)

X X, B,(x,) ^2 B2(»2) WÊpt) (Bs)x2) W(x)

0 0 0,6561 0 0,197 53 0,129 599 0,129 599

1 0
1

0,6561
0,2916

1

0
0,395 06

0,197 53
0,259 199

0,057 600 0,316 799

2 0
1

2

0

1

2

3

0
1

2
3

4

1

2

3

4

0,6561
0,2916
0,0486

2

1

0

3

2

1

0

0,296 30

0,395 06

0,197 53

0,194 402
0,115 200

0,009 600 0,319 202

3 0,6561
0,2916
0,0486
0,0036

0,098 765

0,296 30

0,395 06

0,197 53

0,064 800

0,086 401

0,019 200

0,000 711 0,171112

4 0,6561
0,2916
0,0486
0,0036
0,0001

4
3
2

1

0

0,012 346

0,098 765

0,296 30
0,395 06

0,197 53

0,008100
0,028 800
0,014 400

0,001422
0,000 020 0,052 742

5 0,2916
0,0486
0,0036
0,0001

4
3

2

1

0,012 346

0,098 765

0,296 30

0,197 53

0,003 600

0,004 800

0,001067
0,000 039 0,009 506

6 2

3

4

0,0486
0,0036
0,0001

4
3

2

0,012 346

0,098 765

0,296 30

0,000 600

0,000 355

0,000 030 0,000 985

7 3
4

0,0036
0,0001

4
3

0,012 346

0,098 765
0,000 044
0,000 010 0,000 054

8 4 0,0001 4 0,012 346 0,000 001 0,000 001

Kontrolle: 2F(i) 1,000 000

c) Sind schliesslich auch noch die Anschlusswerte a1,
oa aj, ac für die verschiedenen Apparategruppen

verschieden, so ist die Wahrscheinlichkeit für eine
bestimmte Belastung b

(2?) W(b)=2B1(.x1)Bi(x2) Bc(xc)
wobei die Summe jeweils über alle diejenigen Werte zu
bilden ist, für die gilt

c
M «iXj b

i l
Der Polygonzug einer solchen Verteilung ist nicht mehr

glatt, sondern weist Unebenheiten auf siehe Bild 4, KurveVII
die im sinkenden Kurventeil allerdings weniger in Erscheinung

treten.
Z und p können wiederum nach den Gleichungen (18 a)

und (16a) gerechnet werden; es darf aber nicht übersehen
werden, dass die Näherungsrechnung nur mehr einen
orientierenden Charakter hat, weil ja die Apparategruppen mit
grossen Werten von a, m und p überwiegenden Einfluss
haben.

In BUd 3 stellen die Polygonzüge I und II zwei verschiedene

binomische Verteilungen dar, HI eine kombinierte
Verteilung von zwei Apparategruppen gleicher Anzahl und von
gleichem Anschlusswert (Fall a, siehe auch Tabelle 1), IV die
entsprechende genäherte Verteilung, V eine kombinierte
Verteilung von zwei Apparategruppen verschiedener Anzahl aber
von gleichem Anschlusswert (Fall b) und VI die entsprechende

Näherung.
Ein Beispiel für Fall c zeigt Bild 4, wobei VII nach der

genauen Methode und VIII nach der Näherungsrechnung
bestimmt wurde, VIII ist identisch VII von Bild 3, wurde aber
statt über den Apparatezahlen 1, 2, usw. als Abszissen über
dem mittleren Anschlusswert eines Apparates, 9, und dessen
Vielfachen aufgetragen. Die Abweichung der Näherung von

Wixi 1

Bix)
5
4
3

0,01

5
4
3

2

0,001
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5
lt
3

2
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Bild 4. Belastungsverteilungen

der genauen Rechnung ist in diesem Fall naturgemäss
erheblich grösser als in den weiter oben behandelten Fällen.

V. Apparate mit variabler-Belastung
Kochherde, sowohl Gasherde als Elektroherde, weisen

eine variable Belastung auf. Beim Elektroherd folgen die
Belastungsänderungen in Stufen (diskontinuierlich), beim
Gasherd dagegen sind alle Belastungswerte zwischen 0 und
dem Anschlusswert möglich (kontinuierlich).

Betriebsmessungen zeigen, dass die Belastungsverteilung
gut durch eine der durch die Gleichungen (1), (8) oder (11)
gegebenen Verteilungsfunktionen dargestellt werden kann.
Auch beim Gasherd darf in erster Annäherung eine
diskontinuierliche Verteilung zugrunde gelegt werden, weil für die
Auswertung von Belastungsmessungen (direkte Zählerablesungen

oder Diagramm von Registrierapparaten) der
Belastungsbereich zwischen 0 und dem Anschlusswert in eine
Anzahl von gleichen Intervallen unterteilt werden muas.

Die Belastung eines Herdes wird also als ein Zusammenspiel

von u «Elementarbelastungen» aufgefasst und
dementsprechend gemäss Abschnitt II rechnerisch behandelt, x
bedeutet dann die Anzahl der momentan im Betrieb stehenden
Elementarbelastungen mit der Einzelwahrscheinlichkeit p.
Für den einzelnen Herd gilt demnach

(23) B(X) -0 p (1 — p)

wobei 0^x<m. Sind m Herde an ein Netz angeschlossen,
so stehen im gesamten mu Elementarbelastungen im
Zusammenspiel, deren Zugehörigkeit zum einen oder andern Herd
für die Gesamtbelastung belanglos ist. Die Wahrscheinlichkeit,

dass gerade x Elementarbelastungen im Betrieb und
(mit — x) Elementarbelastungen ausser Betrieb stehen, ist
daher gegeben durch:

(24) B (x) mu
x v d — P)

m u — x

wobei nun aber Osis mu gilt. Aus praktischen Gründen
wird schon bei der Versuchsauswertung der Belastungsbereich
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Bild 5. Belastungsanteil des Gesamt-Anschlusswertes

eines Apparates so unterteilt, dass sich für u Werte zwischen
10 und 20 ergeben, mu nimmt rasch grosse Werte an und
der Uebergang auf die Normalverteilung ist daher zulässig
und zweckmässig

_ (x - pY

(25) 9(x)=—}=-e z°*

'o\2n

(26) <P{x)
a]/2n

(x—/i)*
2a» dx

(27) (i mup
(28) o ymupd — pT

In manchen Handbüchern über mathematische Statistik
und in statistischen Tabellenwerken finden sich Zahlenwerte
für die standardisierte Normalverteilung:

(29)

(30)

1

]/2F

Y :

mH§ j0 dt

Für t + co wird Y 0,5, weil ja der Integrationsbereich

von 0 bis -f- oo bzw. von 0 bis — co je nur die Hälfte
der Wahrscheinlichkeitsfläche umfasst.

Durch Vergleich der sechs letzten Gleichungen folgt
sofort:

(31)

(32)

y
o

t

9 (x)

x — mup
\mup (1 — p)

Die Rechnung wird nun für unsern Zweck besonders
einfach. Analog Gleichung (3) und den daran angeschlossenen
Bemerkungen wird
(33) Yk I 0,5 — Pk

Bei festgesetztem Pk lässt sich aus Tabellen für y das
zugehörige tu entnehmen. Aus Gleichung (32) berechnet man
schliesslich Xk. Bild 5 zeigt die Funktion x/,/m u für p 0,2
(Kurve IX) und p 0,3 (Kurve X), beides für P& 0,001.
Dieser Quotient Xkjm u gibt den Anteil an von der Summe
aUer Anschlusswerte, der der Netzberechnung zu Grunde zu
legen ist.

Bei gewissen Erscheinungen mit unsymmetrischer
Häufigkeitsverteilung ist nicht die Funktion des Argumentes x
eine Normalverteilung, sondern die einer von x abhängigen
Hilfsvariablen z tp (x). Es ist dann sinngemäss zu verfahren,

wobei z an die Stelle von x tritt. Der Reihe nach wird
aus dem gegebenen P;c bestimmt: Yh, tk, «;.-, xk.

Bei manchen volkswirtschaftlichen Statistiken z. B. ist
ip (x) eine logarithmische Funktion, wie Gibrat [5] an
zahlreichen Beispielen gezeigt hat. Bei andern Verteilungen kann
auch die ursprünglich unsymmetrische Verteilung mit der
Hilfsfunktion z 1/x in eine symmetrische NormalVerteilung
übergeführt werden.

VI. Mehrere Gruppen von Apparaten mit variabler
Belastung und verschiedener Charakteristik

Es seien e Apparategruppen mit gleichem Apparatean-
schlusswert, aber verschiedener Normalverteilung gegeben,
die durch entsprechende binomische Verteilungen von der

Form der Gleichung (24) ersetzt werden können. Wir erhalten

dann entsprechend Abschnitt III b sinngemäss als Näherung:

(34) p \l p, p, pc

Darin bedeutet:
m u m, Mj -f- ma wa -f- 4- mc uc die Gesamtzahl der im

Zusammenspiel stehenden Elementarbelastungen ;

m die Gesamtzahl der Apparate;
u eine mittlere Anzahl der Elementarbelastungen pro Ap¬

parat
Im weitern wird nach Abschnitt V verfahren. In Bild 5

gibt Kurve XI das Resultat wieder für zwei gleich grosse
Gruppen von Apparaten mit p, 0,2 bzw. pa 0,3.

Den Anlass zu dieser Studie gaben Untersuchungen an
Gasleitungsnetzen. Es war häufig die Frage zu entscheiden,
ob ein vorhandenes Netz den Anschluss neuer Apparate
(Industrie, Gewerbe, Gasheizungen, usw.) zulasse, deren
Belastungsstruktur sehr stark von derjenigen der bereits
angeschlossenen Apparate abweicht und deren Einzelwahrscheinlichkeit

sehr gross ist, oder welche Leitungsverstärkungen
gegebenenfalls erforderlich' wären. Eine dem zusätzlichen
Anschlusswert entsprechende Extrapolation, die eine
gleichbleibende Struktur der Belastungsverhältnisse voraussetzt,
war daher nicht möglich. Dies führte im besondern zu den
im Abschnitt IV erläuterten Ueberlegungen.
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Unterwasserkraftwerke dk 627.8

Unterwasserkraftwerke stehen nun teilweise schon mehr
als zehn Jahre im Betrieb, so dass über ihre technische
Entwicklung und über die bisherigen Betriebserfahrungen
zuverlässige Angaben erhältlich sein sollten. H. E. Fentzloff
berichtet in «La Houille Blanche» 1949, Nr. 5, dieser Kraftwerktyp

hätte sich in jeder Beziehung bewährt. Zunächst 1st daran
zu erinnern, dass es sich bei den bisher erstellten Anlagen
nach unsern Begriffen um kleinere Kraftwerke bzw. um
Maschinengruppen mit bescheidenen Leistungen handelt (vgl.
Tabelle), dass also Rückschlüsse auf Kraftwerke ausserhalb
dieser Grössenordnung nicht ohne weiteres zulässig sein dürften.

Ausserdem enthält der erwähnte Artikel keine
Wirtschaftlichkeitsberechnungen ; diese würden übrigens im
Hinblick auf die damaligen Bau- und Geldverhältnisse in Deutschland

auch keinen Vergleich mit normalen Voraussetzungen
gestatten. Wohl war der spezifische Aufwand an Beton und
Stahl für die Tiefbauarbeiten pro Leistungseinheit relativ
gering; dies allein kann jedoch kein genügendes Kriterium
für die totalen Bauaufwendungen sein. Abgesehen von der
Beurteilung des baulichen Teiles der Anlagen sind indessen
in maschinentechnischer Beziehung Fortschritte zu verzeichnen,

welche die ursprüngliche Bauweise Arno Fischers1) in
etwas günstigerem Licht erscheinen lassen. Beispielsweise
ist von geringen Spaltverlusten und einfacher Demontage der
Turbinen sowie von grosser Betriebssicherheit und guter

Tabelle über einige Unterwasserkraftwerke

Fluss
Betriebsbeginn Gefalle

Wasser-

durch-
fluss

Turbinen

Kraftwerk
Zahl

Totale

Leistung

m m*/8 PS

Rostin Persante 1936 3,75 12,6 2 530

Steinbach Hier 1938 8,70 100 4 10 000

(9 Standardwerke) Lech 1940 8,10 120 6 11100

Freilasslng Saalach 1942 8,23 60 3 5 600

>) Siehe SBZ 1948, Nr. 82, S. 449.-
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