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(10) v=

Ueber kleine Bewegungen in nicht vollkommen
Von Prof. Dr. FBI TZ GASSMANN, Zürich
1. Einleitung

In der Kontinuumsmechanik werden die
kleinen Deformationen, die ein fester Körper
unter der Einwirkung von Kräften erleidet,
in erster Annäherung dadurch beschrieben,
dass man den Körper als vollkommen
elastisch betrachtet, d. h. die Gültigkeit des Hookeschen

Elastizitätsgesetzes voraussetzt. Es gibt
jedoch Phänomene, die auf diese Art nicht beschrieben werden

können, wie z. B. die Dämpfung von mechanischen Schwingungen

durch sog. innere Reibung. Zur Beschreibung
solcher Phänomene existieren eine ganze Reihe von Ansätzen,
von denen sich die bekanntesten als Spezialfälle eines
allgemeinen Ansatzes darstellen lassen, der für isotrope Medien
in der vorliegenden Arbeit besprochen werden soll.

2. Lineare Differentialoperatoren
Im folgenden sei jeder mit einem * versehene Buchstabe

das Zeichen für ein Polynom einer Variabein nach dem Muster

(1) A* («) A0 + A,u + A2m» + + AAu*.

Es sei t die Zeit und A der zu A* gehörende
Differentialoperator, d. h. wenn / (t) eine gegebene Funktion von t
ist, so ist

<5*/

elastischen Körpern DK 538.313

(2) A'f)=Af AJ + A 1L+.a^L+dt +A* dt3 +' -Mfc- dt"
Sind beispielsweise fc, und kt von t unabhängige Grössen,

so gilt
ZeM + *. fc

1 + fc.

(6) 77'
Pxx Pxy Vx:

Pxy Pyy Py,
Pxz Pyz P„

gegeben.

(7) P gl (Pxx + Pyy + P«)

dax
dx

day
l dx •"

dax
dy

dst dax

1 dsy dax\ 1_ IJa^ _£M'
2 \ dx + dy 2 V dx "^ dz }

\ ô*r _L da* d*y\
dy 2 V dy "+" dttI1 / da, dax\ 1 I dax day \

2 { dx + dz 2 V dy ~l~ dz
dat
dz

(3) Ae"'' ' "" A* (fc,)e'"
Ist ferner G* (u) ein zweites Polynom, vom Grade h', und

(4) L* (u) A* (u) C* (u),
so ist der Operator, der durch Hintereinanderausführung der
Operationen Z und C entsteht, gerade L, d. h.

(5) C[Z(/)] Z[C(/)] =L(f).
Es genügt daher, diesen Operator einfach mit ~A~C zu

bezeichnen.

S. Der Spannungszustand
In einem rechtwinkligen (x, y, z) -Koordinatensystem

ist der Spannungszustand in einem Körper durch den
symmetrischen Tensor (über Tensoren im dreidimensionalen Raum
orientiert z. B. [1]

Ist die mittlere Normalspannung, und der Spannungszustand 77'

lässt sich zerlegen in einen hydrostatischen Spannungszustand
mit Spannung p und einen Spannungszustand 77 mit mittlerer
Normalspannung Null, also

(8) 77'=rp + 77.

,1 0 0,
(9) r | 0 1 0 J Einheitstensor.

\0 0 1/
4. Der Verzerrungszustand

Die als klein vorausgesetzte Verzerrung, die der Körper
infolge der Einwirkung der Spani&gen erfährt, ist gegeben
durch den Verschiebungsvektor s mit den rechtwinkligen
Komponenten sx, s,., s.. e verbindet die ursprüngliche Lage eines
Materieteilchens mit der augenblicklichen Lage im verzerrten

Zustand. Gleichung (10) stellt den Verzerrungstensor dar;
Gleichung (ll) die mittlere lineare Dehnung:

(11) d 4-divs m dax
dx + day

dy + dz Ì

Der Verzerrungszustand W lässt sich zerlegen in eine

gleichmässige Dilatation mit der linearen Dehnung 9 und eine

Verzerrung >F mit mittlerer Dehnung Null, also

(12) V r» + «F.

5. Zusammenhang zwischen Spannung und Verzerrung
FUr den vollkommen elastischen isotropen Körper

bestehen die das Hooke'sche Gesetz ausdrückenden Beziehungen

(13) p 3k», 27=*2G¥r.
k ist der Kompressionsmodul, G der Schubmodul des

Materials. Der Zugmodul E ist durch die Gleichung
3 11(14)

gegeben. Die Beziehungen (13) sollen nun dadurch verallgemeinert

werden, dass an Stelle der konstanten Faktoren
Differentialoperatoren im Sinne von Abschnitt 2 gesetzt werden,
nämlich

(15) Z(p)=B(#), Ö(77)=D(«F).
6. Bewegungsgleichungen des Mediums

Ist ® die auf das Massenelement wirkende äussere Kraft
pro Volumeneinheit und ç die Dichte des Mediums, so besteht
für kleine Bewegungen die Gleichung

d3s
(16) o e — Ä div 77' mit dt3

Zu den Differentialgleichungen für die Komponenten von
s gelangt man nun durch folgende Umformungen: Mit der
Identität div (Tp) — grad p wird nach (8) div 77' grad p +
div 77. Dies setzt man in (16) ein und wendet dann auf diese

Gleichung den durch (4) und (5) definierten Operator L
A~C an:

TC (q'b — ft)= ÖXgrad p +- Ä~U div 77.

Nach (15) und (11) ist
C A grad p Ö*grad Äp (Tgrad W»

-=- C B grad div s.

Ist A + + dz3dx3 ' dy3
gilt die Identität

(17) div¥= — Je 4-s-grad div s.2 6

Nach (15) wird demgemäss

ZÖ div 77 ÄD div ¥ ZI>(—

Die Gleichung (16) wird nunmehr zu
1

der Operator von Laplace, so

As -\- -g grad div gj

(18) AC(.çs — $t)=—ADAs + (t» + -=- BC grad div s.

Eine zweite Form dieser Gleichung erhält man durcn
Anwendung der Identität grad div s As + rot rot s.

(IS) AC(e's'_a): ^rBc\j,WAD "*" ~3D

+ (ÌAD +- — Bo\ rot rot s.

Die Gleichungen (18) und (19) sind zwei Formen der
Bewegungsgleichung für s, von denen die bekannten Bewe-
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gungsgleichungen für vollkommen elastische isotrope Körper
(siehe z. B. [2], Seite 66) Spezialfälle darstellen, entsprechend
der Tatsache, dass das Hooke'sche Gesetz (13) ein Spezialfall
des allgemeinen Gesetzes (15) ist.

7. Fortschreitende Wellen
Die Bewegungsgleichungen (18) oder (19) bilden die Grundlage

zur Untersuchung des dynamischen Verhaltens des
Mediums. Als Beispiel werde das Medium als allseitig unendlich
ausgedehnt angenommen und es soll die Möglichkeit der
Fortpflanzung von Wellen im Medium untersucht werden. Es soll
der einfachste Fall Ä 0, ç const, angenommen werden.
Zur Erzeugung der Wellen denke man sich die Materieteilchen,

die in der Ruhelage in der (y, z) -Ebene liegen, zu einer
starren Ebene Grundeböne) verbunden, die gezwungen
wird, sinusförmige Parallelverschiebungen von gegebener

fester Frequenz -=— auszuführen. Es sollen die ebenen, homo-
2n

genen Wellen betrachtet werden, die dadurch im Halbraum
x > 0 entstehen und sich in 4- »-Richtung fortpflanzen. Dabei

sollen folgende beiden Fälle a) und b) behandelt werden,
aus denen sich allgemeinere Fälle zusammensetzen lassen.

Fall a): Die Grundebene schwingt in »-Richtung, g hat
im ganzen Räume nur eine »-Komponente s ax, die von
x und t, nicht aber von y und z abhängt. Die Wellen sind
longitudinal und rot s 0. Gleichung (19) erhält die Form

(20) Hs MAs

wöbe \ H Ha Â

ist.
A C und M Ma i*

Fall b): Die Grundebene schwingt in j/-Richtung. s hat
im ganzen Raum nur eine 3/-Komponente s sy, die von x
und t, nicht aber von y und z abhängt. Die Wellen sind
transversal und in y- Richtung polarisiert, div s 0 und
Gleichung (18) erhält wiederum die Form (20), wobei

H Hb C und M Mb —- D
2ç

zu setzen ist. Auf Grund von (20) lassen sich beide Fälle
einheitlich behandeln. Es sei der Ansatz

(21)
— (e + lßix + jtBt

gemacht, j ]/ — 1 ; s0, s, ß sind positive Konstanten. Der
Ansatz ist komplex. Da aber die Differentialgleichung (20)
linear und mit reellen Koeffizienten versehen ist, sind sowohl
der reelle wie der imaginäre Teil von (21) für sich reelle
Lösungen von (20). (21) ergibt für x 0 die Bewegung der
Grundebene, die wie vorausgesetzt eine reine Sinusbewegung

ist. Allgemein ist in (21) s0e~~
e

die Amplitude, e der
Dämpfungsexponent, A 2%/ß die Wellenlänge, c m§wß die
Fortpflanzungsgeschwindigkeit. Setzt man (21) in (20) ein, so
erhält man unter Beachtung von (3):

a, 1st der Realteil, a„ der Imaginärteil des Quotienten in
(22). Beides sind reelle, bekannte Funktionen der gegebenen
Grösse a>. Die Auflösung nach s und. ß ergibt

(23) +

+

{«i + V"i2 + «a

«. + V*!8 + «aa

Geht man von (21) zu einer reellen Lösung zurück und
berechnet nach (16) daraus den Spannungszustand, so kann
man die Energie K berechnen, die im Mittel in der Zeiteinheit

durch eine senkrecht zur x-Axe stehende Einheitsfläche
in + »-Richtung fliesst ([5], § 125, Seite 210).

(24)

(25)

K — -^-f(.n's)dt
0

P So» a>'/5

2 e» +
¦2rX

OK _ j ws^£_ -iex
~dx~—Q ° e3 + ß'

e

ist die mechanische Energie pro Volumeneinheit, die im Mittel
in der Zeiteinheit in irgendeinem Punkte des Mediums ver¬

loren geht. Der Energieverlust ist also Null, wenn 8 0 Ist.
Dies ist beim vollkommen elastischen Medium (13) der Fall,
wie man aus (22) und (23) abliest. Die Polynome H* und
M* reduzieren sich nämlich in diesem Falle auf reelle positive

Konstanten. Bekanntlich sind in diesem Falle die
Fortpflanzungsgeschwindigkeiten der Longitudinal- und der
Transversalwellen von der Wellenlänge unabhängig. Im allgemeinen
Fall (15) hingegen wird s>0. Es tritt Verlust an
mechanischer Energie und überdies Dispersion ein, d. h. die
Fortpflanzungsgeschwindigkeit hängt von der Wellenlänge ab.
Weicht das Medium nur wenig von einem vollkommen
elastischen ab, so enthalten die Polynome H* und M*
Koeffizienten, die klein sind gegenüber den der vollkommenen
Elastizität entsprechenden Hauptkoeffizienten, e und ß in (23)
lassen sich dann in Reihen nach den kleinen Koeffizienten
entwickeln. Es zeigt sich dabei, dass z. B. In den in Abschnitt
8 und 9 erwähnten FäUen in erster Annäherung wohl
Absorption, aber keine Dispersion auftritt.
8. Der isotrope Festkörper nach Jeffreys ([4] und [7])

Für dieses Beispiel haben die Gleichungen (15) folgende
Form:

(26) V 3k», vn+- dt
77 **!»*+ '.TW*-

k, G, tj und a sind Materialkonstanten, von denen ij und
a Viskositätskoeffizienten darstellen. Man liest folgende
Operatoren ab:

Z= 1, B~=3fc, U=r, + y-, JJ—:20^- -f 2-dt tilt3

Man erhält daraus für Longltudinalwellen
H* Uco) =Ha* (ja) v + ìf>,

• M*(ju)) =Ma* (jo>)

k V aa>3 + (i° + *) ] w

für Transversalwellen wird
H*Uco) =Hb*(jcû) =3fc,
M*Uto) =Mb*(ja>) a G

w3 -| J Ol ¦
2q q

Mit diesen Werten lassen sich für beide Wellenarten nach
(22) und (23) alle interessierenden Wellengrössen, wie Dämpfung,

Wellenlänge usw. berechnen. Es seien noch folgende
Spezialfälle des Festkörpers von Jeffreys angeführt:

vollkommen elastischer Körper
«firmoviskoser» Körper nachVoigt [9]
«elastlcoviskoser» Körper nach Maxwell

[6]
viskose Flüssigkeit (oder Gas)

i: reibungslose Flüssigkeit (oder Gas)

I. rj a 0

II. rj =0:
HL « 0:

IV. r, G 0
V. ij G a

1
VI k

0: inkompressible Flüssigkeit

9. Der Isotrope Festkörper nach Sezawa [8] und [3]
In Erweiterung des Ansatzes von Voigt wird neben der

Scherungsviskosität a auch eine Volumänderungsviskosität k'
angenommen. Die Gleichungen (15) erhalten folgende Form:

I
(27) p=3k»+ 3k>m-S,

Die Operatoren sind daher

H ^2GW+ «-^r*r

1, B 3k + 3k' ö
~Wt 0 1, 5 2G-fo Ot
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