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67. Jahrgang

Nr. 4

Zum Rucktritt von Schulratsprasident Rohn, 2. Heft

Ueber kleine Bewegungen in nicht vollkommen elastischen Kérpern

Von Prof. Dr. FRITZ GASSMANN, Ziirich
1. Einleitung

In der Kontinuumsmechanik werden die
kleinen Deformationen, die ein fester Korper
unter der Einwirkung von Kréften erleidet,
in erster Annidherung dadurch beschrieben,
dass man den Korper als vollkommen ela-
stisch betrachtet, d. h. die Giiltigkeit des Hooke-
schen Elastizititsgesetzes voraussetzt. Es gibt
jedoch Phédnomene, die auf diese Art nicht beschrieben wer-
den koénnen, wie z. B. die Démpfung von mechanischen Schwin-
gungen durch sog. innere Reibung. Zur Beschreibung sol-
cher Phinomene existieren eine ganze Reihe von Ansétzen,
von denen sich die bekanntesten als Spezialfille eines all-
gemeinen Ansatzes darstellen lassen, der fiir isotrope Medien
in der vorliegenden Arbeit besprochen werden soll.

(10) Pr—

2. Lineare Differentialoperatoren

Im folgenden sei jeder mit einem * versehene Buchstabe
das Zeichen fiir ein Polynom einer Variabeln nach dem Muster
(1) A* (u) = A, + A ju 4+ Au? ...+ Ajut.

Es sei t die Zeit und A der zu A* gehdrende Differen-

tialoperator, d. h. wenn f(¢) eine gegebene Funktion von ¢
ist, so ist
— - af o*f orf
2) AN =Af=Af+Az+45+ - +digpy
Sind beispielsweise k, und k, von ¢t unabhéngige Grossen,
so gilt

GV e Y

Ist ferner C* (u) ein zweites Polynom, vom Grade k', und
(4) L* (u) = A* (u) C* (u),
so ist der Operator, der durch Hintereinanderausfithrung der
Operationen 4 und C entsteht, gerade L, d. h.
(5) CIANI=4A1CNHI=L().

Es geniigt daher, diesen Operator einfach mit A C zu
bezeichnen.

kyt + ko

3. Der Spannungszustand

In einem rechtwinkligen (x, y, 2)-Koordinatensystem
ist der Spannungszustand in einem Korper durch den sym-
metrischen Tensor (liber Tensoren im dreidimensionalen Raum
orientiert z. B. [1])

DPxx pxy Pz
(6) = (px.v Dyy pn)
Dz py: Pz
_. gegeben.

1
(7) D= *g‘ (pxx + pyy + pz:)

ist die mittlere Normalspannung, und der Spannungszustand II'
ldasst sich zerlegen in einen hydrostatischen Spannungszustand
mit Spannung p und einen Spannungszustand /I mit mittlerer
Normalspannung Null, also

@) I rpi

150170
9) I' = (0 3 0) — Einheitstensor.
0 0 1

4. Der Verzerrungszustand

Die als klein vorausgesetzte Verzerrung, die der Korper
infolge der Einwirkung der Spannungen erfihrt, ist gegeben
durch den Verschiebungsvektor s mit den rechtwinkligen Kom-
ponenten s,, sy, s:. s verbindet die urspriingliche Lage eines
Materieteilchens mit der augenblicklichen Lage im verzerr-
ten Zustand. Gleichung (10) stellt den Verzerrungstensor dar;
Gleichung (11) die mittlere lineare Dehnung:

i 1.rds s, 0s;
11 =_—-d = s y 3
= 73 R 3 (60& T oy * 62)'

—

DK 538.313

08, 15708, ds, 1 ( 08: 0 as,)
ox 7( ox oy ) 2i\Giow 0%
1-ridsy 0 8y 03y l( 0s; it 70783‘)
72( cx oy \) 0y 2 \ dy 0z
1/ .08; 08, Tiirvigsl as',,) 08;
727(090 = az) f(o’y SSATT 0z

Der Verzerrungszustand ¥ ldsst sich zerlegen in eine
gleichmissige Dilatation mit der linearen Dehnung ¥ und eine
Verzerrung ¥ mit mittlerer Dehnung Null, also

(12) = e,

5. Zusammenhang zwischen Spannung und Verzerrung
Fiir den vollkommen elastischen isotropen Korper be-
stehen die das Hooke’sche Gesetz ausdriickenden Beziehungen

(13) p=3k%, I=2G¥.
k ist der Kompressionsmodul, G der Schubmodul des Ma-
terials. Der Zugmodul ¥ ist durch die Gleichung

3 1 1

D) i oa sk

gegeben. Die Beziehungen (13) sollen nun dadurch verallge-
meinert werden, dass an Stelle der konstanten Faktoren Dif-
ferentialoperatoren im Sinne von Abschnitt 2 gesetzt werden,
nédmlich

(15) 4A(p)=B(9), CU) =D(¥).

6. Bewegungsgleichungen des Mediums

Ist § die auf das Massenelement wirkende dussere Kraft
pro Volumeneinheit und ¢ die Dichte des Mediums, so besteht
fiir kleine Bewegungen die Gleichung
0%s
ot ’

Zu den Differentialgleichungen fiir die Komponenten von
s gelangt man nun durch folgende Umformungen: Mit der
Identitdt div (I'p) — grad p wird nach (8) div II’ — grad p }
div 1. Dies setzt man in (16) ein und wendet dann auf diese
Gleichung den durch (4) und (5) definierten Operator L—
AC an:

(16) 05— R —divIl' mit s =

AC(p5s—R) =CAgradp + AC div II.
Nach (15) und (11) ist
CAgradp—Cgrad Ap —C grad B9 =
3 |y
= CB grad div g.

02 a2 02
Ist 4= = 4+ FRTE + T3

gilt die Identitit

der Operator von Laplace, so
17) div‘l”:%z]s-{—%grad div s.
Nach (15) wird demgemaéss
AC divIl — AD div ¥ — Z-D(%As 4 %graddiv g) 5
Die Gleichung (16) wird nunmehr zu

A 3 e 3 el g
(18) AC(@;—R)zfADAs-{-(EAD_}-%BC)graddivg.

Eine zweite Form dieser Gleichung erhidlt man durch
Anwendung der Identitit grad divs — 45 - rot rot s.

(19) A—C(g'g'_ﬁ)z(éﬁ i %Eﬁ)z]s 4

1 — 1 ——
+ (gAD-{- gBC)rotrot S.

Die Gleichungen (18) und (19) sind zwei Formen der Be-
wegungsgleichung fiir g, von denen die bekannten Bewe-
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gungsgleichungen fiir vollkommen elastische isotrope Kérper
(siehe z. B. [2], Seite 66) Spezialfidlle darstellen, entsprechend
der Tatsache, dass das Hooke’sche Gesetz (13) ein Spezialfall
des allgemeinen Gesetzes (15) ist.

7. Fortschreitende Wellen

Die Bewegungsgleichungen (18) oder (19) bilden die Grund-
lage zur Untersuchung des dynamischen Verhaltens des Me-
diums. Als Beispiel werde das Medium als allseitig unendlich
ausgedehnt angenommen und es soll die Méglichkeit der Fort-
pflanzung von Wellen im Medium untersucht werden. Es soll
der einfachste Fall § = 0, 9 — const. angenommen werden.
Zur Erzeugung der Wellen denke man sich die Materieteil-
chen, die in der Ruhelage in der (y, 2)-Ebene liegen, zu einer
starren Ebene (= Grundebéne) verbunden, die gezwungen
wird, sinusférmige Parallelverschiebungen von gegebener

fester Frequenz 2—a7)r auszufiihren. Es sollen die ebenen, homo-

genen Wellen betrachtet werden, die dadurch im Halbraum
z > 0 entstehen und sich in + z-Richtung fortpflanzen. Da-
bei sollen folgende beiden Fille a) und b) behandelt werden,
aus denen sich allgemeinere Féille zusammensetzen lassen.

Fall a): Die Grundebene schwingt in z-Richtung. g hat
im ganzen Raume nur eine z-Komponente s — s,, die von
« und ¢, nicht aber von y und 2 abhidngt. Die Wellen sind
longitudinal und rot ¢ — 0. Gleichung (19) erhilt die Form

(200 Hs=DMd4as,

e R = £ — T 23— e
wobei H — H, — AC und M — I, =?( 4D 4  BC
ist.

! Fall b): Die Grundebene schwingt in y-Richtung. s hat

im ganzen Raum nur eine y-Komponente s = s,, die von
und ¢, nicht aber von y und 2 abhingt. Die Wellen sind
transversal und in y-Richtung polarisiert, div ¢ — 0 und Glei-
chung (18) erhilt wiederum die Form (20), wobei

= L = i, Sy 1l

H -= H, — C und M:Mb:WD
zu setzen ist. Auf Grund von (20) lassen sich beide Fille
einheitlich behandeln. Es sei der Ansatz

—(c+if T +int

(21) s = s,€

gemacht. j:]/iAf; s,, &, B sind positive Konstanten. Der
Ansatz ist komplex. Da aber die Differentialgleichung (20)
linear und mit reellen Koeffizienten versehen ist, sind sowohl
der reelle wie der imagindre Teil von (21) fiir sich reelle
Losungen von (20). (21) ergibt fiir x — 0 die Bewegung der
Grundebene, die wie vorausgesetzt eine reine Sinusbewegung

ist. Allgemein ist in (21) s, e & die Amplitude, ¢ der Ddmp-
fungsexponent, 4 — 2n/f die Wellénlénge, ¢ —= /3 die Fort-
pflanzungsgeschwindigkeit. Setzt man (21) in (20) ein, so
erhidlt man unter Beachtung von (3):

— 0?H* (jo)

(22) (E+jﬂ)2:——*m’]:7;)——:“1+j“2'

o, ist der Realteil, «, der Imaginérteil des Quotienten in
(22). Beides sind reelle, bekannte Funktionen der gegebenen
Grosse . Die Auflésung nach ¢ und g ergibt

2o T ‘/%(a +Varsar ),
=t )5t Var e

Geht man von (21) zu einer reellen Losung zuriick und
berechnet nach (16) daraus den Spannungszustand, so kann
man die Energie K berechnen, die im Mittel in der Zeitein-
heit durch eine senkrecht zur z-Axe stehende Einheitsfliche
in 4 z-Richtung fliesst ([5], § 125, Seite 210).

2x
. w ; 08.2 (,)3‘/} Slin
—— R T = e O o i
il ‘ 2"0.[(” o I 2 a1p°
JK , W3PE ~ s
(25) =y =08, 7;;27;} g e

ist die mechanische Energie pro Volumeneinheit, die im Mittel
in der Zeiteinheit in irgendeinem Punkte des Mediums ver-

loren geht. Der Energieverlust ist also Null, wenn & — 0 ist.
Dies ist beim vollkommen elastischen Medium (13) der Fall,
wie man aus (22) und (23) abliest. Die Polynome H* und
M* reduzieren sich nédmlich in diesem Falle auf reelle posi-
tive Konstanten. Bekanntlich sind in diesem Falle die Fort-
pflanzungsgeschwindigkeiten der Longitudinal- und der Trans-
versalwellen von der Wellenldnge unabhingig. Im allgemeinen
Fall (15) hingegen wird ¢ > 0. Es tritt Verlust an mecha-
nischer Energie und iiberdies Dispersion ein, d. h. die Fort-
pflanzungsgeschwindigkeit hidngt von der Wellenlinge ab.
Weicht das Medium nur wenig von einem vollkommen ela-
stischen ab, so enthalten die Polynome H* und M* Koeffi-
zienten, die klein sind gegeniiber den der vollkommenen Ela-
stizitdt entsprechenden Hauptkoeffizienten. ¢ und B in (23)
lassen sich dann in Reihen nach den kleinen Koeffizienten
entwickeln. Eg zeigt sich dabei, dass z. B. in den in Abschnitt
8 und 9 erwidhnten Fillen in erster Annidherung wohl Ab-
sorption, aber keine Dispersion auftritt.

8. Der isotrope Festkorper nach Jeffreys ([4] und [7])
Fiir dieses Beispiel haben die Gleichungen (15) folgende
Form:

(26) g i

g : :
—3k9, nIl + Wﬂzwﬂlp‘““a%

k, G, » und « sind Materialkonstanten, von denen 7 und
« Viskositdtskoeffizienten darstellen. Man liest folgende Ope-
ratoren ab:

P

A=1,B=38k,C=1y+ g ; B:zar-ﬁ-,juz &
Jt ot ot
Man erhilt daraus fiir Longitudinalwellen
H* (jo) =Hq* (jo) =7+ jw,
M* (ju) = M* (jo) =
= %[kn—-%aoﬂ{- (%G+k)]w],
fiir Transversalwellen wird
H* (jo) = Hp* (jw) =3k,
M* (jo) = Mp* (jo) = — —— ? i ijw-
20 ¢

Mit diesen Werten lassen sich fiir beide Wellenarten nach
(22) und (23) alle interessierenden Wellengrossen, wie Dadmp-
fung, Wellenldnge usw. berechnen. Es seien noch folgende
Spezialfdlle des Festkorpers von Jeffreys angefiihrt:

I. 7=a=0:
II, N = 0:
III. «=0:

vollkommen elastischer Korper

«firmoviskoser» Korper nach Voigt [9]

«elasticoviskoser» Korper nach Max-
well [6]

viskose Fliissigkeit (oder Gas)

reibungslose Fliissigkeit (oder Gas)

IV. 7]=G=0:
V. =G=a=0:

it

Vi - inkompressible Fliissigkeit

9. Der isotrope Festkorper nach Sezawa [8] und [3]

In Erweiterung des Ansatzes von Voigt wird neben der
Scherungsviskositit « auch eine Voluménderungsviskositit k'
angenommen. Die Gleichungen (15) erhalten folgende Form:

d g op B
2 == k Be ’—( == g »
(27) D 3k 3k at@,n 2G’1’+aat‘1‘

Die Operatoren sind daher
e = D et S
A — 1, B— 3|3k Ot e D:ZG-{-aTat .
O
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