Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 67 (1949)

Heft: 34

Artikel: Die Leitungsverluste beim Hochspannungs-Gleichstrom durch

Schwingtropfen

Autor: Cybulz

DOI: https://doi.org/10.5169/seals-84120

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

und eine erneute, abgeänderte Baueingabe wurde am 21. Februar endgültig bewilligt, 14 Monate nach dem Datum der ersten Baueingabe, während in der Baugrube bereits die Bagger an der Arbeit waren.

Das vorliegende Ergebnis lässt nur ahnen, welche Schwierigkeiten zu überwinden waren, bis es so weit war, dass das «Steineaufeinandertürmen» und das «Verzieren» begonnen werden konnten. Umso mehr verdienen die Bauherren, die Baubehörden und nicht zuletzt die Architekten unseren Dank für einen guten Bau, der sich als schlichtes Geschäftshaus geschickt ins Stadtbild Zürichs einfügt. H. Marti

Die Leitungsverluste beim Hochspannungs-Gleichstrom durch Schwingtropfen

DK 621.3.015.532:621.315.024

Mit der praktischen Anwendung der Gleichstrom-Hochspannungsübertragung wird die Kenntnis der Erscheinungen, welche die Leitungsverluste bedingen, vor allem des Koronaeffektes immer wichtiger. Die Versuche von M. Pauthenier und G. Duhaut, deren Ergebnisse in einem Aufsatz in der Januar-Nummer 1949 der «Revue Générale de l'Electricité» zusammengestellt sind, bilden einen Beitrag zur Untersuchung dieser Verluste. Sie betreffen die Erscheinungen, deren Sitz die an der Unterseite der Leiter hängenden Wassertropfen sind. Die natürlichen Verhältnisse wurden in einer Versuchsanordnung reproduziert, in der jedoch der Hochspannungsleiter nicht den Durchgang eines Hochspannungsgleichstroms, sondern einer elektrostatischen negativen Hochspannung ausgesetzt wurde. Zur Festhaltung der Beobachtungen wurden ein Dumont'scher Kathodenstrahloszillograph und eine Stroboskopeinrichtung für visuelle Beobachtung und ultraschnelle kinematographische Aufnahmen benützt. Die Versuche wurden im Hochspannungslaboratorium des französischen Centre National de la Recherche Scientifique in Bellevue bei Paris ausgeführt. Ihre Ergebnisse lassen sich folgendermassen zusammenfassen:

Bei ziemlich raschem Ansteigen des negativen Leiterpotentials von Null ab bildet der Tropfen bei einem Potential, das noch weit unter dem Schwellenwert für den Koronaeffekt bei trockenem Leiter liegt, plötzlich eine Spitze und stösst dabei den überschüssigen Teil seines Wassers ab. Das nach dieser ersten Spitzenleistung im Tropfen verbleibende Wasservolumen ist unabhängig vom Anfangsvolumen des Tropfens und für einen Leiter von gegebener Dicke unter gegebener Spannung konstant.

Steigt das negative Potential weiter, so gerät der Tropfen innerhalb eines begrenzten Potentialbereiches in selbstunterhaltene Schwingungen; sie entstehen durch die Gegenwirkung der hydrostatischen Kapillarspannung des Tropfens und der auf ihn wirkenden elektrostatischen Spannung, wobei die durch den Koronaeffekt bewirkte Entladung während des Durchgangs des Tropfens durch die Spitzenform die Schwingung unterhält. Das elektrostatische Feld, das diese Bewegung verlangsamt, hat einen deutlichen Einfluss auf die Schwingungszahl.

Mit dem Einsetzen der Schwingungen tritt an der Wasserspitze des Tropfens die Koronaentladung auf. Der Tropfen am Leiter bewirkt eine starke Senkung der Spannungsgrenze für den Eintritt des Koronaeffekts. Während bei einem trockenen Leiter grösserer Dicke die Koronaentladung bei einem Feldgradienten von etwa 31 kV/cm auftritt, wird eine solche Entladung durch den schwingenden Wassertropfen bereits bei Potentialgradienten bis zu 10 kV/cm herab bewirkt. Dieser Effekt wirkt sich bei dicken Leitern ungünstiger aus als bei dünnen; je dicker der Leiter, desto früher tritt die Koronaentladung auf, und desto stärker wird der Verluststrom.

Wie die oszillographische Untersuchung beweist, erfolgt die Koronaentladung im gleichen Tempo wie die Schwingung des Tropfens, während des Durchgangs des Tropfens durch die Spitzenform. Die Entladung setzt dabei schroff ein und klingt mit Rückgang der Spitze ab. Dieses Abklingen geschieht aber nicht stetig, sondern periodisch, mit einer Periodizität der Teilentladungen, die weit grösser ist als die Schwingungszahl des Tropfens. Diese Erscheinung ist im Prinzip und Ausmass völlig gleich mit der Koronaentladung an einer festen metallischen Spitze, die lotrecht zur Mantelfläche auf einen zylindrischen Leiter wie der untersuchte aufgesetzt ist. Bei glattem zylindrischem Leiter wächst die Frequenz der

Bild 1. Verschieben des Leichtmetall-Stauchapparates (kleines Modell) auf dem Gleis

Schwingungen der abklingenden Entladung linear mit der Stärke des Entladungsstroms, d. h. etwa linear mit der angelegten Spannung. Diese sehr regelmässigen Schwingungen, die denjenigen eines Kippschwingkreises völlig ähnlich sind, lassen sich aus den Verhältnissen des elektrischen Feldes in der unmittelbaren Nähe der Spitze erklären, und sind vor allem an die Ionenemission gebunden. M. Cybulz.

Leichtmetall-Stauchapparate für DK 625.143.48 aluminothermische Schienenschweissung

Von Dipl. Ing. ETH R. FREY, Forschungsinstitut Neuhausen der Aluminium-Industrie A.-G., Chippis

Die aluminothermische Schweissung von Vignol- und Rillenschienen ist über den ganzen Erdball verbreitet. Darnach werden die beiden zu verschweissenden Schienenenden mit einer Sandform umgeben, und darauf wird der Zwischenraum mit flüssigem Stahl ausgegossen. Der Stahl wird in einem feuerfesten Tiegel mittels der aluminothermischen Reaktion erzeugt, wobei Temperaturen von gegen 2500°C entstehen. Unmittelbar nach erfolgtem Eingiessen werden die Schienen zusammengepresst (gestaucht). Zur Erzeugung der für den Stauchvorgang notwendigen Druckkraft von über 30 t werden auf dem Gleis Stauchapparate (Klemmapparate, Schienenpressen) benützt, in die die Schienen durch je drei Hakenschrauben fest eingespannt werden. Der Apparat sorgt für die richtige Führung der Schienen. Die Stauchkräfte werden durch Drehen von zwei Schraubenspindeln erzeugt.

Seit der erstmaligen Anwendung des aluminothermischen Schweissverfahrens durch H. Goldschmidt vor genau fünfzig

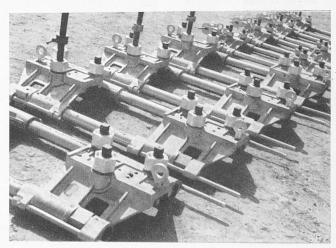


Bild 2. Eine Serie Leichtmetall-Stauchapparate, im Vordergrund: grosses Modell für Rillenschienen, im Hintergrund: kleines Modell für Vignolschienen