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Die Elastizitätstheorie der parallelogrammförmigen Scheibe
Von Prof. Dr. P. LARDY, ETH, Zürich

/>lTuv

Bild 1

Bild 2

Puy)

ild 3

DK 624.072.1

P'(u*U,v+V)

Eines der geeignetsten und wohl fruchtbarsten Mittel zur
Bestimmung der strengen Lösungen von elastizitätstheoretischen

Problemen ergibt sich aus der Wahl eines
Koordinatensystems, das der Form des zu untersuchenden
Tragkörpers angepasst ist. Aus diesem Grunde wurden neben
den kartesischen die Polarkoordinaten, die elliptischen und
neuerdings die Bipolarkoordinaten, sowie die schiefwinkligen
Koordinaten eingefäfet1).

Im folgendenwerden die theoretischen Grundlagen der
i||gffiUelograinmförmigen Scheibe entwickelt, die im

Bauingenieurwesen zahlreiche Anwendungen aufweist, wobei als
wichtigster Sonderfall die dreieckförmige Scheibe bei Staumauer-
Berechnungen auftritt. In einem I. Teil werden die
Gleichgewichtsbedingungen, die Beziehungen zwischen den
Verschiebungen und den Dehnungen, sowie den Dehnungen und
Spannungen hergeleitet. Aus der Verträglichkeitsbedingung
wird die Bestimmungsgleichung der Airy'schen Spannungs-
Funktion gewonnen 2J. Die Spannungen und Dehnungen können

somit durch die Airy'sche Spannungsfunktion
ausgedruckt werden. Durch Integration folgen aus den Dehnungen
die Verschiebungen, die in explizitgEForm dargestellt werden
und die Lösung der Probleme mit «geometrischen»
Randbedingungen ermöglichen. Im II. Teil soll an einigen Beispielen

die Wirksamkeit der schiefwinkligen Koordinaten aufgezeigt

werden.

I. Theoretische Grundlagen
a) Bezeichnungen

Der Zusammenhang zwischen den schiefwinkligen und
rechtwinkligen Koordinaten folgt aus Bild 1 mit folgenden
Abkürzungen :

cos co c sin i„

X u -\- cv u x —
c

- —y

y SV
und

v i—ys

(1)

Die Spannungen und ihre positiven Vorzeichen sind aus
Bild 2 definiert.

Die Gleichheit der Schubspannungen ist auch am Element
von Bild 2 verwirklicht»), d.h. es gilt:

Tuv rvu

Prof. Dr. ff. Favre: Sur l'introduction des coordonnées obliques
dans la théorie de l'élasticité; «Bull. Techn. de la Suisse Romande»
1946, S. 821» und S. 383«.

*) Prof. Dr. H. Favre hat diese Gleichung durch direkte Koordi-
natentransformatlon aufgestellt ; loc. cit.

8) H. Favre: loc. cit.

(^{p-c/yu

x„„-av

Tiiv-au

ös du

(*"+$*¦*)<*'

du du)di.

Y ~(6\ + ^-du)dv

Die Verschiebungen werden mit grossen Buchstaben U
und V bezeichnet und sind positiv wie in Bild 3.

Der «Verzerrungszustand» ist durch die axenparallelen
Dehnungen eu und e„ sowie durch die Winkeländerung yuv des
Winkels co (im Gegensatz zum rechten Winkel bei den
rechtwinkligen Koordinaten) definiert.
b) Gleichgewichtsbedingungen

Die Gleichgewichtsbedingungen für die Richtungen u und
v folgen aus Bild 4.

Es folgt:
dou

dov
dv

uTuv

+ c

+ C

do„ + Cim
dv du
dou
du +

drm
dv

0

9 =ov

r o

r. u
dov a tu,

ou

dv du
Diese Gleichungen sind nur dann identisch erfüllt

(Determinate ± 0!), wenn

(2)

sind. Die Form dieser Gleichungen ist die selbe wie in den
Koordinaten x, y.
c) Zusammenhang der Spannungen in beiden
Koordinatensystemen4)

Aus Bild 5 folgt am Element du dx und dv dy 0 :

ay s ov, zxy =T„, + C <J„

und nach Bild 6 entsteht für das Gleichgewicht in der tt -
Richtung :

°u + cruv + CrXy — S0X 0

Die drei letzten Gleichungen ergeben aufgelöst:
1

l
(3') (S20x -f- C*Oy) 2CTxy

®>mm
Tuv — Tx

dx

c
— "ys 7

oder

(3") ax —(<ju + c*ov + 2cr„„)

Bild 5a

du

Bild 4

Oy S 0V

rxy T„„ + C (J„

d) Verzerrungszustand
Die Dehnungen f „ und sv

sowie die Winkelanderung yuv des
Winkels io werden direkt aus
Bild 7 hergeleitet, unter
Verzicht auf die analytische
Berechnung, die zum selben
Ergebnis führt, jedoch langwieriger

ist. Bild 7 stellt den
Verschiebungszustand zweier ax-
paralleler Elemente OA du
und OB dv dar, wobei ohne
Einschränkung der Allgemein-

') ff. Favre: loc. cit.

Tuv-du

/6,-du
Bild 5b

.0.,-cdi

cd/

c-dy

th,-du6x-sdr

Bild 6
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iï-dv

au

(#"$*

und rj bezeichnet, so vermittelt Bild 8 den Zusammenhang
von (U, V) mit (|, y) wie folgt:

c
—Vs

1

(6)

Bild 7

gültigkeit der Nullpunkt O als unverschieblich angenommen ist
(der Verzerrungszustand hängt ja nur von der Differenz der
Verschiebungen ab!). Dies hat zur Folge, dass die Verschiebungen

der Punkte A und B nur von den partiellen
Ableitungen der Grössen U und V abhängen.

Die Dehnung g„ folgt aus dem Vergleich der Strecken
Ö~Ä' du' und ÖA du. Aus Bild 7 folgt :

"=]/ldu 4-
ÔU -H'+L'wH\ du du

Bei Beschränkung auf, gegenüber du und dv, seftr kleine
Verschiebungen U und V können für die weitere Berechnung
die Quadrate und die Produkte der partiellen Ableitungen
vernachlässigt werden. Es folgt dann:

du' duy *(-
dU
du + c

dV \
du

Wird die Wurzel entwickelt, so folgt für

su
du' — du du

du + c dv
du du

Analog wird

sv
dv —. dv dV

dv + 0
dU

dv dv
Die Winkeländerung yu

Aus Bild 7 folgt weiter :

ist die Summe von und y.

iz.*»
*£Yi

tsys

d 4- eu) du
e u -,——dv

(1 4- £„) dv

Wegen der oben gemachten Voraussetzung können im Nenner
die Dehnungen vernachlässigt werden und man gelangt zu:

du dV\
yuv Yi+7* dv + du

Zusammenfassend folgt das Ergebnis:

(4) dU ÖV
+ c

du ou
dV ÖU

dv
dU

du IYuv »
av

e) Verträglichkeitsbedingung
Aus den Gleichungen (4) folgt durch Elimination der

Verschiebungen U und V sofort die Verträglichkeitsbedingung,
die durch Einsetzen der Werte aus (4) kontrolliert

wird:

(5)
dudv

~i
dV! + d'ev

du1 — c-
dHeu Sv)

du du

f) Beziehungen zwischen den Verzerrungszustän-
den in schiefwinkligen und rechtwinkligen
Koordinaten

Die Beziehungen zwischen den Verzerrungszuständen sx,
ey, yxy und eu, sv, yuv sind notwendig, um die Verbindung
zwischen Spannungszustand und Verzerrungszustand in
schiefwinkligen Koordinaten zu erhalten. Werden im rechtwinkligen

Koordinatensystem (x, y) die Verschiebungen mit £

e U + cV

¦n sV

U
und

V

Nach den Regeln der Differentialrechnung ist:
dU

_
dU dx dU dy

du dx du dy du
dU dU dx dU dy
dv dx dv dy dv

Es folgen zwei analoge Gleichungen für dV/du und dV/dv.
Anderseits ergeben die Gleichungen (1):

dx _ dy dx dy
du " ' du ~ ' dv ' dv

Ferner ergibt sich aus den Gleichungen (6):
dU d£ c drj
dx dx s dx
dU dS c dij
dy dy s d'M&

und analoge Beziehungen für dV/dx und dV/dy.
Durch diese Transformationen können die Verzerrungs-

grössen su, ev und yua in Abhängigkeit derjenigen:

H drj dg
| driSx~ ~d^~' Sy-~dy~' 7xy~ dy + dx

gesetzt werden; es folgt:
(7)

c*ex + s'Sy 4- csy^
s[c(ex - fH 4- syxy\

g) Spannungs-Dehnungs-Gleichungen in
schiefwinkligen Koordinaten

Man gelangt nun sehr einfach zu den Grundbeziehungen
zwischen Spannungen und Dehnungen im System (u, v) durch
Kombination der Gleichungen (3) und (7) sowie der bekannten

Spannungs-Dehnungs-Gleichungen im System (x, y):
SX — (0X- Vdy)

1
(<J — V0X)

2(14-")
y*y b, rxyE

Es folgt:

(8) SET1"» (c2

Sv

vs*)ov 4- 2ct„„]

[(j„ 4- (ca — j>s2) au 4- 2ct„„]

Yuv

1

sE
2(14-")

E
M + ~y ("u 4- ffi>)

h) Airy'sche Spannungsfunktion
Durch direkte Koordinatentransformation und mittels der

Gleichungen (3) kann im System (w, v) die Airy'sche
Spannungsfunktion tp (w, v) eingeführt werden. Da sie bis auf
einen konstanten Faktor definiert ist, folgt6):

(9) <J„
d*<P

dv1

av
d'<P

du'

TUv
d' <P

dudv

Die Form der Gleichungen hat sich in schiefwinkligen
Koordinaten nicht geändert. Die Gleichungen (9) erfüllen
identisch die Gleichgewichtsbedingungen (2) und fuhren zur
Bestimmungsgleichung der Funktion 4> durch Einsetzen in
die Verträglichkeitsbedingung (5). Damit entsteht die «bi&ar-
monische Differentialgleichung» im System (u, v) und
zugleich eine willkommene Kontrolle der hier abgeleiteten Theorie,

da diese Differentialgleichung auch direkt durch Koordi-
») ff. Favre : loc. cit.
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ilde
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JBild 9 A—a

V

{.—

Bild 10

natentransformation aufgestellt werden kann. Mit dem «La-
place'schen Symbol» A<1> folgt im System (u, v):

(10) J<P
cf<l>

+
,<p

dv* 2c-
d2<P

dudv

und damit die biharmonische Differentialgleichung zur Bestimmung

der Airy'schen Spannungsfunktion <P:

(11) da® 0*9
du*

¦ ici-

d*4>

d*<P

du'dv

dv1

+

4-2(l-|- 2c2)

<94#

dudv3

d*<P

du* dv2

0

i) Formänderungen (Verschiebungszustand)
Die Verschiebungen U und V können in expliziter Form

dargestellt werdeil. Dies ist bei zahlreichen Randwertproblemen
mit rein geometrischen oder geometrisch-statischen

Randbedingungen wertvoll. Die Ableitung sei hier nur skizziert.
In den ersten beiden Gleichungen (8) seien die Dehnungen

als Funktion der Verschiebungen und die Spannungen in
Abhängigkeit der Airy'schen Spannungsfunktion ausgedrückt.
Die Integration der ersten Gleichung nach u und der zweiten
Gleichung nach v ergibt die Grössen: U 4- cV und V 4- cU;
jede von ihnen ist mit einer noch unbestimmten Integrationsfunktion

tp (v) und ijj (u) behaftet. Die Auflösung nach U
und V geschieht leicht ; unter Benützung der dritten
Gleichung (8) kann die Beziehung zwischen den beiden
Integrationsfunktionen hergestellt werden. Die Verschiebungen
ergeben sich zu:

(12) ffi(p ai f ä34> 1 .„ „ JJd9
du — c I —*—dv 4- (3c2— vs2)-=—

dv* du' dus»E [J dv* J
d<P

— c (2 -1- c2 — vs2) m h <j>(i>) — cid (u)dv
f d*& f ö2# ,„- dv— c\ du 4- (3c2 -J du3 J dv3 '

>tp(v)

s3E
vsa)

)<P

dv

— c(2 4- ca — vs1)
d<P

+ y(u)

Die Beziehung zwischen den Integrationsfunktionen tp (v)
und ib(u) lautet:

(13) dtp(v) dtf,{,u)
sì ti A at

t d*tp Id1

^(^- + ^-ì+2(l + 2c2)
V du3 ' dv3 I

du

d*<P

dudv
0

Diese Gleichung ist, was die Glieder in $ anbelangt,
nichts anderes als das Ergebnis der doppelten, partiellen
Integration nach u und v des Ausdruckes für AJ&.
j) Bemerkungen zum theoretischen Teil

Sämtliche Grössen zur Berechnung der parallelogramm-
förmigen Scheibe sind somit explizite dargestellt. Man
überzeugt sich leicht, dass für c 0 und s 1, d. h. für ein
rechtwinkliges System, alle Grössen in die bekannten
Ausdrücke des Systems (x, y) übergehen. Ueber die Integration
der Gleichung

J/]<P 0

mag der zweite Teil in einigen Beispielen Aufschluss geben.

IL Beispiele
Nach steigender Schwierigkeit (wachsende Ränderzahl!)

geordnet sollen einige Beispiele die abgeleitete Theorie
veranschaulichen. Im Falle periodischer Randbelastungen können

die verschiedenen Ansätze auf der selben Grundlage
gefunden werden, die bei der Behandlung der schiefen Platte
benutzt wurde").

*) P. Lardy: Die strenge Lösung des Problems der schiefen Platte.
«SBZ» 1949, Nr. 15, S. 207*.

a) Elementarer Fall
Auch hier bilden Ansätze mit Polynomen in u und v für

die Airy'sche Spannungsfunktion <P eine Kategorie von
Problemen, die wegen der mathematischen Einfachheit des
Ansatzes leicht zu lösen sind. Selbstverständlich können damit
nur «einfache» Randbedingungen berücksichtigt werden.

Im folgenden wird eine parallelogrammförmige Scheibe
an zwei gegenüberliegenden Rändern durch gleichmässig
verteilte Zugkräfte beansprucht (Bild 9).
Randbedingungen :
FUr u — -j- a müssen <j„ p und xuv 0 und
für v + b müssen av t„„ 0 sein.
Ansatz: Hier genügt:7)

<P Av3
au 0VV 2 A p const., woraus A p/2 und

tp -?- v3
2

Die Randbedingungen sind identisch erfüllt!
Sehr anschaulich wird hier die Berechnung des

Formänderungszustandes aus den expliziten Verschiebungsgleichungen

(12). Es folgt aus dem eingesetzten Ansatz für 0:

[pu — c(2 -)- c2 — vs8) pv -\- tp(v) — ci*(tt)]U
s3E

1

suE [— cpu -\- (3 c8 — vsa)pi>4- ip(u) — cy(t))]
Die Beziehung (13) zwischen den Integrationsfunktionen

tp(v) und \i) (u) ergibt:
dcp(v) | dip(u)4cp 4- + 0

dv du
woraus, wie leicht zu ersehen ist, folgt:

iP(D)|c,t)4. c3

ip (w) (4cp — Ct) u 4- C4

Die Integrationskonstanten C,, Cs und C4 entsprechen den
drei Freiheitsgraden des starren Körpers in der Ebene. Sie
seien durch folgende Bedingungen bestimmt : Für m 0 und
v 0 soll der Nullpunkt O unverschieblich sein, d. h. es ist
dort : U V 0. Ferner soll die Richtung der w-Axe in O
unverändert bleiben, d.h. in O wird: dV/du 0. Wegen der
Linearität von U und V bleibt dann die M-Axe in ihrer Richtung

erhalten. Es folgt sofort:
C8 C4 0, Cj 3cp

und daher endgültig:
VU

V

sE [u + c(l +v)u]
vp
sE

Das generelle Formänderungsbild folgt gestrichelt aus BUd 10
und stellt wieder ein Parallelogramm dar.

Für c 0 folgen die bekannten Ergebnisse für die
Rechteckscheibe.

b) Schiefe Halbebene (ein Rand)
Bei Voraussetzung einer periodischen, schiefen

Randbelastung (Periode 2 a) gehört dieser Fall nicht mehr zu
den elementaren. Die Randbelastung 0« sei schief-symmetrisch,

d. h. es gelte im Abschnitt — a bis 4- a :

or (— m) — OR (M)

und stelle daselbst ein Gleichgewichtssystem dar (s. Bild 11).
Es gilt daher folgende Fourier'sche Entwicklung als gerade
Funktion in u:

mit

or SKmcos A„
m -1,2,8..

Am mn/a
') Die partiellen Ableitungen werden durch Indices ersetzt.
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Bild 11

Ansatz :
Die Wirkung der Randbelastung verliert sich mit

wachsendem v (or im Gleichgewicht). Daher muss im Ansatz für
$ als Faktor eine Exponentialfunktion in v mit negativem
Exponent auftreten. Die Form des Ansatzes selbst folgt, in
Analogie mit dem Problem der schiefen Platte, zu:

OO — AmSV _ A \•P^=Se [cos Am (m 4- cv) | Gim 4- C3mv j
m 1,2,.. •

4- sin Am (u 4- cv) { C3m 4- Cimv }]
Randbedingungen
Für v 0 ist:

av <P„U or
m

T — * — 0tuv — — ^uv — w

Die Berechnung ergibt

Z Km cos Amu

K„

0, Cim
Km

Kn

und es folgt als Ergebnis:
K„

<P

1.2 A 2*1- n
X

X f(l 4- A.msv) cos Am (u 4- cv)
4- Amcvsin Am (w 4- cv)]

Daraus lassen sich sämtliche Spannungen und
Formänderungen ohne Schwierigkeit berechnen,

c) Der schiefe Streifen (zwei Ränder)
Die Randbelastungen seien hier wieder periodisch und

schiefsymmetrisch in u, sodass gilt :

A °°
or, -£- M2Komcos Amu

£ m

A °°
ORu -K- + •££„„,COS AmM

mit Am m n/a
or, und oru bilden zusammen ein Gleichgewichtssystem. Die
Situation erhellt Bild 12.

Randbedingungen :

Für 1? 4- b ist :

ov or,
tuv — 0

Ansatz :
Im Falle von Bild 12 weist <P keine Symmetrie auf. Der

allgemeine Ansatz ist:
00

4> Bu3 4- S cos Am (w -|- cv) x
m =1.2.

X [CimChAmsv 4- Clm8hAmsv +

Für v — b ist:
Ov «i!u

0

+ v(.CsmChA„ Gim8hAmsv)]

4- StsinAm(u + cd) x
m -1,2,.

X [DimOAAmsv 4- Dim8hAmsv 4-

-f v (DsmChAm8V 4- Dim8h Amsv)l

Bild 12 r/r/77TTfr77T/y/77tf-/777//7y:

1777/' m¦j/

Jede der vier Randbedingungen ergibt, bei m const.,
für die Integrationskonstanten des Ansatzes zwei Gleichungen,

also zusammen acht für die acht Unbekannten. B folgt
aus A. Die Auswertung dieses Problems bietet keine Schwierigkeit

mehr, kann jedoch im Rahmen dieser Veröffentlichung
nicht weiter verfolgt werden.

d) Die vierseitige, schiefe Scheibe (vier Ränder)
Bild 13 zeigt die hier angenommene Situation. Die Rand-

kräfte p (v) für u -f- a seien im Gleichgewicht und zur
m-Axe schiefsymmetrisch. Es gilt daher die Entwicklung:

lh 00
^jÉaMcos B„ vP(v) -

mit Bn nn/b
Randbedingungen

1,2,

Für u a ist:
ou -- <Pvv V V)

"uv -<PUv 0

Für v -. & ist:
ov l *uu 0

TUv tp 0

Ansatz

ild 13

Die Funktion >P weist hier nur Polarsymmetrie auf, d. h. :

<p (— u — v) ==tp(u, v)
Der Ansatz ist der selbe wie für die homogene Plattengleichung,

mit einem Zusatz A v3 für das Glied \/2 der Entwicklung
von p (v):

tp A v3 -|-
00

4- STcos Am'u-\-cv)lCim.ChAm8v 4 Gimv8hAmsv\
m

4- sinAm (u + cv) {CamShAmsv 4. CimvChAmsv\]
CO

+ ^[cosB„ (cu 4- v) lDlnChBnsu -)- Dsnu8hBnsu)
n t l t

4- sinB„ (cu 4- 1?) lD^n8hBnsu -f- DinuGhBnsuY\
Die Randbedingungen sind mit diesem Ansatz strenge

erfüllt. Die Auswertung ist hier jedoch umfangreicher als
früher, da Entwicklungen von gewissen Funktionenreihen in
Fourier'sche Reihen notwendig sind. Unter Benützung
geeigneter mathematischer Methoden kann der sonst beträchtliche

Arbeitsaufwand wesentlich herabgemindert werden.

Das neue Motorschiff „Waldstätter"
DK 629.122.1—843.6 (494)

Eine Rundfahrt mit dem «Waldstätter» anlässlich des
4. Städtebaukongresses in Luzern ') bot verschiedenen Kollegen
Gelegenheit, das neue Boot -') nach alter Schweizeraxt und
unbeschwert von genauerer Fachkenntnis massiv zu
kritisieren. Wir erhielten dabei den Eindruck, dass diese Kritik
an der richtigen Stelle vorgebracht werden sollte und teilten
einige uns wichtig erscheinende Punkte der Direktion der
Dampfschiffgesellschaft des Vierwaldstättersees mit, worauf
uns Dipl. Ing. A. Perrig im wesentlichen wie folgt antwortete.
A. Form der Aufbauten

Es ist verständlich, dass viele Architekten leicht versucht
sind, ein wesentlich technisches Bauwerk, wie es ein Schiff
ist, von gleichen oder ähnlichen Voraussetzungen ausgehend
zu beurteilen, wie wenn es sich um irgend einen profanen
Bau, ein Wohnhaus, ein Verwaltungsgebäude und dgl. handeln
würde. «Reinheit der Struktur ist, architektonisch betrachtet,
alles bei einem Bau» sagt der Rembrandtdeutsche in seinem
Werk «Der Geist des Ganzen». Diese Reinheit liegt jedenfalls
dann vor, wenn das Bauwerk eine organische Einheit, seine
Form der adäquate, klare, wahre und logische Ausdruck
dieser Einheit und ihres Sinnes und Zweckes ist. Dass die
Lage des Steuerhauses unmittelbar über dem Maschinenraum,
dass die direkte Verbindung zwischen den Maschinen und
dem FUhrerstand und dass der daraus zwangläufig sich
ergebende frontale Aufbau u. a. die logische Konsequenz der
Konzentration von Steuerung und Maschinenbedienung in
einer Hand sind, ist dem Ingenieur, nicht aber dem
Architekten, ohne weiteres klar. Wir hatten übrigens für die Pro-

') s. Nr. 24, S. 835 lfd. Jgs.
') Beschreibung s. Nr. 19, S.257* lfd. Jgs.


	Die Elastizitätstheorie der parallelogrammförmigen Scheibe

