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Die Elastizitiatstheorie der parallelogrammformigen Scheibe

Von Prof. Dr. P. LARDY, ETH, Ziirich DK 624.072.1

Bild 2

Eines der geeignetsten und wohl fruchtbarsten Mittel zur
Bestimmung der strengen Liésungen von elastizitdtstheore-
tischen Problemen ergibt sich aus der Wahl eines Koordi-
natensystems, das der Form des zu untersuchenden Trag-
korpers angepasst ist. Aus diesem Grunde wurden neben
den kartesischen die Polarkoordinaten, die elliptischen und
neuerdings die Bipolarkoordinaten, sowie die schiefwinkligen
Koordinaten eingefiihrt?).

Im folgenden werden die theoretischen Grundlagen der
parallelogrammférmigen Scheibe entwickelt, die im Bauinge-
nieurwesen zahlreiche Anwendungen aufweist, wobei als wich-
tigster Sonderfall die dreieckférmige Scheibe bei Staumauer-
Berechnungen auftritt. In einem I. Teil werden die Gleich-
gewichtsbedingungen, die Beziehungen zwischen den Ver-
schiebungen und den Dehnungen, sowie den Dehnungen und
Spannungen hergeleitet. Aus der Vertrdglichkeitsbedingung
wird die Bestimmungsgleichung der Airy’schen Spannungs-
Funktion gewonnen?). Die Spannungen und Dehnungen kon-
nen somit durch die Airy’sche Spannungsfunktion ausge-
driickt werden. Durch Integration folgen aus den Dehnungen
die Verschiebungen, die in expliziter Form dargestellt werden
und die Losung der Probleme mit «geometrischen» Rand-
bedingungen ermoglichen. Im II. Teil soll an einigen Beispie-
len die Wirksamkeit der schiefwinkligen Koordinaten aufge-
zeigt werden.

I. Theoretische Grundlagen
a) Bezeichnungen
Der Zusammenhang zwischen den schiefwinkligen und

rechtwinkligen Koordinaten folgt aus Bild 1 mit folgenden
Abkiirzungen:

cCoOSw =2¢, Sinw —=3s8

(1) x=1u -+ cv u:x—%y
und
Y= sV v 11

Die Spannungen und ihre positiven Vorzeichen sind aus
Bild 2 definiert.

Die Gleichheit der Schubspannungen ist auch am Element
von Bild 2 verwirklicht3), d. h. es gilt:

Tuv = Tyu

) Prof. Dr. H. Favre: Sur 'introduction des coordonnées obliques
dans la théorie de I'élasticité; «Bull. Techn. de la Suisse Romande»
1946, S. 321* und S. 333*.

) Prof. Dr. H. Favre hat diese Gleichung durch direkte Koordi-
natentransformation aufgestellt; loc. cit.
%) H. Favre: loc. cit.
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Bild 3

Die Verschiebungen werden mit grossen Buchstaben U
und V bezeichnet und sind positiv wie in Bild 3.

Der «Verzerrungszustand» ist durch die axenparallelen
Dehnungen ¢, und ¢, sowie durch die Winkeldnderung y,, des
Winkels v (im Gegensatz zum rechten Winkel bei den recht-
winkligen Koordinaten) definiert.

b) Gleichgewichtsbedingungen

Die Gleichgewichtsbedingungen fiir die Richtungen » und
v folgen aus Bild 4.

Es folgt:
d oy 0Ty do, O
D e ey
ou ov ov ou
co O Tuo do 0%y
v ”ul _+_ c u + .,,A,',“,> S0
Jdv du du cv

Diese Gleichungen sind nur dann identisch erfiillt (De-
terminate 4 0!), wenn

@y St g 2amC g
cu dv
06, Oty L
ov Gl

sind. Die Form dieser Gleichungen ist die selbe wie in den
Koordinaten o, y.

c) Zusammenhang der Spannungen in beiden
Koordinatensystemen?)

Aus Bild 5 folgt am Element du — dx und dv — dy = 0:
Oy = 80y, Tyxy — Typ + COy

und nach Bild 6 entsteht fiir das Gleichgewicht in der u-
Richtung:

Oy + CTyy + CTxy — 80, =0

Die drei letzten Gleichungen ergeben aufgeldst:

1
(3') Oy = ?(s? 0x + C20y) — 2C1y,
1
Oy = TP gy ax
f——pe——]
c Ly dx
Tuv = Txy — s Oy 6y-dx
oder: Bild 5a
1
87y 0= —(0s | C%ay + 20C7T,1)
s
au
6y, = S0, 7:%”7“
Txy = Typ + C Oy 6,-du
d) Verzerrungszustand Bild 5b
Die Dehnungen ¢, und ¢, So-
wie die Winkeldnderung vy, des N
Winkels » werden direkt aus Vi
Bild 7 hergeleitet, unter Ver- Txy Cav
zicht auf die analytische Be-
rechnung, die zum selben Er-
gebnis filihrt, jedoch langwie-
riger ist. Bild 7 stellt den Ver- 6y-sav
schiebungszustand zweier ax-
paralleler Elemente 04 — du
und OB — dv dar, wobei ohne  2y¥%
Einschrinkung der Allgemein- :
: Bild 6

4y H. Favre: loc. cit.
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. Loy v
Bild 7 L (BurCou/

giiltigkeit der Nullpunkt O als unverschieblich angenommen ist
(der Verzerrungszustand hidngt ja nur von der Differenz der
Verschiebungen ab!). Dies hat zur Folge, dass die Verschie-
bungen der Punkte A und B nur von den partiellen Ablei-
tungen der Grossen U und V abhéngen.

Die Dehnung ¢, folgt aus dem Vergleich der Strecken

OA' — du’ und OA — du. Aus Bild 7 folgt:

ou av 2 V8
du' = l/\\du + (‘87+ c o )duj -+ [s_(ﬂ;duJ

Bei Beschrinkung auf, gegeniiber du und dv, sehr kleine
Verschiebungen U und V konnen fiir die weitere Berechnung
die Quadrate und die Produkte der partiellen Ableitungen
vernachlissigt werden. Es folgt dann:

U oV
du:duV1+2(W+c )

du

Wird die Wurzel entwickelt, so folgt fiir ¢, :

du’' — du oUu ov
iipoT T e R
Analog wird:
dv' — dv v 0 U
Si=tare o % e
Die Winkeldnderung y,, ist die Summe von 3, und y,.
Aus Bild 7 folgt weiter:
S b@%’ du
tgy 2y — )
s (35 dv
tg Yy 2y, = m

Wegen der oben gemachten Voraussetzung kénnen im Nenner
die Dehnungen vernachldssigt werden und man gelangt zu:

ou ov
Yuv =71 + Vo = 8 <'6F + ’a‘u'>

Zusammenfassend folgt das Ergeknis:

My e 0t el
o du ou
ov % ou
o el
oU ov
Yuvo =S8 ( v + («’u")

e) Vertrdglichkeitshedingung
Aus den Gleichungen (4) folgt durch Elimination der
Verschiebungen U und V sofort die Vertrédglichkeitsbedin-

gung, die durch Einsetzen der Werte aus (4) kontrolliert
wird :

(:’2 Fl}

(;\2 Eu
du?

ov?

oLe 4 E5)

udv

ducdv

(B | g 0w -

f) Beziehungen zwischen den Verzerrungszustan-
den in schiefwinkligen und rechtwinkligen
Koordinaten

Die Beziehungen zwischen den Verzerrungszustinden e
£y, Yxy Und &, &, yu, Sind notwendig, um die Verbindung
zwischen Spannungszustand und Verzerrungszustand in schief-
winkligen Koordinaten zu erhalten. Werden im rechtwink-
ligen Koordinatensystem («, y) die Verschiebungen mit &

und 7 bezeichnet, so vermittelt Bild 8 den Zusammenhang

von (U, V) mit (§, ) wie folgt:
c
(6) E=U |cV Uzg_?,?
und 1
N = sV V= —7

Nach den Regeln der Differentialrechnung ist:

gU- . U g= | BY 0u
du oz du ' 9y oau
au | 4y de . 09U dy
v, 0E 0v | gy an

Es folgen zwei analoge Gleichungen fiir d V/du und ¢ V/dv.
Anderseits ergeben die Gleichungen (1):
oz dy Jdx dy

—_—=1, —/— =0 - =C, — — 8
du ’ Ou ’ v * on

Ferner ergibt sich aus den Gleichungen (6):

oU 0& c dy
9x ~ dx s 0=
AU as ciiidn
By = dy s dy

und analoge Beziehungen fiir V/dx und dV,0y.
Durch diese Transformationen konnen die Verzerrungs-
grossen g,, & und y,, in Abhingigkeit derjenigen:
a& an 0§ a7
T e og o
gesetzt werden; es folgt:
(7 8y = &
€y = C%&x + 876y | CSyxy
Yuvp = 8 [c(e. — &) + s'}’xy]

&, =

g) Spannungs-Dehnungs-Gleichungen in schief-
winkligen Koordinaten

Man gelangt nun sehr einfach zu den Grundbeziehungen
2wischen Spannungen und Dehnungen im System (w, v) durch
Kombination der Gleichungen (3) und (7) sowie der bekann-
ten Spannungs-Dehnungs-Gleichungen im System (z, y):

1
Ex, = ? (ax = 0)’)
1
£y — = (oy —voy)
2(1 v)
Yxy = ;E_,'——~ Txy
Es folgt:
8) - 2 _ ps? 2
o = 7 Lo + (¢ — 8% 0y + 2€74,]
1
&y = ‘S_E_ [o, + (c? — vs?) %y i 20‘[“"']
2(1 V)i c
Yuv = *E_,*_‘ S [Tuv + ‘5“ (Oll + O'v)]

h) Airy’sche Spannungsfunktion

Durch direkte Koordinatentransformation und mittels der
Gleichungen (3) kann im System (u, v) die Airy’sche Span-
nungsfunktion & (u, v) eingefithrt werden. Da sie bis auf
einen konstanten Faktor definiert ist, folgts):

‘ )2 b
(9) O — Oﬁ—.
Jv?
0P
G, = )
JoRX 4
Tuy — —
ou ov

Die Form der Gleichungen hat sich in schiefwinkligen
Koordinaten nicht gedndert. Die Gleichungen (9) erfiillen
identisch die Gleichgewichtsbedingungen (2) und fithren zur
Bestimmungsgleichung der Funktion @ durch Einsetzen in
die Vertrédglichkeitsbedingung (5). Damit entsteht die «bihar-
monische Differentialgleichung» im System (u, v) und zu-
gleich eine willkommene Kontrolle der hier abgeleiteten Theo-
rie, da diese Differentialgleichung auch direkt durch Koordi-

6) H. Favre: loc. cit.
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u ,"4
Bild 8 0
ST e

natentransformation aufgestellt werden kann. Mit dem «La-
place’schen Symbol» 4 @ folgt im System (u, v):

2P 2P
Jv? ou dv

2D

10
(oo ou?

4P =

und damit die biharmonische Differentialgleichung zur Bestim-
mung der Airy’schen Spannungsfunktion @:

oD K2
JA<P=—EW+ o + 2(1 1 200

_4c(£d)_ €1 L’(P_) =

ous v ou Jv’

A2

(11) et
Qu? Jv2

i) Formidnderungen (Verschiebungszustand)

Die Verschiebungen U und V konnen in expliziter Form
dargestellt werden. Dies ist bei zahlreichen Randwertproble-
men mit rein geometrischen oder geometrisch-statischen Rand-
bedingungen wertvoll. Die Ableitung sei hier nur skizziert.

In den ersten beiden Gleichungen (8) seien die Dehnungen
als Funktion der Verschiebungen und die Spannungen in Ab-
hingigkeit der Airy’schen Spannungsfunktion ausgedriickt.
Die Integration der ersten Gleichung nach w und der zweiten
Gleichung nach v ergibt die Grossen: U 4 ¢V und V + ¢U;
jede von ihnen ist mit einer noch unbestimmten Integrations-
funktion ¢ (v) und y (w) behaftet. Die Aufldsung nach U
und V geschieht leicht; unter Beniitzung der dritten Glei-
chung (8) kann die Beziehung zwischen den beiden Integra-
tionsfunktionen hergestellt werden. Die Verschiebungen er-
geben sich zu:

U_st L/-gzq) /ad)dv+(302—vs

—c(2 4 c2—ws?) *3; + ¢ (V) — Cl/)(u)]

0
1 focx 2 ror P .\ 0P
Lo R e A | S
S3E [ J 2 dv
—c(2 4 c? —

o u? av

Die Beziehung zwischen den Integrationsfunktionen ¢ (v)
und ¢ (u) lautet:

(12)

V =

do(v) dy(uw)

13 P L4

ey ? av +j au
_4c('% a(p)+2(1+2c2)7!{;:0

Diese Gleichung ist, was die Glieder in & anbelangt,
nichts anderes als das Ergebnis der doppelten, partiellen In-
tegration nach w und v des Ausdruckes fiir J4J®.

j) Bemerkungen zum theoretischen Teil

Sémtliche Grossen zur Berechnung der parallelogramm-
formigen Scheibe sind somit explizite dargestellt. Man {iiber-
zeugt sich leicht, dass fiir ¢ =0 und s =1, d.h. fiir ein
rechtwinkliges System, alle Grossen in die bekannten Aus-
driicke des Systems (2, y) libergehen. Ueber die Integration
der Gleichung

A44P =0
mag der zweite Teil in einigen Beispielen Aufschluss geben.

IL. Beispiele

Nach steigender Schwierigkeit (wachsende Rénderzahl!)
geordnet sollen einige Beispiele die abgeleitete Theorie ver-
anschaulichen. Im Falle periodischer Randbelastungen kon-
nen die verschiedenen Ansétze auf der selben Grundlage ge-
funden werden, die bei der Behandlung der schiefen Platte
beniitzt wurde¢).

6y P. Lardy : Die strenge Losung des Problems der schiefen Platte.
«SBZ» 1949, Nr. 15, S. 207*.

Bild 10

a) Elementarer Fall

Auch hier bilden Anséitze mit Polynomen in w und v fiir
die Airy’sche Spannungsfunktion & eine Kategorie von Pro-
blemen, die wegen der mathematischen Einfachheit des An-
satzes leicht zu 10sen sind. Selbstverstdndlich konnen damit
nur «einfache» Randbedingungen beriicksichtigt werden.

Im folgenden wird eine parallelogrammférmige Scheibe
an zwei gegeniiberliegenden Réndern durch gleichméssig ver-
teilte Zugkréfte beansprucht (Bild 9).

Randbedingungen :
Fir v = + @ missen ¢, = p und 7,, = 0 und
fir v = 4+ b miissen ¢, — 7, = 0 sein.

Ansatz: Hier genligt:7)
b = Av?
6y = Py, = 2A — p — const.,, woraus 4 — p/2 und

ey
(I)_zv

Die Randbedingungen sind identisch erfiillt!

Sehr anschaulich wird hier die Berechnung des Form-
dnderungszustandes aus den expliziten Verschiebungsglei-
chungen (12). Es folgt aus dem eingesetzten Ansatz fiir &:

U=___

[pu—c(2 +c2—rvs?)pv + ¢ (V) —cp(u)]

V = sSE [—cpu—+ (3¢ —vs2)pv + y(u) _c<p(v)]

Die Beziehung (13) zwischen den Integrationsfunktionen
¢ (v) und ) (w) ergibt:
o (v) d (u)
— 4
s dv du
woraus, wie leicht zu ersehen ist, folgt:
@ ('U) — Cl'U + 03
P (u) = (4cp—C)Hu + C,
Die Integrationskonstanten C,, C, und C, entsprechen den
drei Freiheitsgraden des starren Korpers in der Ebene. Sie
seien durch folgende Bedingungen bestimmt: Fiir v — 0 und
v — 0 soll der Nullpunkt O unverschieblich sein, d. h. es ist
dort: U —=V — 0. Ferner soll die Richtung der u-Axe in O
unverdndert bleiben, d. h. in O wird: dV/du = 0. Wegen der
Linearitdt von U und V bleibt dann die u-Axe in ihrer Rich-
tung erhalten. Es folgt sofort:
0, —=6,—=0,0C, =3cp
und daher endgiltig:

If

U — sle‘ [u 4+ ¢ (1 4- v)v]
rp
V=— SE’U

Das generelle Forméinderungsbild folgt gestrichelt aus Bild 10
und stellt wieder ein Parallelogramm dar.

Fiir ¢ = 0 folgen die bekannten Ergebnisse fiir die Recht-
eckscheibe.

b) Schiefe Halbebene (ein Rand)

Bei Voraussetzung einer periodischen, schiefen Rand-
belastung (Periode — 2a) gehort dieser Fall nicht mehr zu
den elementaren. Die Randbelastung op sei schief-symme-
trisch, d. h. es gelte im Abschnitt — a bis } a:

o (— u) = og (u)
und stelle daselbst ein Gleichgewichtssystem dar (s. Bild 11).

Es gilt daher folgende Fourier’'sche Entwicklung als gerade
Funktion in w:

(o]
Op = 2 K,cos A, u
mia 1,88, 0.0
mit A, = mn/a

7) Die partiellen Ableitungen werden durch Indices ersetzt.
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Ansatz :

Die Wirkung der Randbelastung verliert sich mit wach-
sendem v (op im Gleichgewicht). Daher muss im Ansatz fiir
@ als Faktor eine Exponentialfunktion in v mit negativem
Exponent auftreten. Die Form des Ansatzes selbst folgt, in
Analogie mit dem Problem der schiefen Platte, zu:

w — Amsv
&—73e [cos An (w4 cv) { Gl LiCan }
e B A
+ sin 4, (4 1+ ¢v) { Crails Cain }]
Randbedingungen :

Fiir v =0 ist:
0y =P, —06p =2EK,;co8 A, u

m
Ty = — (I’,w =0
Die Berechnung ergibt:
K K.,
R
Clm A’2"l = A"l
Kl
03,":0, Cun:_ c A,:
und es folgt als Ergebnis:
[ee] K — A, sy
b = — n e DG

< [(1 + Apsv)cos A, (u 4 cv)
+ Apcvsin 4, (u + cv)]
Daraus lassen sich sdmtliche Spannungen und Form-
anderungen ohne Schwierigkeit berechnen.

c) Der schiefe Streifen (zwei Rédnder)
Die Randbelastungen seien hier wieder periodisch und
schiefsymmetrisch in w, sodass gilt:

a0
OR, = TO + X Kyncos A, u
m
A
ORu = —( + Z‘Ku,,,cos A, u

mit A, =m7 ~r/a,
oR, und og, bilden zusammen ein Gleichgewichtssystem. Die
Situation erhellt Bild 12.

Randbedingungen :

Fir v —= 4 b ist: Fir v —= — b ist:
0y = OR, Oy = ORu
Tuy = 0 Tuy =— 0

Ansatz :

Im Falle von Bild 12 weist @ keine Symmetrie auf. Der
allgemeine Ansatz ist:

@ = Bu? 4 ‘cosA,,,(u+cv) S

m=l,
< [C’,,n ChAnsv 4 CppnShA,sv +
1 V(Cim Chd sy I 04,,,ShA,nsv)]

4 5’sm A,,, (u + cv) X

m=1,

X [Din ChA,.,sv + Dy 8hAnsv +
V(D ChApsv D,.ShA, S’D)]

/
-

- 29 f -k 23 ;
Hee /,CT filf 5777777 LI

4 /
/ /.

>/

b/ // v 7
b : 4 ’ //’
S /
e Vil A e s T
1% 7 / 1y / /6, 7 / 7
(9/4 7 R LL

Jede der vier Randbedingungen ergibt, bei m = const.,
fiir die Integrationskonstanten des Ansatzes zwei Gleichun-
gen, also zusammen acht fiir die acht Unbekannten. B folgt
aus 4. Die Auswertung dieses Problems bietet keine Schwie-
rigkeit mehr, kann jedoch im Rahmen dieser Veroffentlichung
nicht weiter verfolgt werden.

d) Die vierseitige, schiefe Scheibe (vier Ridnder)

Bild 13 zeigt die hier angenommene Situation. Die Rand-
kréafte p (v) fir wu = i a seien im Gleichgewicht und zur
u-Axe schiefsymmetrisch. Es gilt daher die Entwicklung:

P(W) = - + EZ cos B, v
ni=1,2,
mit B, — nn/b
Randbedingungen : 4
2 R G
Fiur v = 4 a ist: Rild 13
Oy = q)uu =D (U) Z i
Tyy — — ‘1),“, —0 5 1{ 5 i
Filr v = -+ b ist: £‘7 / f 7
gl (3 )
Oy = ¢uu =0 p(v) N 78
Typy = — (I)uv =0
Ansatz :

Die Funktion ¢ weist hier nur Polarsymmetrie auf, d. h.:
D(—u, —v) =0 ((u, v)
Der Ansatz ist der selbe wie fiir die homogene Plattenglei-
chung, mit einem Zusatz A4 v? fiir das Glied l,/2 der Entwick-
lung von p (v):
b — Av? -

0e]
+ X [cos Ay (u+¢0){Cin ChApsv + CgmvShAmsv}
+ 8in Ay (4 00) {Csn SR Ay sV + Cin ¥ Ch Ay sv)]

(0 o)
+ 2[005 B, (cu +v){D,,ChB,su + D2"uShB"su}
n

+ sin B, (cu + v) {D,,8hB,su + D,,uChBsu}]

Die Randbedingungen sind mit diesem Ansatz strenge
erfiillt. Die Auswertung ist hier jedoch umfangreicher als
frither, da Entwicklungen von gewissen Funktionenreihen in
Fourier’'sche Reihen notwendig sind. Unter Beniitzung ge-
eigneter mathematischer Methoden kann der sonst betricht-
liche Arbeitsaufwand wesentlich herabgemindert werden.

Das neue Motorschiff ,, Waldstdtter®
DK 629.122.1 — 843.6 (494)

Eine Rundfahrt mit dem «Waldstdtters anldsslich des
4. Stddtebaukongresses in Luzern !) bot verschiedenen Kollegen
Gelegenheit, das neue Boot 2) nach alter Schweizerart und
unbeschwert von genauerer Fachkenntnis massiv zu Kkriti-
sieren. Wir erhielten dabei den Eindruck, dass diese Kritik
an der richtigen Stelle vorgebracht werden sollte und teilten
einige uns wichtig erscheinende Punkte der Direktion der
Dampfschiffgesellschaft des Vierwaldstittersees mit, worauf
uns Dipl. Ing. 4. Perrig im wesentlichen wie folgt antwortete.
A. Form der Aufbauten

Es ist verstdndlich, dass viele Architekten leicht versucht
sind, ein wesentlich technisches Bauwerk, wie es ein Schiff
ist, von gleichen oder &hnlichen Voraussetzungen ausgehend
zu beurteilen, wie wenn es sich um irgend einen profanen
Bau, ein Wohnhaus, ein Verwaltungsgebdude und dgl. handeln
wiirde. «Reinheit der Struktur ist, architektonisch betrachtet,
alles bei einem Bau» sagt der Rembrandtdeutsche in seinem
Werk «Der Geist des Ganzen». Diese Reinheit liegt jedenfalls
dann vor, wenn das Bauwerk eine organische Einheit, seine
Form der adidquate, klare, wahre und logische Ausdruck
dieser Einheit und ihres Sinnes und Zweckes ist. Dass die
Lage des Steuerhauses unmittelbar iiber dem Maschinenraum,
dass die direkte Verbindung zwischen den Maschinen und
dem Fiihrerstand und dass der daraus zwanglidufig sich er-
gebende frontale Aufbau u. a. die logische Konsequenz der
Konzentration von Steuerung und Maschinenbedienung in
einer Hand sind, ist dem Ingenieur, nicht aber dem Archi-
tekten, ohne weiteres klar. Wir hatten iibrigens fiir die Pro-

1) s. Nr. 24, S. 335 1fd. Jgs.

?) Beschreibung s. Nr. 19, S.257* 1fd. Jgs.
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