Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 67 (1949)

Heft: 26

Artikel: Die Mechanisierung in Stollenvortrieben mit Minimalquerschnitt

Autor: Rodio, G.V.

DOI: https://doi.org/10.5169/seals-84084

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Mechanisierung in Stollenvortrieben mit Minimalquerschnitt von Dipl. Ing. G. V. RODIO, Bern

DK 624.191.22

Fortsetzung von Seite 349

III. Die mechanische Schutterung

1. Allgemeines

Von jeher war beim Stollenvortrieb das Problem eines flüssigen und raschen Materialabtransportes bedeutend schwieriger zu lösen als dasjenige der Gesteinsbohrung. Die Vortriebe waren und sind in den meisten Fällen durch die langen

Bild 9. Kleiner Stollenbagger Sullivan-Joy

Schutterungszeiten und den Transport begrenzt. Durch den Einsatz von Stollenbaggern sind in den letzten Jahren auf dem Gebiete der Schutterung grosse Fortschritte erreicht worden. Dies war auch dringend notwendig, da im Vergleich zu früheren Jahren die Löhne stark gestiegen sind, weniger Arbeiter (besonders auf abgelegenen Baustellen) zur Verfügungstandenunddiese nicht mehr in dem Ausmasse zu körperlichen Anstrengungen herangezogen werden konnten, wie dies noch vor 25 Jahren möglich

Verschiedene Fabriken stellen heute kleine Stollenbagger (Bild 9) für die Verwendung in engen Stollenvortrieben her. Diese Maschinen besitzen ungefähr die folgenden Charakteristiken:

Höhe über SOK (Baggereimer in höch-1.85 bis 2.20 m ster Stellung) Höhe über SOK (Baggereimer gesenkt) 1,30 bis 1,50 m Breite bei aufgeklapptem Trittbrett . . 0,80 bis 0,90 m Entladehöhe des Baggereimers über 1,20 bis 1,40 m SOK Seitliche Reichweite des Baggereimers 1,80 bis 2,00 m Totalgewicht des Baggers. rd. 2000 kg Eimerinhalt rd. 150 l Das kleine Raumprofil des Baggers gestattet einen ungehinderten Transport auch in Strecken mit Einbau. Der geringe Luftverbrauch benötigt keine zusätzliche Kompressoranlage, da schon die Verwendung von drei mittelschweren Bohrhämmern für den Vortrieb eine Installation von 6 bis 9 m^3 /min erfordert.

2. Vergleich der mechanischen Schutterung mit der Hand-Schutterung

Es ist offensichtlich, dass durch die Verwendung einer neuen Maschine im Stollen zusätzliche Zeitverluste entstehen. Auch beim Einsatz eines Stollenbaggers treten solche auf und sind zum Teil unvermeidlich, so z.B. die Zeitverluste, die durch das Heranfahren, Anschliessen der Luftleitung, ferner das Abkuppeln derselben und das Zurückfahren des Baggers entstehen. Weiter ergeben sich im Zusammenhang mit der Baggerarbeit selbst andere Zeitverluste, auf die im nächsten Kapitel eingegangen wird, die aber durch eine gute Organisation und mit eingearbeitetem Personal eliminiert werden können. Wenn die unvermeidlichen Zeitverluste auch zwischen 10 und 25 min pro Abschlag betragen, so ist anderseits die Zeitersparnis in der Nettoladezeit eine ganz gewaltige.

Selbst mit gleichzeitig zwei bis drei Schutterern kann im Dauerbetrieb und im engen Profil ein Wagen von 1,0 m³ Inhalt kaum in weniger als 10 min beladen werden. Dagegen lädt ein kleiner Stollenbagger, der von einem einzigen Mann bedient wird, 1,0 m³ mühelos in etwa 1 bis 2 min. Die Netto-Ladezeit lässt sich auf Grund vieler praktischer Erfahrungen auf einen Fünftel und gar auf einen Zehntel der früheren Ladezeit herabsetzen, inbegriffen die durch die Verwendung des Baggers zusätzlich entstehenden Zeitverluste. Ein Stollenbagger verringert die Gesamtschutterzeit auf zwei Drittel, ja bis auf die Hälfte gegenüber Handbetrieb, unter gleichzeitiger Einsparung an Personal.

Um einen Stollenbagger mit möglichst hohem Gesamt-Wirkungsgrad arbeiten zu lassen, muss in erster Linie darnach getrachtet werden, dass die Baggerarbeit möglichst wenige und möglichst kurze Unterbrüche erfährt. Bei Hand-Schutterung betrug die Nettoladezeit zwischen 60 und 80 % der Gesamtschutterzeit. Infolge der grossen Zeitersparnis beim Beladen der Rollwagen mit dem Stollenbagger — jedoch bei praktisch gleichbleibendem Zeitbedarf für Wagenwechsel usw. — ist der Anteil der Nettoaufladezeit auf rd. 25 bis 40 % der Gesamtschutterzeit gesunken. Die Wartezeiten haben daher wesentlich an Bedeutung gewonnen und nehmen nun 60 bis 75 % der Gesamtschutterzeit in Anspruch. Eine genaue Analyse der verschiedenen verzögernden Faktoren rechtfertigt sich demnach.

3. Aufteilung der Gesamt-Schutterungszeit und Formel für ihre Berechnung

Die Gesamtschutterungszeit T für eine bestimmte Schuttermenge S kann in einer Formel untenstehender Art zusammengefasst werden, die in fünf Gruppen aufgeteilt ist:

1. Gruppe: Nettowirkungsgrad des Stollenbaggers

S =Schuttermenge in m³ (loses Gestein)

 $L = \text{Ladegeschwindigkeit des Baggers in } m^3/\text{min}$ Verzögerungskoeffizienten für:

 $c_{\scriptscriptstyle 1}$: ungewandter Baggerführer

 $c_2\,$: Verminderung der Ladegeschwindigkeit wegen engem Querschnitt des Luftschlauches oder geringem Luftdruck

 $c_{\scriptscriptstyle 3}$: Drosselung des Luftaustrittes infolge Vereisung, bei starkem Feuchtigkeitsgehalt der Druckluft

Gruppe: Zeitverluste beim Baggern und Beeinträchtigung der Nettoladezeit

T₁ = Zeitverlust für Holen des Baggers aus der Nische, Vorschieben und Anschliessen der Druckluft in der Nähe des Schutterhaufens

 $T_2 = {
m Zeitverlust}$ bei Abtransport und Ausstellen des Baggers in die Nische

Zeitverluste während der Nettoladezeit:

 ${\cal V}_1~:~{\rm Aufstossen}$ oder Verklemmen des Baggereimers an stark vorspringenden Felsecken

 $V_{\rm 2}$: Erschwerung des Baggerns und Entgleisungen bei Querneigung des Gleises

 $\boldsymbol{V}_{\scriptscriptstyle 3}~:~$ Defekte am Baggerschlauch oder an dessen Anschlüssen

 $\overline{V_4}$: Verklemmen des Baggereimers durch in den Baggerkasten fallende Gesteinstücke oder durch nicht angezogene Führungsseile der Baggerarme

 $V_{\scriptscriptstyle 5}$: Reissen und Ersatz eines Führungsseiles oder Kette

 $V_{\scriptscriptstyle 6}$: Legen des Bagger-Vorlegstosses, falls dies nicht während einer Wagenauswechslung beendet werden kann

3. Gruppe: Zeitverluste, die auch beim Handbetrieb entstehen, die jedoch bei Einsatz eines Baggers wesentlich verkürzt werden können:

 $A_1={
m zus\"{a}tzlicher}$ Zeitbedarf beim Laden des ersten Wagens, verursacht durch weit weggesprengte Gesteinsbrocken

 $A_2=$ zusätzlicher Zeitbedarf beim Laden der beiden letzten Rollwagen bzw. beim Zusammenkratzen des in den Ecken verbliebenen Schutters, der vom Stollenbagger nicht erreichbar ist

- $A_3 = ext{Zeitverlust}$ infolge Verkleinerung und Aufladen grosser Blöcke
- 4. Gruppe: Zeitverluste infolge Auswechseln der Rollwagen:
 - I= Inhalt der Rollwagen in m³ effektiv geladenen Schutters

 Zeitbedarf für die einzelnen Phasen der Wagenauswechslung:
- $t_{\scriptscriptstyle 1}$: An- und Abkuppeln der Rollwagen am Bagger, wie auch am Zug
- $t_{\scriptscriptstyle 2}$: Zurückfahren des vollen Wagens und Heranschieben des leeren Rollwagens
- $t_{\scriptscriptstyle 3}$: Auswechseln der beiden Wagen mittels Weiche, Schiebebühne, Laufkatze oder Stollenlift (Cherry-picker)
- 5. Gruppe: Zusätzliche Arbeitsunterbrüche durch Zwischenfahrten auf die Kippe während der Schutterungszeit:
- U, = Wartezeit auf den Zug mit leeren Wagen
- $\dot{U_2} = {
 m Entgleisungen}$ im Stollen oder im Fenster infolge schwachen oder defekten Gleisen und Weichen oder schlechter Verlegung
- $U_3 = \text{Traktorendefekt}$
- $U_4=$ Lager- und Achsbrüche der Rollwagen, besonders möglich bei alten Wagen oder bei Gleisen mit verschiedenem Profil
- $U_{\scriptscriptstyle 5} = {
 m erschwertes} \; {
 m Kippen} \; {
 m bei} \; {
 m alten} \; {
 m Rollwagen}$
- $U_{\rm g}=$ Entgleisungen auf der Kippe infolge Senkungen derselben, nicht rechtzeitigem Unterkrampen oder schlechtem Verlegen des Gleises, besonders in Kurven

4. Praktisches Beispiel

Der Einfluss der verschiedenen Gruppen auf die Gesamt-Schutterungszeit kann am besten an Hand eines praktischen Beispiels verfolgt werden. In fünf Varianten wird in der untenstehenden Tabelle für den selben Stollenquerschnitt und die gleiche Schuttermenge der Einfluss von kleinen Rollwagen und einer ungenügenden Organisation dargestellt.

Minimal stollen von 4 m² Querschnitt; Abschlag = 2,0 m Lose Schuttermenge, einschlies slich Ueberprofil:

$$S = 2 \cdot 4.2 \cdot 1.8 = 15 \text{ m}^3$$

Ladegeschwindigkeit des Baggers: $L = 0.6 \text{ m}^3/\text{min}$

Die Gesamtschutterungszeiten T werden für folgende Varianten dargestellt:

- $T_a=$ gut organisierter Betrieb, eingearbeitetes Personal, perfektes Material und Maschinen, grosse Rollwagen mit automatischen Kupplungen und einem Inhalt von $I=1,8~{
 m m}^3$ bzw. $1,7~{
 m m}^3$ effektiver mittlerer Anfüllung
- $T_b \equiv$ idem, aber mit kleinen Rollwagen und ungeeigneten Kupplungen und einem Inhalt von $I=1,0~{
 m m}^3$ bzw. 0,95 m³ effektiver mittlerer Auffüllung
- $T_c=$ Betrieb mit ungenügender Organisation, wie er sich z. B. in den allerersten Monaten der Einführung der Mechanisierung ergeben wird und wo noch diese und jene Mängel behoben werden müssen, jedoch mit grossen Rollwagen und automatischen Kupplungen, $I=1,7~{\rm m}^{\rm s}$ (effektiv)
- $T_d = {
 m idem}$, aber mit kleinen Wagen und $I = 0.95~{
 m m}^3$ (effektiv)
- $T_e=$ idem, aber mit einer zu kleinen Anzahl verfügbarer Wagen, sodass Zwischenfahrten auf die Kippe während der Schutterungszeit erforderlich sind.

$$\frac{S}{L} = 25$$
, Intervalle $\frac{S}{I} - 1 = \frac{15}{1,7} - 1 = 9 - 1 = 8$, bzw.

$$\frac{15}{0,95} - 1 = 16 - 1 = 15$$

5. Die einzelnen Verzögerungsfaktoren und Zeitverluste

1. Gruppe

Der Mehraufwand an Zeit infolge ungünstiger Faktoren hat nur einen geringen Einfluss auf die Gesamtschutterzeit. Auch wenn die Ladegeschwindigkeit des Baggers auf zwei Drittel sinkt und dadurch die Nettoladezeit auf $25\cdot 1,5=38$ min ansteigt, so machen die 13 min Mehraufwand auf das Gesamtresultat T_a nur 15 $^0/_0$ und auf T_e nur 7 $^0/_0$ aus. Die ungünstigen Faktoren c können ohne grosse Schwierigkeit gänzlich beseitigt werden durch:

- $\boldsymbol{c}_{\scriptscriptstyle 1}$: Wahl eines Baggerführers mit gutem mechanischem Gefühl und Arbeitsfreude
- c_2 : Installation genügend grosser Kompressoren und Anschluss eines Baggerschlauches mit verhältnismässig grossem Innendurchmesser
- $c_{\scriptscriptstyle 3}$: Montage eines Windkessels nach den Kompressoren.

2. Gruppe

Hier finden sich die Zeitverluste zusammengefasst, die durch den Einsatz des Baggers entstehen und die bei Handschutterung nicht vorkommen. Unvermeidlich ist der Zeitaufwand zum Bereitstellen und Zurückziehen des Baggers. Er soll aber — auch bei Ausstellen in eine Nische — nicht mehr als 10 min betragen und kann durch folgende Massnahmen noch verkürzt werden:

- T_1 : der Bagger kann schon vor dem Abschuss in der Zeit während des Ladens auf rd. 25 m von der Stollenbrust aufgestellt und angeschlossen werden (eisernes Schutzschild vor dem Schlauchanschluss an der Druckluft-Rohrleitung). Beim Bohren ohne Bohrwagen kann der Bagger nach Beendigung der Schutterung in rd. 25 m Distanz vom Vortrieb verbleiben, wodurch der Zeitverlust für Vorund Rückschieben auf wenige Minuten begrenzt werden kann
- T_2 : das Rückziehen des Baggers kann gleichzeitig anlässlich des Herausfahrens des ganzen Zuges nach Beendigung der Schutterung erfolgen. Die weiteren Zeitverluste V_1 , V_2 usw. können hingegen durch eine gute Organisation in kurzer Zeit beseitigt werden, so z. B. durch:
- $V_{\scriptscriptstyle 1}$: ständige Aufsicht und seriöses Arbeiten beim Bohren, Laden und besonders beim Verdämmen der geladenen Bohrlöcher
- $\boldsymbol{V}_{\scriptscriptstyle 2}$: ebenso beim Verlegen der Vorlegstösse und des Gleises
- V_3 bis V_5 : sorgfältiger Unterhalt des Baggers, rechtzeitiger Ersatz abgenützter Teile, Vorhandensein eines Ersatz-Baggers und von Ersatz-Luftschläuchen. (Baggerschlauch während der Arbeit nicht am Boden nachschleppen, sondern aufgehängt haben, wodurch die meisten Unterbrüche vermieden werden können.)
- $\boldsymbol{V}_{\boldsymbol{\theta}} \colon \mathbf{Bereitstellung}$ geeigneter und kräftig ausgeführter Vorlegstösse

Die in dieser Gruppe erwähnten Verzögerungen fallen ungefähr in der selben Grössenordnung ins Gewicht, wie

Zeitaufwände in min		T_a		T_b			T_c			T_d			T_e		
Netto-Ladezeit	25 · 1,0	= 25'	25	1,0 =	25'	25 .	1,3 =	33'	25 .	1,3 =	33′	25 .	1,3 =	33′	
Bagger vorschieben	3			3			5			5			5		
Bagger zurückschieben	7			7		91 3	10			10			10		
Zeitverluste beim Baggern	0	10'	2.33	0	10'	1000	10	25'	nui) a	10	25'	skij A	10	25'	
Zeitverluste für Laden des ersten Wagens .	5			5	Attant	5 20	5			5		8187	5		
Zeitverluste für Laden der letzten Wagen .	7			7			10			10		1448	10		
Zeitverluste für grosse Blöcke	3	15'	3,73	3	15'		5	20'		5	20		5	20'	
An- und Abkuppeln	0		110	1		latter.	0		ev nil	1		0.00	1		
Fahrzeit für Wagenwechsel	4		- 11	4		1888	4		6.6	4		1111	4		
Ausstellzeit	1		.05	1		2 0.52	1,5		13.55	1,5		1535	1,5		
Intervalle für Wagenwechsel	8 . 5	$=40^{\circ}$	16	6 =	96'	8.	5,5 =	44'	16	6,5 =	104	16	6,5 =	104'	
Zwischenfahrt auf Kippe		0'			0'			0'			0			30′	
Gesamt-Schutterungszeiten		90'	1 7 M L		146'	1888	Agriciano de	122		10.0	182	3410		212'	
in Stunden	1 1/2	h		2 1/2 h			2 h			3 h			3 1/2 h		

die Faktoren c der ersten Gruppe. Eine Ausnahme davon macht selbstverständlich ein Platzen des Baggerschlauches (von einem Rollwagen überfahren), was bis zu einer mehr als halbstündigen Verspätung führen kann.

Die Verzögerungen der folgenden Gruppen stehen nicht mehr in direktem Zusammenhang mit dem Einsatz eines Stollenbaggers und kommen alle auch bei der Handschutterung vor. Eine Zusammenstellung der Zeitaufwände nach den Gruppen 1+2 und 3+4+5 ergibt folgendes:

Wie ersichtlich, ist der durch Wagenwechsel, Rollmaterial und Gleis bedingte Zeitaufwand stets grösser als derjenige für die reine Baggerarbeit, selbst einschliesslich der dort auftretenden Verzögerungen. Dieser Zeitaufwand kann besonders bei sehr kleinen Rollwagen das Doppelte und mehr der Nettobaggerzeit betragen und jede Gesamtschutterzeit um rund eine ganze Stunde verlängern. Es soll hier wiederholt werden, dass anlässlich einer Mechanisierung des Stollenvortriebes auch dem Problem des Rollmaterials volle Aufmerksamkeit gewidmet werden muss. Sollen ein Maximum an Abschlagtiefe oder an Anzahl Abschlägen erreicht und Stollenbagger wie Bohrwagen voll ausgenützt werden, so müssen vor allem grosse Rollwagen in genügender Anzahl vorhanden sein.

3. Gruppe

Die Zeitverluste A treten alle auch bei der Handschutterung auf. Sie können aber durch den Einsatz eines Baggers wesentlich verkürzt werden wegen der viel rascheren Ladegeschwindigkeit und dem mühelosen Laden von grossen Blöcken. Darüber hinaus besteht die Möglichkeit, diese Zeitverluste weiter herabzusetzen durch:

- A₁: Beladen des ersten Wagens: geeignete Wahl der Herzschüsse und des Sprengstoffes, damit das Material nicht mehr als 10 bis 15 m zurückgeworfen wird. Trotz aller Massnahmen kann aber bei stark wasserführendem und klüftigem Fels ein weites Zurückwerfen nicht verhindert werden. Das Parallelbohrverfahren hat den Vorteil, dass das Material aus dem Einbruch nicht weit weggeschleudert wird
- A₂: Beladen der letzten Wagen: der Stollenbagger vermag den unten hart an der Stollenbrust liegenden Schutter nicht zu erfassen. Dieser muss von Hand mit der Schaufel in den Baggereimer geworfen werden. Das Vorhandensein eines Handlangers, sowie das Stehenlassen eines gewissen Schutterrestes vermag diesen Zeitverlust abzukürzen. Bei Bohrwagen mit langen Auslegern und langen Vorschublafetten kann mehr Schutter liegen gelassen werden, als bei kurzarmigen, nahe an die Stollenbrust heranzuführenden Bohrwagen
- $A_{\mathfrak{z}}$: Zeitverlust durch Vorhandensein sehr grosser Blöcke im Schutter: durch eine geeignete Wahl des Sprengstoffes kann eine gute Zertrümmerung erreicht werden

4. Gruppe: Zeitverluste durch Wagenwechsel

Von allen fünf Gruppen erfordert diese den grössten Zeitaufwand. Das Wagenwechseln allein kann unter unglücklichen Umständen zwei- bis dreimal so viel Zeit erfordern wie die Nettobaggerarbeit. In allererster Linie kann durch die Wahl von Rollwagen mit grossem Inhalt viel Zeit erspart werden. Für mittelgrosse Stollenbagger sind Rollwagen mit 2 bis 3 m3 Inhalt ideal. Aber auch für kleine Stollenbagger mit Entladehöhe des Baggereimers von 1,25 bis 1,35 m über Schienen-Oberkante und trotz kleinerer Wurfweite lohnt sich der Einsatz solch grosser Wagen. Vom Bagger allein können sie stets auf 1,5 bis 1,6 m³ mühelos angefüllt werden. Wird ein Handlanger eingesetzt, der während des Baggerns mit einem Dreizack oder dgl. den Schutter in den hinteren Teil der Wagenmulde hinunterrecht, so wird der Wagen ohne Zeitverlust auf 1,7 bis 1,8 m³ beladen. Auf jeden Fall sollten auch bei kleinen Stollenbaggern die Rollwagen nicht unter 1,5 m³ Inhalt aufweisen. Wagen unter 1 m³ Inhalt sind gänzlich von der Hand zu weisen; sie verzögern die Arbeitszeit in einer Weise, die mit dem Einsatz moderner Maschinen nicht mehr vereint werden kann und erhöhen die Unfall- und Entgleisungsgefahr.

Durch nachstehend erwähnte Installationen und durch eine gute Organisation können die Zeitaufwände t stark vermindert werden:

- t,: An- und Abkuppeln der Rollwagen am Bagger und am Zug: Vorhandensein einer automatischen Kupplung am Bagger, die den Rollwagen möglichst starr mit ihm verbindet, z. B. in Form eines langen Hakens, der am Rollwagenrahmen einhängt und durch Pedaltritt wieder ausklinkt. Dies verhindert jeden Zeitverlust beim An- und Abkuppeln, wie auch jede Unfallgefahr (Finger- und Handquetschungen). Bei ungeeigneten Kupplungen besteht diese Gefahr in hohem Masse. Eine gute Kupplung verhindert ferner das unerwünschte Abkuppeln des Rollwagens während des Baggerns. Es ist auch möglich, ohne angekuppelten Rollwagen zu baggern. Dabei ist aber bei jedem Eimerwurf eine Vor- und eine Rückfahrt des Baggers zwischen Rollwagen und Schotterhaufen erforderlich, wodurch die Ladegeschwindigkeit rund auf die Hälfte vermindert wird
- t_2 : Fahrzeit zum Wagenwechsel: Leistungsfähiger Traktor; solide und starre Kupplungen zwischen den einzelnen Rollwagen; nicht zu grosse Distanzen zwischen den Ausstellnischen. Besonders bei kleinen Stollen sollten möglichst batterie-betriebene Elektro-Traktoren eingesetzt werden. Stark rauchende Diesel-Traktoren sind ganz von der Hand zu weisen. Automatische Kupplungen auch wenn ihre Anschaffung teuer ist machen sich auf die Dauer bezahlt durch Zeitgewinn und Unfallverhütung. Die Distanz der Ausstellnischen sollte nicht mehr als 70 bis 80 m betragen. Die vom ganzen Zug zu fahrende Rangierstrecke ergibt sich dadurch im Mittel auf 50 bis 60 m (die einfache Strecke). Diese kann auch mit einem beladenen Zug in 1 bis 2 min einschl. Anfahren und Anhalten zurückgelegt werden
- t_3 : Das Ausstellen der leeren Rollwagen kann durch verschiedene Einrichtungen erfolgen, die je nach ihrer Konstruktion wesentlich Zeit sparen helfen und zur Bedienung mehr oder weniger Personal benötigen. Diese Einrichtungen werden im nächsten Abschnitt besprochen
- 5. Gruppe: Zeitverlust durch Zwischenfahrten auf die Kippe Diese Zwischenfahrten sind die Quelle der unglücklichsten Arbeitsunterbrechungen und Zeitverluste. Besonders bei alten Wagen und schlechtem Gleis kann das Tagesprogramm vollständig über den Haufen geworfen, Abschläge verloren und zudem die ganze Belegschaft demoralisiert werden. Glücklicherweise tritt diese Gruppe nur auf, wenn nicht genügend Rollwagen vorhanden sind, um die gesamte Schuttermenge in einer einzigen Fahrt auf die Kippe führen zu können. Es soll daher von allem Anfang an die genügende Anzahl Rollwagen, wie auch Reservewagen auf der Baustelle zur Verfügung stehen, um diese Gruppe von Zeitverlusten ganz auszuschalten.

6. Zusammenfassung

Aus dem vorgenannten praktischen Beispiel und den besprochenen Zeitverlusten ist ersichtlich, dass schon wenige Massnahmen genügen, um die Gesamtschutterzeit derart zu verkürzen, dass — bei gleichbleibender Tiefe der Abschläge — ein bis zwei Abschläge mehr pro Tag im Vergleich mit Handschutterbetrieb erzielt werden können. Anderseits ermöglicht die Verkürzung der Gesamtschutterzeiten, wesentlich tiefere Abschläge zu bohren und dadurch, trotz gleichbleibender Anzahl Abschläge den täglichen Vortrieb stark zu erhöhen. Die wichtigsten Massnahmen sind:

- a) Rollwagen mit grossem Inhalt und moderner, starker Konstruktion
- b) genügende Anzahl Rollwagen und starker Traktor, damit die Schuttermenge eines ganzen Abschlages mit einem einzigen Zug erst nach Beendigung des Baggerns auf die Kippe gefahren werden kann
- c) gute Organisation der Baustelle, guter Unterhalt des Baggers; Reserve-Bagger und Reserve-Rollwagen, wie auch Reserve-Traktor
- d) geeignete, wenn möglich automatische Kupplungen zwischen den Rollwagen und zwischen Rollwagen und Bagger
- e) zuverlässig funktionierende Einrichtung zum Ausstellen der leeren Rollwagen in Nischen
- f) bestes, mit mechanischen Belangen vertrautes Personal.



Bild 10. Rollwagen amerikanischer Konstruktion mit 2,0 m3 Inhalt

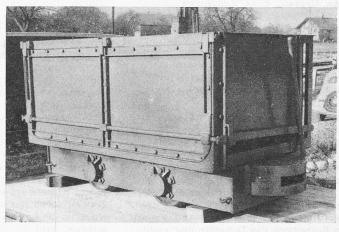


Bild 11. Rollwagen schweizerischer Konstruktion

IV. Rollmaterial, Gleis und Ausstellvorrichtungen

1. Rollwagen

Durch das bei jedem Abschlag nur noch einmalige Einfahren und Ausfahren aus dem Stollen — und zwar nach einem ziemlich festen Fahrplan - ist es nicht mehr wie bisher notwendig, auf eine möglichst gedrungene Form der Rollwagen (z. B. Stollenhunde) zu dringen. Des weiteren stehen im Stollen alle 70 bis 80 m Ausstellnischen zur Verfügung, in die sich allfällig im Stollen befindliches Personal bei der Zugsdurchfahrt zurückziehen kann. Das Raumprofil der Rollwagen soll daher so gross wie möglich gewählt werden, mit Wagenbreiten bis 1,2 m, Kastenhöhen ab SOK bis 1,3 m und Wageninhalten bis zu 2 m3 (Bilder 10 und 11). Die hohen Kosten einer soliden, schweren Konstruktion mit perfekt abgedichteten Radlagern machen sich durch den damit ermöglichten grösseren Vortrieb und den Wegfall von Reparaturen und Unfällen nach kurzer Zeit bezahlt. Ebenso vorteilhaft ist die Anbringung automatischer Kupplungen, wegen Zeitgewinn beim Kuppeln, starrer Verbindung zwischen den Rollwagen und besonders wegen Ausschaltung praktisch jeder Unfallgefahr.

2. Traktoren

Bei Diesel-Traktoren wird die Arbeit im Stollen durch die ungesunden und die Augen reizenden Abgase trotz einer leistungsfähigen Ventilation verzögernd beeinflusst. Der Einbau von Abgas-Regeneratoren hat sich in der Praxis nicht besonders bewährt. Um eine gute Wirkung zu erreichen, müsste die Füllung des Regenerators jede Betriebstunde gewechselt werden. Dabei werden wohl die giftigen Anteile der Abgase zurückgehalten, nur in bescheidenem Umfange aber derjenige, der das Tränen der Augen verursacht. Diesel-Traktoren, besonders solche älterer Konstruktion, erfordern nicht nur eine einwandfreie und zeitraubende Wartung, sondern sie sind überdies stark Reparaturen ausgesetzt, und Defekte während der Arbeitszeit sind nicht ausgeschlossen. Es ist daher

einen Stollenvortrieb nicht nur zwei bis drei Traktoren zur Stelle sind, sondern auch noch ein entsprechendes Ersatzteillager und ein Spezialist für Dieselmotoren. Während Elektro-Traktoren von jedem aufmerksamen Arbeiter gefahren werden können, ist dies bei Diesel-Traktoren nicht möglich. Selbst bei jungen Fahrern mit einiger Praxis besteht noch grosse Gefahr für Getriebe, Kupplung und Motor. Es

notwendig, dass für

Bild 12. Elektrischer Weichenbock mit optischem Signal

hat sich gezeigt, dass es im Interesse eines ganz sicheren Betriebes unumgänglich ist. für jede Schicht einen erfahrenen, zuverlässigen und mit Dieselmotoren vertrauten Traktorführer einzusetzen und erst noch einen weiteren Traktorführer in Reserve zu halten.

Wenn immer möglich, sind in engen Vortrieben elektrische Traktoren zu verwenden. Dank der geringen Wartung sind für einen Vortrieb zwei Traktoren genügend; jeder sollte aber einen

eigenen Reserve-Batteriekasten haben. Durch geeignete Anlage der Ladestation und Laufkatze ist es möglich, die Auswechslung auch schwerer Batteriekästen von einem einzigen Manne vornehmen zu lassen. Der Traktor muss die ganze Zugkomposition, beladen mit dem Schutter eines ganzen Abschusses, mühelos auch in Richtung gegen den Vortrieb bewegen können (anlässlich der Manöver zur Auswechslung der letzten Rollwagen hinter dem Stollenbagger). Für das vorgenannte Beispiel beträgt das Zuggewicht rd. 40 t.

3. Schienen und Weichen

Mit der Verwendung schwerer Wagen und Traktoren geht die Notwendigkeit eines schweren Gleises parallel. Wenn immer möglich, sollte bei forciertem Vortrieb als Minimum 80 mm Gleishöhe gewählt werden. Die Weichen sollten ebenfalls von kräftiger Ausführung und nicht zu kurz sein, sowie mit einem Weichenbock versehen werden. Elektrisch bediente Weichen und optische Weichenstellsignale haben sich in den Bergwerken und Stollenvortrieben in Amerika stark verbreitet. Der Weichenstellbock (Bild 12) wird mittels elektrischer Kontakte (Bild 13) vom Traktorführer selbst bedient. Die Kontakte sind rd. 50 m vor der Weiche angebracht. Am optischen Signal bei der Weiche erkennt der Traktorführer auch aus grösserer Entfernung die Weichenstellung.

Die Verwendung verschiedener Schienenprofile sollte vermieden werden, da in der Praxis kaum einwandfrei abgekröpfte Laschen als Verbindung zwischen Schienen verschiedener Höhe vorkommen. Das Vorhandensein passender, starker Schienenlaschen und der richtigen Laschenschrauben hilft viel Zeit zu sparen. Ein exaktes und geradliniges Verlegen der Schienenstösse, sowie ein ständiges Unterkrampen und Korrigieren der Richtung, wo es erforderlich ist, ermöglicht sicheres und rasches Fahren und vermeidet Entgleisungen, was dem täglichen Vortrieb direkt zu gute kommt.

Gleismannschaft

Im forcierten Vortrieb mit 6 bis 9 Abschlägen in 24 h ist der Einsatz einer Gleismannschaft unerlässlich. Sie besorgt:

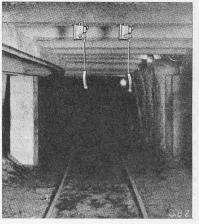


Bild 13. Kontakte zur Fernbedienung der elektrischen Weiche

Bereitstellung der Schienenstösse, Laschen und Laschenschrauben Transport dieses Materials zum Vortrieb

Auswechslung der Vorlegstösse durch die definitiven Stösse während der Bohrzeit hinter dem Bohrwagen

Abtiefung und Reinhaltung der Rigole, wodurch das Schienentrasse trocken und stabil bleibt

Ausrichten und Unterkrampen des

Gleises, wo es sich im Laufe der Zeit verschoben oder gesenkt hat.

Ausser dieser direkt mit dem Gleis zusammenhängenden Tätigkeit besorgt die Gleismannschaft noch folgende Arbeiten, um die mit dem Bohren und der Schutterung betraute Mannschaft zu entlasten:

Transport und Verlängerung der Druckluft-, Wasser- und Ventilationsleitung, event. Nachsprengungen am Tunnelprofil und an Ausstellnischen

Verlegen der Ausstellvorrichtungen (Weichen, Drehscheiben, Schiebebühnen, Laufkatzen, Stollenlift und dgl.).

5. Ausstell-Nischen und Ausstell-Vorrichtungen

Bei schmalen, eingleisigen Stollen bedingt das Auswechseln der anlässlich der Schutterung gefüllten Wagen gegen leere das Aussprengen von Seitennischen. Damit für das Zurückfahren des beladenen Rollwagens und das Vorschieben des folgenden leeren Wagens nicht zu viel Zeit verloren geht, wird in der Regel die Distanz zwischen den Nischen nicht höher als 70 bis 80 m gewählt. Wenn möglich wird die Nische zusammen mit dem letzten Vortriebs-Abschuss der Woche gesprengt, damit die umfangreichere und über das normale Programm reichende Schutterung nicht innert des normalen knappen Tagesprogramms geschehen muss. Mit wenig Ueberstundenarbeit an einem Feiertag kann vermieden werden, dass ein Abschuss verloren geht. Bei Fächerabschuss der Nische können die langen Bohrlöcher innert kurzer Zeit vom Bohrwagen aus gebohrt werden, während die Gleismannschaft das Bohren der kurzen Bohrlöcher mit Hand-Bohrhämmern besorgt. Die Nische wird gesprengt, bevor die Stollenleitungen auf ihre Höhe nachgezogen worden sind, also höchstens 5 bis 10 m hinter dem Vortrieb. Die frisch ausgesprengte Nische kann erst bei etwa 30 m Distanz vom Vortrieb in Funktion treten (Schutterhaufen 5 m + Bagger 2 m + acht geladene Wagen zu 2,50 m = 20 m + Traktor 3 m). Es ist demnach genügend Zeit vorhanden, damit die Gleismannschaft allfällige Bohrlöcher für Nachsprengungen ausführen kann, sowie den vom Stollenbagger nicht erreichbaren Schutter von Hand auflädt (während der Bohrzeit) und die Installation der Ausstellvorrichtung vornimmt (Weiche, Drehscheibe, Schiebebühne oder Laufkatze). Die dem Vortrieb nächst gelegene Nische dient zum Wagenwechsel, während in die zweitnächste Nische abwechslungsweise Bohrwagen oder Stollenbagger ausgestellt werden (Bild 14). Zur Ausstellung des Bohrwagens falls es sich um ein kleines Modell handelt — muss an der Nische im untern Teil eine geringe Nachsprengung erfolgen. Die weiter rückwärts gelegenen Nischen werden zum Ausstellen nicht mehr verwendet und dienen als Tagesmagazine

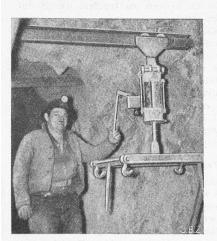


Bild 15. Laufkatze mit Druckluftzylinder

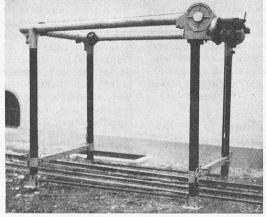


Bild 16. Stollenlift (Cherry-Picker), schweizerische Konstruktion nach amerikanischem Muster

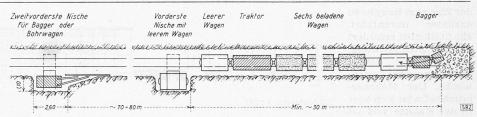
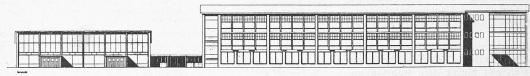


Bild 14. Schutterung mit einem Zug von 9 Wagen

für Sprengstoff, Kapseln und Geräte für die Gleismannschaft. Neben den genannten Nischen ist periodisch eine weitere in nächster Nähe des Vortriebs in Vorbereitung. Damit beim Vorverlegen der Ausstellnischen keine Unterbrüche entstehen, ist es angezeigt, drei Ausstellvorrichtungen in Betrieb zu haben, damit die dritte in aller Ruhe und mit der erforderlichen Genauigkeit in die neu ausgesprengte Nische eingebaut werden kann.


Nachstehend werden die einzelnen Ausstellvorrichtungen beschrieben:

- a) Weiche. Sie benötigt eine verhältnismässig lange Seitennische von 5 bis 7 m (bei grossen Wagen). Ferner muss die Weiche nach Nichtgebrauch der Nische wieder ausgebaut werden, ansonst ständig Entgleisungsgefahr besteht oder der Zug bei jeder Durchfahrt die Geschwindigkeit vermindern muss. Das Verlegen der Weiche, wie auch ihr Ausbau und Ersatz mit einem geradlinigen Schienenstück erfordert viel Zeif.
- b) Drehscheibe. Die Nische kann sehr klein gehalten werden. In der Praxis hat sich die Drehscheibe für schwere Rollwagen und im Stollenbetrieb nicht bewährt. Das Verlegen muss sehr genau erfolgen. Nach Nichtgebrauch der Nische ist die Drehscheibe wieder auszubauen und durch ein Schienenstück zu ersetzen.
- c) Schiebebühne. Diese erfordert eine kleine Nische von etwa 2,6 m Länge und rd. 1 m Tiefe (bei grossen Rollwagen). Höhe der Nische 1,6 bis 1,7 m. Die Schiebebühne ist sehr genau zu verlegen, wenn sie ohne Störungen arbeiten soll. Zudem sind die im Handel erhältlichen Schiebebühnen meistens den Erfordernissen des Stollenbaues nicht angepasst und müssen je nach Erfahrung abgeändert werden. Die Schiebebühne hat den Vorteil, dass das Gleis durch ihren Ein- und Ausbau nicht berührt wird. Meist fehlen wirksame und einfache Festhalte-Vorrichtungen für den auf dem querlaufenden Laufschemel stehenden Rollwagen.
- d) Druckluft-Hebezylinder an Laufkatze (Bild 15). In Vortrieben in USA und Kanada hat sich diese Einrichtung dank ihrer Einfachheit und sicherem Funktionieren gut eingeführt. Die quer zur Gleisrichtung verschiebbare Laufkatze bewegt sich entweder auf einem Doppel-T-Balken oder einem starken Rohr an der Kalotte des Stollens und der Nische. Ein unter der Laufkatze angebrachter Druckluftzylinder von etwa 250 mm ⊘ vermag bei 5 kg/cm² Luftdruck rd. 2,5 t zu heben. Der Wagen wird an zwei oder vier Punkten an einem Hebebügel eingehängt, vom Druckluftzylinder um wenige Zentimeter vom Gleis abgehoben und an der Laufkatze hängend in die Nische geschoben. Mit dieser Laufkatze können

auch der Stollenbagger und der Bohrwagen in die Nische gestellt werden. Die erforderliche Nische ist nicht grösser als bei der Schiebebühne. Unter dem Balken der Laufkatze sollte allerdings 2,0 m lichte Höhe verbleiben. Dies erfordert für die Montage des Balkens etwas Ueberprofil. Wie bei der Schiebebühne bleibt auch hier das Stollengleis vollkommen unberührt.

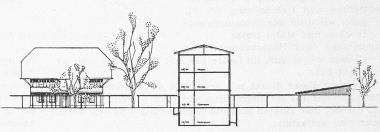
e) Stollenlift (Cherry-Picker) (Bild 16). Er besteht aus einem fast das ganze Stollenprofil ausfüllenden vierbeinigen Gestell mit einer Druckluftwinde, das rittlings über dem Gleis steht und unter sich freie Durchfahrt für Rollwagen, Traktor, Bagger und Bohrwagen lässt. Die auszuwechselnden leeren Rollwagen werden im Gestell senkrecht hochgezogen, worauf

der Zug zum Rangieren darunter durchfährt. Ein Stollenlift erfordert den kleinsten Mehrausbruch, etwa 1/3 bis 1/4 desjenigen einer Seitennische. Der Mehrausbruch befindet sich aber in der Kalotte und ist im Falle einer Ausbe-

Südostseite, 1:700

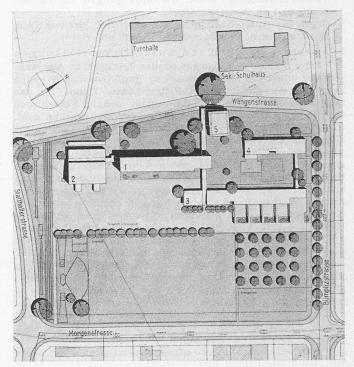
tonierung des Stollens unerwünscht. Wo eine solche Ausbetonierung nicht gefordert wird, oder wo gar die notwendige Höhe von etwa 2,60 bis 2,70 m zur Verfügung steht, ist der Stollenlift trotz den verhältnismässig hohen Anschaffungskosten allen andern Einrichtungen vorzuziehen. Seine Versetzung ist leicht; er kann rittlings auf einem Rollwagen transportiert werden. Bei jedem Versetzen sind die vier Beine gut einzunivellieren.

f) Mannschaftsbedarf für den Wagenwechsel. Grundsätzlich ist das Rollmaterial während des Baggerns wie folgt verteilt: Ein im Beladen befindlicher Rollwagen ist am Stollenbagger angehängt; dann folgen in Richtung Stollenausgang die vollen Wagen, der Traktor und die leeren Wagen; ein leerer Wagen ist in der Nische ausgestellt. Nach Beladen eines Rollwagens durch den Bagger wird dieser an den Zug angehängt. Der ganze Zug fährt bis hinter die Nische zurück. Der leere Wagen wird aus der Nische auf das Gleis verbracht, der Zug stösst diesen gegen den Bagger, wo er eingehängt wird. Während des Vorfahrens des Zuges gegen den Bagger wird auf der Höhe der Nische der hinterste leere Wagen abgehängt und in die Nische geschoben; dafür stehen 5 bis 6 min zur Verfügung, d. h. die Zeit, in welcher der Zug gegen den Vortrieb fährt, der vorgestossene Wagen geladen wird und der Zug wieder zurückkommt. Die Ausstell-Operation kann in der Praxis von ein bis zwei Mann besorgt werden, vorausgesetzt, dass die Ausstell-Vorrichtungen gut ausnivelliert sind und ohne Klemmen arbeiten. Das Hereinnehmen des leeren Wagens aus der Nische auf das Stollengleis sollte stets in möglichst kurzer Zeit erfolgen, da die Schutterung stillsteht und erst nach Ankunft eines neuen leeren Wagens weiter gebaggert werden kann. Die rascheste Rückführung auf das Stollengleis ermöglicht die Weiche und der Stollenlift, Laufkatze und Stollenlift erfordern zusätzlich eine translatorische Bewegung, die Drehscheibe eine Vorwärtsbewegung und anschliessend eine Rotation. Das Hereinnehmen kann bei allen Vorrichtungen von einem einzigen Mann ausgeführt werden, benötigt aber bei der Laufkatze und der Schiebebühne Haltevorrichtungen über dem Stollengleis, damit der Rollwagen genau auf die Schienen abgesetzt bzw. abgelaufen werden kann. Soll das Manöver rasch und sicher vor sich gehen, müssen mindestens zwei Mann die Ausstellvorrichtung bedienen, wobei der Traktorführer nicht einzurechnen ist. Bei Weiche und Stollenlift ist das Einstellmanöver auch von einem Mann rasch und sicher ausführbar.


6. Zusammenfassung

Im Hinblick auf eine möglichst kleine Nische, auf eine leichte und rasche Einbaumöglichkeit und eine sichere und flüssige Auswechslung der Rollwagen hat sich die Laufkatze und der Stollenlift in Stollen von 5 bis 6 m² Querschnitt ausgezeichnet bewährt. Die Schiebebühne kann ebenfalls gut arbeiten, benötigt aber mehr Personal und es ist schwieriger, sie genau zu verlegen. Sie hat den Vorteil, auch in Stollen von nur 3,6 m² Querschnitt ohne Schwierigkeit eingesetzt werden zu können. Die Laufkatze und die Schiebebühne eignen sich gut auch zum Ausstellen des Baggers und des Bohrwagens. Sämtliche drei hier genannten Vorrichtungen lassen das Stollengleis vollkommen unberührt. (Schluss folgt)

Wettbewerb für ein Primarschulhaus auf dem Statthaltergut in Bümpliz DK 727.1 (494.24)


Der Gemeinderat von Bern veranstaltete unter acht eingeladenen Architekten einen beschränkten Projekt-Wettbewerb für ein Primarschulhaus.

Wegleitung für die Projektierung: Für die westliche Begrenzung des Wettbewerbgeländes durfte eine veränderte Linienführung der Wangenstrasse vorgesehen werden, wenn das reizvolle Stöckli des abzubrechenden Bauernhauses er-

Stöckli Schnitt durch den Hauptbau

1:700

1 Hauptbau, 2 Turnhalle, 3 Pausenhalle, Abwartwohnung, Elementarklassen, 4 Kindergarten, Reserveklasse bzw. Säuglingsfürsorge, 5 das «Stöckli» mit Schülerspeisung und Singsaal Masstab 1:2500

Erster Preis (1800 Fr.). Verfasser H. BRECHBÜHLER, Mitarbeiter N. MORGENTHALER, Architekten, Bern

halten und für den Schulbetrieb einbezogen werden sollte. Es waren Vorschläge für die Gestaltung des Platzes östlich des Sekundarschulhauses einzureichen. Das Areal östlich der verlängerten Morgenstrasse ist für Industriebauten reserviert. Es waren zweckdienliche Vorkehren zu treffen, damit der Schulbetrieb nicht gestört wird.

Auszug aus dem Raumprogramm: 13 Normalklassenzimmer, 1 Hilfsklassenzimmer, Unterrichtsraum für Naturgeschichte, Sammlungsraum und Bibliothek, Zimmer für Nähunterricht, Singsaal für rd. 120 Sitzplätze, Lehrerzimmer, Hausvorstand, Lehrmittelzimmer, zwei Räume für Werkunterricht und Materialraum, Raum für Schülerspeisung, Milchküche, Schulküche, eine Turnhalle mit den Nebenräumen, Kindergarten, zwei Räume für Säuglingsfürsorge, Abwartwohnung, Pausenplatz, Schulgarten, Hartturnplatz mit Geräteanlagen, Rasenspielplatz usw.

Aus dem Bericht des Preisgerichtes

Der Städtischen Baudirektion Bern wurden acht Entwürfe eingereicht. Die Projekte wurden vom Preisgericht nach ihrer Gesamthaltung in drei Gruppen eingeteilt und nach folgenden Gesichtspunkten untersucht: 1. Situation (Stöckli, Zu- und Eingänge, Aufteilung des Bauplatzes); 2. Grundrissanlage (Orientierung, Organisation und gegenseitige Beziehungen der einzelnen Räume und Raumgruppen); 3. Kubische Gliede-