Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 67 (1949)

Heft: 15

Artikel: Die strenge Lösung des Problems der schiefen Platte

Autor: Lardy, P.

DOI: https://doi.org/10.5169/seals-84034

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Nachdruck von Bild oder Text nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet

Die strenge Lösung des Problems der schiefen Platte

DK 624.073.126

Von Prof. Dr. P. LARDY, ETH, Zürich

Prof. H. Favre hat zur Berechnung schiefer Platten schiefwinklige Koordinaten eingeführt 1) und die Durchbiegung der freiaufliegenden Platte für gleichmässig verteilte Belastung mittels Differenzenrechnung bestimmt. Dieses, der Plattenform angepasste Koordinatensystem legt die Idee nahe, die mathematisch strenge Lösung aufzusuchen, was im Folgenden kurz dargestellt wird.

Der parallelogrammförmige, von zwei Ebenen begrenzte Körper spielt in der Eisenbetonpraxis (schiefe Brücken, dreieckförmige Staumauern als Halbparallelogramm usw.) sowohl als Platte wie als Scheibe eine wichtige Rolle. Die mathematischen Grundlagen der Platten- und Scheibentheorie erlauben, aus ihrer Verwandtschaft heraus, die Lösungen gegenseitig zu übertragen, was sich u.a. auch im vorliegenden Falle günstig auswirkt.

Das Problem der schiefen Platte ist mit erheblichen mathematischen Schwierigkeiten verbunden. Diese rühren teilweise davon her, dass die Lösungen der «Bipotentialgleichung» für die Ränder keine konstanten Funktionen mehr enthalten, wie das für die rechteckige Platte der Fall ist und deren Behandlung so ausserordentlich erleichtert. Es gelingt trotzdem, die strenge Lösung anzugeben und in eine für die praktische Berechnung geeignete Form zu bringen.

Der Wert der strengen Lösung liegt auch wesentlich darin, dass diese als Kriterium für Näherungslösungen herangezogen werden kann. Damit ist eine Abschätzung der Genauigkeit und des Geltungsbereiches solcher Näherungen gesichert.

1. Grundlagen

Die schiefwinkligen Koordinaten sind in Bild 1 eingezeichnet, woraus mit $c = \cos \omega$ und $s = \sin \omega$ folgt:

x = u + cv, y = svDie Plattengleichung von Lagrange:

von Lagrange:
$$\varDelta \varDelta \Phi = \frac{p}{S}$$
 mit $S = \frac{EJ}{1-v^2}$ und Φ

Durchbiegung der Platte, muss nach den Regeln der Differentialrechnung von den kartesischen Koordinaten x, y

Bild 1

auf die schiefwinkligen u, v umgerechnet werden. In der Folge seien zur Vereinfachung die partiellen Ableitungssymbole durch Indizes ersetzt. Man findet leicht:

$$arDelta \, \Phi = rac{1}{s^2} \, (arPhi_{uu} - 2 \, c \, arPhi_{uv} + arPhi_{vv})$$
 ,

$$\Delta\Delta\Phi = \frac{1}{2^4} \times$$

$$imes$$
 [$\Phi_{uuuu} = 4c (\Phi_{uuuv} + \Phi_{uvvv}) + 2 (1 + 2 c^2) \Phi_{uuvv} + \Phi_{vvvv}$]

Wegen der Glieder mit gemischten, ungeraden Ableitungen wird die Integration der Bipotentialgleichung wesentlich erschwert.

Das Integral der Lagrange'schen Gleichung

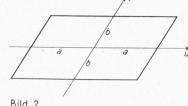
$$\varDelta \varDelta \Phi = rac{p}{S}$$
 , $p = {
m konstant}$

wird als Summe eines $Partikul\"{a}rintegrals$ Φ_0 und desjenigen Φ_{1} der homogenen Glei-

chung angesetzt:

$$\Phi = \Phi_0 + \Phi_1$$

$$\Delta \Delta \Phi_0 = \frac{p}{8}$$



¹) SBZ Bd. 120, S. 35* und 51*, 1942. «Bulletin Technique», 3. Okt. 1942. IVBH Bd. VII, 1943/44.

Die Randbedingungen lauten:

 $\Phi = 0$ und $\Delta \Phi = 0$ für u = +a und $v = \pm b$

d. h. an allen vier Rändern (siehe Bild 2).

2. Partikulärlösung

Aus dem Verhalten der Platte ist offensichtlich, dass Φ_0 nur Polarsymmetrie aufweist, d. h.

$$\Phi_{0}\left(=\dot{u},=v\right)\equiv\Phi_{0}\left(u,v\right).$$

Es muss daher ein gegenüber der rechteckigen Platte erweiterter Ansatz in Rechnung gestellt werden, der dieser Eigenschaft genügt. Der einfachste erweist sich als der Fol-

$$\phi_0 = \sum_{m}^{\infty} \sum_{n}^{\infty} (K_{mn} \cos A_m u \cos B_n v + L_{mn} \sin A_m u \sin B_n v)$$

Darin ist: m und $n = 1, 2, 3, \ldots$ und $\cos A_m a = 0$, $\cos B_n b = 0$, d. h.

$$A_{m}=rac{(2\,m+1)\,\pi}{2\,a}\,,\,B_{n}=rac{(2\,n+1)\,\pi}{2\,b}$$

Die Konstanten K_{mn} und L_{mn} bestimmen sich aus

$$\Delta \Delta \Phi_0 = \frac{p}{S},$$

wenn bemerkt wird, dass p im Gegensatz zu $\Phi_{\scriptscriptstyle 0}$ doppelte Symmetrie aufweist; d. h. mathematisch: in $\Delta \Delta \Phi_0$ müssen die sin-Glieder verschwinden. Werden mit p_{mn} die Fourierschen Koeffizienten einer doppelten cos-Entwicklung von p bezeichnet, so folgt:

$$K_{mn} = rac{4 c^2 A_{m}^2 B_{n}^2 + (A_{m}^2 + B_{n}^2)^2}{[4 c^2 A_{m}^2 B_{n}^2 - (A_{m}^2 + B_{n}^2)^2]^2} rac{8^4 p_{mn}}{S}$$
 $L_{mn} = rac{-4 c A_{m} B_{n} (A_{m}^2 + B_{n}^2)}{[4 c^2 A_{m}^2 B_{n}^2 - (A_{m}^2 + B_{n}^2)^2]^2} rac{8^4 p_{mn}}{S}$

Mit c=0 wird auch $L_{mn}=0$ und es folgt die für die rechteckige Platte charakteristische doppelte cos-Entwick-

3. Allgemeine Lösung der homogenen Gleichung

$$\Delta \Delta \Phi_1 = 0$$

zu bestimmen. Dazu werde zuerst die Gleichung

$$\Delta \Phi_2 = 0$$

betrachtet, deren Integral Φ_2 bereits die Hauptcharakteristiken der Bipotentialfunktion $\Phi_{\scriptscriptstyle 1}$ enthält und deren Hauptbestandteil in diesem Falle die Form hat:

$$\Phi_{\scriptscriptstyle 1} \equiv (a_{\scriptscriptstyle 1} + a_{\scriptscriptstyle 2} u + a_{\scriptscriptstyle 3} v) \, \Phi_{\scriptscriptstyle 2}$$
 , $a_i \equiv {\rm konst.}\,{}^{\scriptscriptstyle 2})$

Eine für unsere Zwecke systematische Auffindung der Lösungen Φ_2 bildet der Ansatz:

$$\Phi_2 = \Phi_2 (\alpha u + \beta v) = \Phi_2 (z)$$

d. h.: es wird die Form des Argumentes als primäres Element zur Integration eingeführt. Damit folgt:

$$\varDelta \Phi_2 = \Phi_{2\,zz} \, (\alpha^2 - 2\,c\,\alpha\,\beta \, + \, \beta^2) = 0$$

und also allgemein:

$$\alpha^2 - 2 c \alpha \beta + \beta^2 = 0$$

Daraus ergeben sich die beiden Möglichkeiten:

$$\frac{\alpha = (c + is) \beta}{\beta = (c + is) \alpha}$$

Hier genügt diese Form des Argumentes; für andere Probleme können α oder β als komplexe Grössen zu noch allgemeineren Funktionen führen!

Wir gelangen damit, wenn wir lpha durch +ilpha und eta durch $+i\beta$ ersetzen, zu den beiden folgenden Funktionenklassen:

²⁾ Siehe Courant-Hilbert: Mathematische Physik.

$$egin{aligned} &arPhi_2\left(lpha[\pm i\left(u+cv
ight)\pm sv
ight]
ight),\ &arPhi_2\left(eta[\pm i\left(cu+v
ight)\pm su
ight]
ight). \end{aligned}$$

Mit u und v multipliziert folgen die Funktionenklassen der ϕ .

Durch Wahl der <code>Exponentialfunktion</code> für Φ_2 und Transformation auf reelle Funktionen entstehen für Φ_1 Kombinationsmöglichkeiten aus folgenden Gruppen:

$$\begin{array}{l} \cos\alpha\left(u\,+\,c\,v\right) \\ \sin\alpha\left(u\,+\,c\,v\right) \end{array} \right\} \; \mathrm{mit} \; \left\{ \begin{array}{l} \mathit{Ch}\,\alpha\,s\,v \\ \mathit{Sh}\,\alpha\,s\,v \end{array} \right. \\ \cos\beta\left(c\,u\,+\,v\right) \\ \sin\beta\left(c\,u\,+\,v\right) \end{array} \right\} \; \mathrm{mit} \; \left\{ \begin{array}{l} \mathit{Ch}\,\beta\,s\,u \\ \mathit{Sh}\,\beta\,s\,u \end{array} \right.$$

mit und ohne die Faktoren u und v.

Für das Problem der freiaufliegenden Platte ergibt sich unter Beachtung der *Polarsymmetrie* für Φ_1 der folgende geeignete Ansatz mit $\alpha = A_m$ und $\beta = B_n$:

$$egin{aligned} arPhi_1 &= \sum\limits_m^\infty igl[\cos A_m \, (u + c \, v) \, imes \ & imes igl[\, C_{1m} \, Ch \, A_m \, s \, v \, + \, \, C_{2m} \, v \, Sh \, A_m \, s \, v \, igr] \, + \ &+ \sin A_m \, (u + c \, v) \, imes \ & imes igl[\, C_{3m} \, Sh \, A_m \, s \, v \, + \, \, C_{4m} \, v \, Ch \, A_m \, s \, v \, igr] igr] \, + \ &+ \sum\limits_n^\infty igl[\cos B_n \, (c \, u \, + \, v) \, imes \ & imes igl[\, \cos B_n \, (c \, u \, + \, v) \, imes \ & imes igl[\, C_{3n} \, Ch \, B_n \, s \, u \, + \, D_{2n} \, u \, Sh \, B_n \, s \, u \, igr] \, + \ &+ \sin B_n \, (c \, u \, + \, v) \, imes \ & imes igl[\, C_{3n} \, Sh \, B_n \, s \, u \, + \, D_{4n} \, u \, Ch \, B_n \, s \, u \, igr] igr] \, \end{aligned}$$

- 4. Randbedingungen
- a) $R\ddot{a}nder\ u = +a$

Dafür muss sein:

$$\begin{split} & \varPhi = \varPhi_0 + \varPhi_1 \equiv 0 \,, \\ & \varDelta \varPhi = \varDelta \left(\varPhi_0 + \varPhi_1 \right) \equiv 0 \,. \end{split}$$

Diese Randbedingungen enthalten Funktionen von v, deren Koeffizienten nicht identisch verschwinden. Sie lassen sich einerseits in einen Anteil von geraden, anderseits in einen solchen von ungeraden Funktionen von v spalten.

Jeder solche Anteil muss identisch verschwinden, was für einen Teil dieser Funktionen nur in Form von Reihenentwicklungen möglich ist. Diese Tatsache ist vor allem geeignet, die damit verbundene grössere Schwierigkeit, im Gegensatz zur rechteckigen Platte, ganz besonders zu beleuchten!

Nach Trennung in gerade und ungerade Funktionen folgt für $u=\pm a$ und $\phi\equiv 0$, wobei der Einfachheit halber die Indizes m und n sowie die Σ -Zeichen weggelassen sind, und unter Beachtung von $\cos A \ a=0$:

Gerader Anteil:

(1)
$$\cos B v \left[\cos B c a \left(D_1 Ch B s a + D_2 a Sh B s a\right) + \sin B c a \left(D_3 Sh B s a + D_4 a Ch B s a\right)\right] \equiv 0$$

 ${\it Ungerader\ Anteil:}$

$$\begin{array}{lll} -\sin A\, a \sin A\, c\, v\, (C_1\, Ch\, A\, s\, v\, +\, C_2\, v\, Sh\, A\, s\, v)\, + \\ +\, \sin A\, a \cos A\, c\, v\, (C_3\, Sh\, A\, s\, v\, +\, C_4\, v\, Ch\, A\, s\, v)\, + \\ +\, \sin B\, v\, [\, -\, \sin B\, \dot{c}\, a\, (D_1\, Ch\, B\, s\, a\, +\, D_2\, a\, Sh\, B\, s\, a)\, + \\ +\, \cos B\, c\, a\, (D_3\, Sh\, B\, s\, a\, +\, D_4\, a\, Ch\, B\, s\, a)\, + \\ +\, L\sin A\, a\,] \equiv 0 \end{array}$$

Aus $\Delta \Phi \equiv 0$ folgt analog:

Gerader Anteil:

$$\begin{array}{ll} (3) & 2sB\cos Bv \left(D_2\cos Bc \, a\, Ch\, B\, s\, a\, +\\ & +D_4\sin B\, c\, a\, Sh\, B\, s\, a\right) \equiv 0 \end{array}$$

Ungerader Anteil:

$$egin{array}{lll} (4) & 2\,s\,A\,\left[\sin A\,a\,\left(-\,C_{2}\sin A\,c\,v\,Ch\,A\,s\,v\,+
ight.\ & +\,C_{4}\cos A\,c\,v\,Sh\,A\,s\,v
ight)
ight]\,+\ & +\,\sin B\,v\,\left[2\,s\,B\,\left(-\,D_{2}\sin B\,c\,a\,Ch\,B\,s\,a\,+
ight.\ & +\,D_{4}\cos B\,c\,a\,Sh\,B\,s\,a
ight)\,+\,L'\sin A\,a
ight]\,\equiv\,0 \end{array}$$

Mit L' ist der Koeffizient von $\sin A \, u \sin B \, v$ im Ausdruck für $\varDelta \, \Phi$ bezeichnet.

b) Ränder v = +b

Die Berechnung ist in allen Punkten analog und ergibt vier weitere Bedingungen (5) bis (8); es genügt dabei, folgende Vertauschungen vorzunehmen:

$$v \to u$$
, $A \to B$, $a \to b$
 $B \to A$, $b \to a$.

Damit stimmt die Anzahl der Bedingungen mit derjenigen der Gleichungen überein.

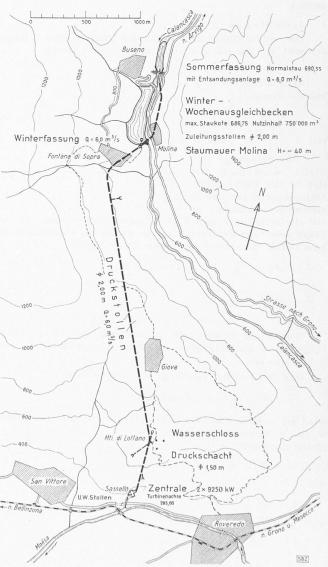
Aus den Gl. (1) und (3) lassen sich die Konstanten D_2 und D_4 in Abhängigkeit von D_1 und D_3 berechnen:

$$egin{aligned} D_2 &= rac{Sh\,B\,s\,a}{a\cos B\,c\,a} imes \ & imes (D_1\cos B\,c\,a\,Ch\,B\,s\,a \,+\, D_3\sin B\,c\,a\,Sh\,B\,s\,a) \ D_4 &= -rac{Ch\,B\,s\,a}{a\sin B\,c\,a} imes \ & imes (D_1\cos B\,c\,a\,Ch\,B\,s\,a \,+\, D_3\sin B\,c\,a\,Sh\,B\,s\,a) \end{aligned}$$

(Gültig für jedes n).

Zwei analoge Formeln werden für C_2 und C_4 in Abhängigkeit von C_1 und C_3 gefunden.

Die vier Unbekannten C_1 , C_3 , D_1 und D_3 werden nun aus den noch nicht benützten Gleichungen (1) bis (8) bestimmt. Dies hat so zu geschehen, dass in den Gl. (2) und (4) die ungeraden Funktionen in Fourier'schen Reihen nach $\sin B_n v$ entwickelt werden. Die Koeffizienten dieser Entwicklungen sind bekannt. Daraus folgen dann Identitäten für jeden Wert von n, so dass in den Gl. (2) und (4) ∞ viele



Kraftwerk Calancasca, Lageplan 1:33000

Unbekannte C_{1m} und C_{3m} (Σ über m) vorkommen gegenüber den zwei Unbekannten D_{1n} und D_{3n} für ein festes n.

Analoges gilt von den entsprechenden Gleichungen (6) und (8), wo für jedes feste $m \infty$ viele Unbekannte D_{1n} und D_{3n} (Σ über n) gegenüber den beiden C_{1m} und C_{3m} vorkommen.

Solche Gleichungssysteme sind bei andern Problemen der Platten- und Scheibentheorie bekannt (eingespannte Rechteckplatte, Rechteckscheiben bei Erfüllung sämtlicher Randbedingungen usw.). Sie sind für die numerische Berechnung bedeutend geeigneter, als sich das auf den ersten Blick vermuten lässt, da die Hauptdiagonale gegenüber den andern Matrixkoeffizienten stark hervortritt und daher Iterationsmethoden geeignet sind.

In unserem Falle können durch Elimination der D_{1n} und D_{3n} aus (2), (4), (6) und (8) zwei Gleichungssysteme mit den einzigen Unbekannten C_{1m} und C_{3m} aufgestellt werden, womit eine grosse Vereinfachung erreicht ist. Entsprechend können auch die C_{1m} und C_{3m} eliminiert werden.

5. Schlussbemerkungen

Für die numerische Berechnung können für gewisse Werte der vorkommenden Parameter A_m , B_n , $\frac{b}{a}$ die Koeffizienten in Tabellenform ein für allemal bestimmt werden. Da in Analogie mit der rechteckigen, eingespannten Platte erfahrungsgemäss die Konvergenz der Gleichungssysteme gut ist, braucht in den Ansätzen für Φ_0 und Φ_1 mit nur wenigen Werten der m und n gerechnet zu werden.

Aus den so gewonnenen Funktionen Φ können nun die Schnittkräfte M_u , M_v , M_{uv} usw. leicht bestimmt werden³).

Als Kontrolle der Berechnung ist der Uebergang auf die rechteckige Platte mit C=0 leicht durchzuführen.

Es ist beabsichtigt, auf der Grundlage der eben skizzierten strengen Lösung einige der wichtigsten Probleme der schiefen Platten und Scheiben und deren Ergebnisse und Auswertungen in späteren Arbeiten zu veröffentlichen.

Das Kraftwerk Calancasca DK 621.311.21 (494.262.4)

Nach dem Projekt der Elektro-Watt A.G. Zürich, das sich auf ein Vorprojekt der AIAG-Hydraulik A.G. stützt, nützt dieses Werk die Gefällstufe der Calancasca zwischen Buseno im Calancatal und Sassello (unterhalb Roveredo) im Misox mit einem grössten Bruttogefälle von 405,55 m aus (Bild S. 208). Das Einzugsgebiet beträgt rund 134 km², die Ausbauwassermenge 6 m³/s, die Ausbauleistung 18 500 kW.

Die Sommerwasserfassung besteht aus einem beweglichen Wehr mit einer Hauptöffnung von 15 m l.W. und 3,8 m Stauhöhe (Sohle auf Kote 686,75) und einer Spülöffnung von 1,5 m l.W. und 3 m Stauhöhe, Sohle auf Kote 687,55; Stauziel auf Kote 690,55. Der Einlaufschütze mit vorgeschaltetem Feinrechen folgt eine Entsandungsanlage, die für eine Ausscheidung bis 0,35 mm Korndurchmesser bemessen und durch eine starke Mauer gegen Hochwasser geschützt ist. Nach der Auslaufschütze am Ende des Entsanders fliesst das Wasser durch einen 500 m langen, am linken Talhang angeordneten Zulaufstollen zum Hauptstollen.

Im Winter wird ein Wochenausgleichbecken von rund 0,75 Mio m³ Inhalt eingeschaltet, das durch eine etwa 40 m hohe Staumauer gebildet wird, die die enge, nur etwa 15 m breite Schlucht abschliesst. Der in die Mauer eingebaute Grundablass wird mit einer Sektorschütze abgeschlossen und ist für den ungestauten Durchfluss des Hochwassers bemessen. In die Mauer ist die Ueberführung des Wassers von der Sommerfassung nach dem Hauptstollen eingebaut. Der Wasserspiegel im Becken schwankt zwischen Kote 686,75 und 666,75; führt die Calancasca mehr Wasser als 6 m³/s, so bleibt das Becken leer.

Die Wasserfassung im Becken ist mit Feinrechen und Drosselklappe versehen; dort beginnt der 2900 m lange Hauptstollen von 2,00 m l.W., der mit Beton ausgekleidet ist. Etwa 700 m nach der Wasserfassung ist ein Fenster vorgesehen. In dieser ersten Strecke wird ein mit Moräne gefüllter alter Tallauf durchfahren. Der Stollen endet im Wasserschloss beim Weiler Monti di Lottano; das Schloss weist eine obere und eine untere Kammer auf. Von dort führt der gepanzerte, 600 m lange Druckschacht von 1,5 m Durchmesser unter 80 % Neigung zur Kavernenzentrale. Diese enthält in einer beson-

3) Favre, loc. cit.

dern Kammer die Abschlussorgane und im Maschinenraum zwei horizontalachsige Peltonturbinengruppen, deren Axe auf Kote 285,0 m liegt. Die erzeugte Energie wird in einer Transformatoren- und Schaltanlage von 10000 auf 50000 V gebracht und durch Freileitungen mit dem bestehenden Leitungsnetz verbunden.

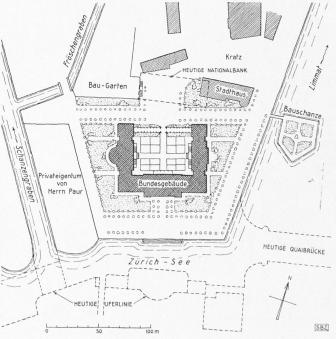
Die mittlere Energieerzeugung beträgt im Winterhalbjahr (November bis April) 28,0 Mio kWh, im Sommerhalbjahr 64,0 Mio kWh, insgesamt also 92,0 Mio kWh. Die von den zuständigen Gemeinden 1918 an Dr. J. Büchi, Zürich, erteilten Konzessionen wurden gleichzeitig von der Bündner Regierung genehmigt und auf die Aluminum-Industrie Neuhausen übertragen. 1948 ist die bis 1999 befristete Konzession bis 2028 verlängert und an die Mitglieder des Syndikates Calancasca zuhanden der Calancasca A. G. übertragen worden.

Das Projekt für einen Bundespalast in Zürich und sein Architekt Ferdinand Stadler DK 725.1(494.34)

Die Gedächtnisausstellung der Zürcher Zentralbibliothek für die Bundesverfassung von 1848 zeigte neben vielen anderen interessanten Dokumenten auch die Originalentwürfe von Ferdinand Stadter für ein Bundeshaus in den Stadthausanlagen — auf dem Areal des heutigen Bürkliplatzes — in Zürich. Die im Stil der Zeit mit minutiöser Präzision gezeichneten, in zarten Tönen lavierten Blätter lassen sich kaum reproduzieren — aber dieses verschollene Projekt ist doch wert, für einen Augenblick ins Gedächtnis zurückgerufen zu werden.

Die historische Situation 1) war die folgende: Für die Jahre 1845-46 war Zürich eidgenössischer Vorort, der «Staatsrat», eines der sieben Departemente des zürcherischen Regierungsrates, amtete als eidgenössischer Staatsrat und bediente sich in eidgenössischen Angelegenheiten der eidgenössischen Kanzlei; der Zürcher Amtsbürgermeister war zugleich sein Präsident. 1847-48 war Bern Vorort. Nachdem die militärische Entscheidung im Sonderbundskrieg gefallen war, und am 12. September 1848 von der Tagsatzung die neue Bundesverfassung verkündet werden konnte, stellte sich die Frage, welche Stadt den nunmehr permanenten Sitz der Bundesregierung beherbergen solle. Zürich glaubte darauf ein erstes Anrecht zu haben, und eine Dreierkommission unter dem Vorsitz des Bürgermeisters Ulrich Zehnder beauftragte den Architekten Ferdinand Stadler (1813-1870) mit der Ausarbeitung eines Projektes, von dem wir die wichtigsten Blätter abbilden; der Kostenvoranschlag erreichte die Summe von 797855 Franken. Es entspann sich ein unliebsamer Wettstreit

¹) Wir entnehmen diese Angaben dem Aufsatz «Die vierziger Jahre des 19. Jahrhunderts im Urteil des Zürcher Bürgermeisters Dr. med. Ulrich Zehnder, mitgeteilt und erläutert von Dr. Werner Schnyder» im «Zürcher Taschenbuch auf das Jahr 1944», S. 56 ff.



Projekt von Arch. F. STADLER, 1848. Lageplan 1:3500