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Die Knickung des schief gelagerten Stabes
Von Prof. Dr. HANS ZIEGL.ER, B.T. H., Zürich DK 539.384.4

624.075.22
1. Einleitung. Die Eulersche Knicklast eines geraden

Stabes kann bekanntlich1) als kleinste zentrische Druckkraft

definiert werden, unter der er mit ausgebogener
elastischer Linie im Gleichgewicht ist. Sie wird als Lösung
eines Eigenwertproblems erhalten, dem die Differentialgleichungen

der elastischen Linie und die durch die Lagerung
gegebenen Randbedingungen zu Grunde liegen. In den praktisch

wichtigeren Fällen zerfällt dieses Eigenwertproblem in
deren zwei, indem hier die beiden Projektionen u (z) und
v (z) der elastischen Linie unabhängig voneinander gewonnen
werden können. Der Grund dafür liegt darin, dass in diesen
Fällen die Hauptaxensysteme der einzelnen Querschnitte bis
auf eine Translation in axialer Richtung miteinander
übereinstimmen und die Lager bezüglich der Hauptaxen der
zugehörigen Querschnitte symmetrisch sind. Da dann nämlich
zwei Hauptebenen (x, z) und (y, z) existieren mit der
Eigenschaft, dass die Ausbiegung in der einen das für die
Ausbiegung in der anderen massgebende Biegemoment nicht
beeinflusst, lassen sich für die Verschiebungen u (z) und v (z)
in den Richtungen x bzw. y zwei Differentialgleichungen auf-
stellen, die nur je eine abhängige Veränderliche enthalten ;
ferner zerfallen die Randbedingungen mit Rücksicht auf die
Symmetrie der Lager in je einen Satz für u (z) bzw. v(s).

Vom theoretischen Standpunkt aus sind diese Aufgaben
indessen nur als Sonderfälle des allgemeineren Eigenwertproblems

zu betrachten, das aus zwei simultanen
Differentialgleichungen und den zugehörigen, die Veränderlichen u
und v sowie ihre ersten Ableitungen verknüpfenden
Randbedingungen besteht. So erhält man z. B. tür verwundene
Stäbe, d. h. solche, deren Querschnitthauptaxen nur durch
eine Schraubung in axialer Richtung ineinander übergeführt
werden können, simultane Differentialgleichungen, indessen
aber auch schon bei unverwundenen Stäben mit asymmetrischer

Lagerung eine Verkuppelung in den Randbedingungen.
In beiden Fällen ist die elastische Linie unter der Knicklast
eine Raumkurve.

Während der verwundene Stab einer späteren
Untersuchung vorbehalten werden soll, mag hier als einfachstes
Beispiel für den Fall Verkoppelter Randbedingungen ein un-
verwundener, z. B. prismatischer, beidseitig in Zylindergelenken

gelagerter Stab betrachtet werden. Die beiden Lager
werden dabei als Längsund

Querlager mit parallelen,

zur Stabaxe normalen,
im übrigen aber beliebig

gerichteten Axen
vorausgesetzt; zudem sollen sie
so lang sein, dass sie in der
durch ihre Axen
aufgespannten Ebene als
EinSpannungen wirken.

2. Das Eigenwertproblem.

Bildl zeigt den
Stab mit der Länge l und
sein Bezugsystem (x, y, »),
das durch die Querschnitthauptaxen

und" die Stabaxe
festgelegt wird. Die Dreh-
axen a und w der Lager
stehen normal zur z-Axe
und sind unter dem Winkel

a gegen die x-Axe
geneigt. An Reaktionen sind

>) Vergi. E. Meissner und
H. Ziegler, Mechanik I, Basel

M'

¦x.

1946, S. 302.

à

sin x, l
0

x, I COS a

x, l COS x,

neben den zentrischen Druckkräften P zwei zur Ebene (a, z)
normale Einspannmomente M und M' zu erwarten, ferner
zwei entgegengesetzt gleiche, zur s-Axe normale Einspann-
kräfte Q, die mit Rücksicht auf das Momentengleichgewicht
in die Axen a bzw. a' fallen müssen. Schliesslich ist auch
mit dem Auftreten zweier axialer Einspannmomente zu
rechnen, die aber mitsamt dem von der Kraft Q herrührenden

Torsionsmoment im Vergleich zu den anderen
Einspannmomenten von der Ordnung u/l klein sind und daher
vernachlässigt werden können.

Die Ausbiegungen u (z) und v (z) der elastischen Linie
in den Richtungen x und y unterliegen den Differentialgleichungen

(1)

d2u 1

dz-
d*v 1

dz2 ~ ~Ë3*

(Pu — Çscos a -\- Mcos oe),

(Pv — Çssin a -f M sin oc),

den Randbedingungen
(2) u (0) 0, v(0) 0, w(Z) 0, v(l) =0,
die auf die Unverschieblichkeit der Lager zurückzuführen
sind, sowie den weiteren Randbedingungen

(3)

du
(0) cos a

dv
te— (0) sin oe

dz 0,

(l) sin a 0,

dz
du Sfi dv

—— (ì)cos a + ——dz m dz
welche die Tatsache zum Ausdruck bringen, dass die
Stabenden in der Normalebene zu a durch z liegen müssen.

Während die Beziehungen (1) und (2) je nur eine
abhängige Veränderliche enthalten, kommen in der Randbedingung

(3) beide zugleich vor, und dies ist der Grund dafür,
dass das Problem nicht in zwei einfachere Eigenwertaufgaben

zerfällt.
3. Lösung. Die Lösung der Differentialgleichungen 1

lautet, wenn die Abkürzungen
p P

v8*2(4)
EJy EJX

sowie zwei Integrationskonstante a, b eingeführt und die
beiden ersten Randbedingungen (2) sofort berücksichtigt
werden,

(5)

Mcos a ,„ i Qcos au aslnx, z (1 — cosxts) -j p «,

v b sin x. z

P
M sin a

(1 — cos%,£) -f-
Q sin oc

Die beiden anderen Randbedingungen (2) ergeben
M I 1 QI |

(6)

f a sin xt l — -=- (1 — cos x, I) cos a

I b sin x, l

die Randbedingungen (3)

M üü QI
-=- 1 — cos x. l) sin a + sin a

¦ 0,

0,

(7)

EU
F

M
(a cos*; I r sin*, I cos a) x1lcoaa -\-

M QI+ (b cos xsl p- sinx2lSina) x2lsma -\- 0.

Nun ist nach (5) die elastische Linie nur dann ausgebogen,

wenn nicht gleichzeitig alle vier Konstanten a, b,
M/P, Q l/P verschwinden. Dazu ist notwendig, dass die
Determinante des aus (6) und (7) bestehenden, in diesen Grössen
linearen und homogenen Gleichungssystems Null, d. h.

0

sin xa l
Xm l sin a

(1 — cos x11) cos oe cos a <.

(1 — cos x21 sin oc sin a

1

X

Bild 1

2
2 cos x, l sin « — x, l sin x, I cos9 a -j-

+ x21 sin x2 Zsin2 oc)
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oder ausgerechnet

à [*, l (1.
+ xal(l-

- cos x1l) sin xa lcos8 oe -f-
cos x. l) sin x, 2 sin3 œ] x

x, 2(1 + cos x. 2)
X [2 —'—3-—;—— cos2 a -sin xl l

x2l (1 + cos #22)
sin x21)

ist. Diese Beziehung, die auch auf die Gestalt

-sin2 a] 0

(8) X (sin

2

x.l xZl

,2 .2 tl

X,l X.l Xml
—i- cos -±- sin -£- cos2 oc

2 2 2

X, 2 Xml x,l-'- cos -|- sin -i- sin» a 0

gebracht werden kann, liefert die noch durch (4) verknüpften
Eigenwerte und damit insbesondere die Knicklast.

4. Die Knicklast. Setzt man zunächst s 0, so
erhält man statt (8) die Gleichung

sin x*. 2 si xj ln —'— |
2 V

x.l x.l x,l
-g- cos m 0

und hieraus erwartungsgemäss die kritischen Lasten
sämtlicher Ordnungen für das Ausknicken in der (y, z)- und
(x, s)-Ebene, indem man den ersten oder einen der beiden
anderen Faktoren Null setzt.

Für oc dp 0 kann man sich auf den Winkelbereich 0 <
a < nj2 beschränken, da sich (8) beim Ersatz von oc durch
sein Supplement nicht ändert. Zudem darf man
(9) WÈÈ
und damit nach (4)

IW,
TT

Ct." 30
'..'JLr,x

Bild 2

der ersten Gleichung (12) — und damit to, — stets im Intervall

nß <w <n, denn ihre linke Seite ist für 0 < i© < nß
positiv und nimmt für io n den Wert

lt 7t
— — sin — cos3 oe < 0

voraussetzen; das Verhältnis

(10)
Jx

der beiden Hauptträgheitsmomente ist dann mindestens gleich
1. Führt man schliesslich noch die Abkürzung

Xml
dl)
ein, so zerfällt (8) in die beiden Beziehungen

(12)

w w w
— cos io sin — cos3 oc -I- to sin tocos —sin3 oc 0,
/i fi fi
w w io— sin w ccp. cos2 a + io cos te sin — sin2 a —fi fi fi

w
¦ sin w sin —fi

0.

Diese liefern für gegebene Grössen a und fi je eine Reihe
von Eigenwerten to,, von denen der kleinste positive to,
gemäss (4) und (11) die Knicklast

,.„, ~ éw.tEJx(13) Pk I L—TL-

ergibt.
Nun geht die zweite Beziehung (12)

löst — in
nach a aufge-

sin w sin - — w cos w sin

- sin w cos ¦ — w cos w sin -

über, und da hier die rechte Seite für w nß den Wert
2fl 71

annimmt und nur für
msin io sin — w to

— sin w cos —fi ß
d. h. für die der Grösse nach geordneten Lösungen

Un <^ to'" <[ -^r-fin,w m 0, 10" 7t

der beiden Gleichungen
10 tosin to 0, tg —- —fi fi

durch 1 hindurchgeht, liefert sie keinen Eigenwert im Intervall
0 z w <C n ¦ Dagegen liegt die kleinste positive Lösung

Die erste Beziehung (12), die demnach allein weiter
verfolgt werden muss, ergibt insbesondere für a 0

und damit nach (13) die bekannte Eulersche Knicklast
n*EJx

fc
l2

die dem — mit Rücksicht auf (9) allein möglichen —
Ausknicken in der (y, z)-Ebene entspricht. FUr a nß liefert
sie

fi-^, (f*<2), to. n, (jU>2)

und damit erwartungsgemäss die kritischen Lasten

n'EJy

bzw.

Pk

22

±n*EJx (Jy>iJx)
für das Ausknicken in der (x, z)- oder (y, z)-Ebene.

Umgekehrt folgt aus der ersten Beziehung (12) für io nß
cos -=— sin3 oe

2u 0:

der kleinste mögliche Wert nß wird demnach von iot nur
im soeben besprochenen Sonderfall a 0 sowie im ebenso
trivialen Falle ,« 1 gleicher Hauptträgheitsmomente
angenommen. Schliesst man beide aus, so kann man die Gleichung
mit den nunmehr von Null verschiedenen Grössen cos to,
sin wjfi und sin3 œ kürzen und durch die Beziehung

(14) / w) fl tg to ctg - ctg2 a

ersetzen, die übrigens für gegebene Werte oe und ,« im Intervall

(15) n
2

nur eine Lösung —j nämlich die gesuchte to, — aufweist.
Da nämlich infolge (15) tg io < 0 ist, kommen als Lösungen
von (14) nur solche in Frage, die gleichzeitig der Bedingung
ctg w[fi > 0 genügen und damit auch im Intervall

- I to n0 < — < -—x fi 2

liegen. FUr diese ist aber
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df _.
dw

mithin nach (14)

„ ctg a da

cos w sin io
>0,

cos3 io sin3 •

— >0,sin3 a dw —

also durchwegs
da
dw —

und damit tatsächlich to eine eindeutige Funktion von oc.

In BUd 2 ist die Beziehung (14) für verschiedene
Verhältnisse /i" > 1 ausgewertet, und zwar ist statt wt der
Faktor

2 io,(16) fc:

mit dem sich die Knicklast gemäss (13) in der Form
*EJX(17) fc3

23

ergibt, als Funktion von a aufgetragen. Die Kurven, die fttr
stumpfe Winkel a durch Spiegelung an der Endordinate
fortgesetzt werden könnten, steigen mit Ausnahme der Horizontalen

fi* 1 von oc 0 bis a nß monoton an und weisen
— von der Kurve fi" 4 abgesehen — an beiden Intervallgrenzen

horizontale Tangenten auf. Der gesamte Anstieg
geht von fc 1 für /# > 4 bis fc 2 und setzt umso rascher
ein, je grösser fi1 ist.

Das Kurvenbild zeigt insbesondere, dass das in der Praxis
übliche Verfahren, Zylindergelenke wie Kugelgelenke zu
behandeln, zwar zweifellos vorsichtig ist, aber den wirklichen
Verhältnissen kaum gereipt wird. Sind die Endlager derart
ausgebildet, dass sich die Axe der Lagerschale nicht aus der
Normalebene zur ursprünglich geraden Stabaxe herausdrehen
kann, so ist die wirkliche Knicklast bis viermal grösser als
der Üblicherweise verwendete Wert

_
n3 E i/mln

* P *

und zwar unterscheiden sich die beiden umso stärker
voneinander, je mehr sich der Winkel a zwischen der Lageraxe
und der Axe des kleineren Hauptträgheitsmomentes einem
rechten nähert.

Drehzahlregelung der Wasserturbinen
DK 621.24-531.6

Stellungnahme von Prof. Dr. G. Fabritz, Ravensburg
In seiner VeröffentUchung «Drehzahlregelung der

Wasserturbinen», SBZ 1947, Nr. 39 bis 41, betont Th. Stein im
Abschnitt VII «Reglerkatarakt ohne Rückführung» besonders
die Möglichkeit, auf die UbUche Rückführverbindung
(Steuerverbindung «b» in Bild 1) verzichten zu können. Hierzu möge
folgendes festgestellt werden:

Aus den fttr die Schwingungskreise bzw. deren Kopp¬
lung im einzelnen geltenden Gleichungen1)

(1) ßb£-C-tfgt-(Ti — t)

^¦w.ro. ¦-

^ù
r^fenni

un

Ti
0

mit ß0 als Uebersetzung der
Rückführverbindung «b»,

(2) <p — òr) + <pr (t; — Ç)

mit 6 der auf ymBX bezogenen
Statik des durch keinerlei
Verstellkräfte belasteten Pendels

^ 2/max
9>rund 2E

(C Charakteristik der
Kataraktfeder, E Stellkraft des
ruhenden Pendels),

[1/K] 2)

Steuerventilauslen-

(3)

mit a
kung,
(4)

w,
als

ßaß

Bild 1

') Fabritz, G.: Das Stabilitätsproblem

der selbsttätigen
Turbinenregelung, Wasserwirtschaft,
Wien 1928. Heft 21/22. — Die Regelung

der Kraftmaschinen, Springer,
Wien 1940. S. 354. S. 355 ff.

der Gleichung der SteuerVerbindung «a» (Uebersetzung ßa)

folgt die Steuergleichung des vervollständigten Systems
(Bild 1)

Ti~Ör(=+ lU, Ts'fi +(5)

+ lTi<prßb +TiVr
<fr

l)f. in, T,lfi + âßafi +

0,+ Ti9 +
welche sich wegen der bei einer Regelungsauslegung nach
modernen Gesichtspunkten bestehenden Beziehung Ti >>
», Ts >• 0 und damit berechtigten Vernachlässigung des

/f-GUedes sowie des additiven Gliedes Snt T, im /t-GUed in
der Form

(5a) [T;yr (ßb + ßa) + oßaTi1 'fl + aßafl + Ti'<f + f 0

darstellt. Kann somit bei kleinen bezogenen Schlusszeiten
n, Ts der Einfluss der Pendelstatik ô (bei ßa 0) vernachlässigt

werden1), zeigt Gl. (5a) die additive Wirkung der
Steuerverbindungen «a» und «b» und damit auch die
grundsätzliche Möglichkeit der etwaigen aUeinigen Anwendung der
Steuerverbindung «a».

Da jedoch bei einer Uebersetzung ßa > 0 und Wahl dieser
nach den Stabilitätserfordernissen die Regelung eine darnach
bestimmte und u. U. verhältnismässig hohe dauernde Statik
erhält, falls ô > 0 ist, wird auch die von Th. Stein
vorausgesetzte Astasie des Pendels notwendig. Eine (einstellbare)
Statik der Regelung musste dann etwa durch eine von der
ServomotorsteUung abhängig gemachte zusätzUche und
dauernde Belastung des Pendels herbeigeführt werden ; einfacher
wird jedoch dieser Forderung Rechnung getragen durch die
Praxis, der Steuerverbindung «b» die Stabilisierung, die
Einführung einer dauernden (einstellbaren) Statik der Regelung
jedoch der Steuerverbindung «a» zu übertragen — mit der
selbstverständlich notwendig werdenden Anwendung eines
statischen Pendels (rf>0). Dass diese — entgegen der bei
Ableitung der Steuergleichung (34) der Steinschen Abhandlung

gemachten Voraussetzung — auch Bedingung für die
Wirksamkeit der in Bild 5 (1947, S. 545) gezeigten Anordnung

zur Drehzahlverstellung im Alleinbetrieb ist, mag
erwähnt sein.

Die vorstehenden Feststellungen berühren in keiner Weise
den Wert der veröffentlichten Untersuchung über den
Einfluss der Selbstregelung bei Antrieb von Drehstromerzeugern
durch Wasserturbinen, wobei der überwiegende Einfluss der
mit der Gttte der Spannungsregelung und der Belastungsart
veränderlichen Charakteristik des Lastmomentes besondere

Berücksichtigung findet. Es bleibt jedoch zu ergänzen, dass

die aus der Voraussetzung n, T, ——> 0 folgende Unterdrük-
kung des in den vollständigen Stabilitätsbedingungen neben
dem Parameter der Selbstregelung auftretenden Parameters

H*Tr
n, T,

lllZ\
Ts/Kj J) ein unvoUständiges Bild vermit-

telt, nicht so sehr wegen des unter hydraulisch günstigen
Verhältnissen bestehenden Einflusses kleiner Werte von ,«0 x„
sondern weil die bewusste Anwendung längerer bezogener
Schlusszeiten zur Verbesserung der StabUität — etwa bei

-) [ ] in der Abhandlung von Th. Stein benützte Darstellungen.
ni m [1/K] setzt die zur Herbeiführung der maximalen Servomotor-

Geschwindigkeit notwendige Verstellung des Pendels ins Verhältnis
zu dessen wie für Gl. (1) bis (4) definiertem Hub ymm. «, ist jedoch für
eine bestimmte Uebersetzung zwischen Pendel und Steuerventil nicht
nur Funktion des D irchflusskoeffîzienten der jeweils steuernden
Ventilquerschnitte, sondern wird wesentlich mitbestimmt durch die
Druckspanne, die über den Arbeltsdruck hinaus zur Deckung der Ventilverluste

zur Verfügung steht. Damit wird nl auch abhängig von der
Ausnützung des Reglerarbeitsvermögens und Insbesondere von den für die
einzelnen Servomotorstellungen bestehenden unterschiedlichen
Regulierkräften. Diese Abhängigkeit ist bei Festlegung des jeweiligen n,-
Wertes zu beachten. Der Einfluss von Aenderungen der Druckspanne
auf M, 1st überdies verschieden, je nachdem ob es sich um Windkesseloder

Durchflussregler handelt.
Wirtschaftliche Erwägungen lassen die über dem höchsten Arbeitsdruck

zur Erzeugung derDurchströmgeschwindigkeitverfügbare Druckspanne

kaum über 1,6 bis 2 at wählen. Es kann ferner als Regel
gelten, dass die Einschaltung der vollen Servomotorgeschwindigkeit
entsprechend der konstruktionsgemäss vorgesehenen kürzesten Schlusszelt

bereits bei Drehzahlabweichungen von 1 bis 1,6 »/„, falls kurze
bezogene Schlusszeiten n, Tt angewendet werden sollen, erfolgt. Demnach

ergeben eich Werte von n, U.06 bis 0,1, unabhängig von der im
Einzelfalle durch Abbiendung der Servomotorleitungen herbeigeführten

effektiven Schlusszeit, s. Fussnote ').
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