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Die Knickung des verwundenen Stabes
Von Prof. Dr. HANS ZIEGLER, E.T. H., Zürich DK 539.384.4

1. Einleitung 624.075.22

In einer früheren Arbeit ') wurde festgestellt, dass die
Eigenwertaufgabe, auf die das Enickproblem des geraden
Stabes führt, im allgemeinen in zwei simultanen Differentialgleichungen

für die Ausbiegungen u (s), v (z) der elastischen
Linie und einer Anzahl von Randbedingungen besteht, welche
die Endwerte von m und v sowie deren Ableitungen
miteinander verknüpfen. Als Beispiel für den einfachen
Sonderfall, bei dem die abhängigen Veränderlichen nur durch die
Randbedingungen verkoppelt sind, wurde der prismatische,
beidseitig in — gegenüber den Querschnitthauptaxen
verdrehten — Zylindergelenken gelagerte Stab untersucht.

In der vorliegenden Arbeit soll nun ein anderer Sonderfall

behandelt werden, bei dem nicht die Randbedingungen,
sondern die Differentialgleichungen eine Koppelung von u
und v enthalten. Er wird durch den verwundenen Stab (BiM||pik.
verkörpert, d. h. durch einen geraden Balken, dessen
Querschnitte zwar gleiche Hauptträgheitsmomente, also etwa
kongruente Umrisse, im übrigen aber Hauptaxen besitzen, die je
Längeneinheit in Richtung der Stabaxe um den konstanten
Winkel m — den spezifischen Verwindungswinkel — verdreht
sind. Nimmt man an, dass dieser Winkel nicht zu gross, der
Spannungszustand mithin annähernd linear sei, so erhält
man, wenn man (Ziff. 2) von den Krümmungen ausgeht, für
die unter den kritischen Lasten auftretenden Ausbiegungen
u und v zwei simultane Differentialgleichungen, während die
Randbedingungen unter der weiteren Voraussetzung, dass der
Stab beidseitig in Kugelgelenken gelagert sei, je nur u oder
v enthalten.

Die Differentialgleichungen sind denjenigen gleichwertig,
die mit Hilfe der Kirchhoffschen Analogie2) erhalten würden ;

die Lösung des Eigenwertproblems (Ziff. 3) führt denn auch
auf eine transzendente Gleichung von ähnlichem Aufbau, wie
sie R. Grammel') mit diesem Verfahren für die Knickung
des gedrückten und tordierten Stabes aufgestellt hat. £jjüf|
Knicklast, die (Ziff. 4) aus ihr gewonnen wird, ist von der
Gesamtverwindung r abhängig und wächst vom Eulerschen
bis zu einem höheren, bei schlanken Profilen annähernd doppelt

so grossen Wert an, wobei der Hauptanstieg auf das
Intervall O^r <2n entfällt. Für die Praxis folgt hieraus,
dass sich die Knicksicherheit eines Stabes durch Verwindung
merklich erhöhen, bestenfalls aber verdoppeln lässt.

') ff. Ziegler, Die Knickung des schief gelagerten Stabes, SBZ 1948,
Nr. 7. S. 87.

") G. Kirchhoff, «Journ. f. Math.» 56 (1868), S. 285 ; A. E. H. Love,
Mathematical Theory of Elasticity, New York 1944, S. 381.

») R. Grammel, Das kritische Drillungsmoment von Wellen, «Z. a.
M. M.» 3 (1923), S. 262.
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Bild 2. Querschnitt des
deformierten Stabes

2. Das Eigenwertproblem
Bild 1 zeigt den verwundenen Stab, dessen Axe vertikal

und dessen Querschnitt beliebig sei, in seinem untersten
Teilstück. Dem Hauptaxenkreuz (x, y) des unteren Endquerschnittes

gegenüber, das mit der Stabaxe s zusammen das
Bezugsystem bildet, ist das Hauptaxensystem (1,2) eines
beliebigen Querschnittes um die Strecke z verschoben und
überdies um den Winkel
(1) t a)Z

verdreht, der im folgenden an Stelle von z als unabhängige
Veränderliche verwendet werden kann. Da der Stab in
Kugelgelenken gelagert ist, treten ausser den zentrischen
Druckkräften P keine Reaktionen auf.

Zwischen den Komponenten u, v und g, »; der Ausbiegung

im Hauptaxen- bzw. (x, y) -System bestehen nach Bild 2

die Beziehungen

(2) g MCOsf — usini, r) u sint -|- v cost.
Bei kleinen Verschiebungen, auf die man sich hier
beschränken darf, ist die Schmiegungsebene der elastischen
Linie an der Stelle z annähernd parallel zur z-Axe und möge
in der Ebene (1,2) die unter dem Winkel ô gegen die Axe 1

geneigte Spur s besitzen. Aus der Krümmung x der elastischen

Linie berechnen sich dann die Krümmungen ihrer
Projektionen auf die Ebenen (1, z), (2, z) zu

x, x cos 6, #2 * sin d,

diejenige ihrer Projektionen auf die Ebenen (x, z), (y, z) mit

tx x cos (ê -\- t) =xl cos t — *a sin t,
(3)

xy x sin (â -f- t) x, sin t -\- x3 coat.

¦ v

Die erstgenannten sind, wenn

(4) J, und Jt > J,

die Hauptträgheitsmomente des Stabes bezeichnen, durch die
Beziehungen

P P
„ u, x, _ _.
EJ2 * EJ1

mit den Verschiebungen u, v verknüpft; die anderen lassen
sich unter Benützung von (1) vermittelst

' dP
d3rj

(5)

(6)
dz3

d3rj
dz1

uH",

dt3
Cu" rj

durch die Ableitungen der Verschiebungskomponenten £, i\
ausdrücken.

Durch Elimination von £ und i; sowie der Krümmungen
aus (2), (3), (5) und (6) erhält man für u und v die
Differentialgleichungen

u" — 2V -J- (¦

u" + 2«' + (¦

BJ,w'
P

EJ,co*

— 1ÌM 0,

o,l\v

die mit den positiven Abkürzungen
P P

(7) I

(8)

Bild 1. Teilstück des
verwundenen Stabes

¦E/,0»8 ' EJ, <ua =^
auch in der Form

u" — 2v + (v — 1) m 0,
V" ¦+- 2m' + (fi — 1) v 0

angeschrieben werden können und noch durch die — mit der
Stablänge Z und dem totalen Verwindungswinkel
(9) z o>l

gebildeten — Randbedingungen
(10) M(0)=v(0)=0, »(r)=v(r)=0
zu ergänzen sind.

3. Lösung
Die allgemeinste Lösung des Systems (8) lautet
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(11)

Z>, («& cosa/, t -j- (5/c bj, sinodi),
fc l

2

v ^? bft cos oft t sin <n t)

und enthält vier Integrationskonstante «,,
rend a,a und ff„a die beiden Wurzeln

wäh-

(12) " + i" + 1-

i^Ms
(v — lH^ — i)

+ 2(v + /i)

der Frequenzengleichung
ö4 _ („ + ^ + 2) oa 4- (V — 1) (//

und die Grössen 8-,, S2 durch

(13) sk= ox'-e + i

D

(fc 1,2)
2o-Ä ö&a - v + 1

gegeben sind. Genau besehen besitzt die Frequenzengleichung
allerdings zwei Wurzelpaare er,, os und — tr,, — tf2, von denen
aber das zweite unberücksichtigt bleiben kann, da es infolge
(13) auf die gleiche Lösung (11) führt wie das erste. Ferner
folgt aus (12), dass von den verbleibenden Kreisfrequenzen
die eine ö, reell, die andere er2 reell oder imaginär ist. Da
aber mit <j2 allenfalls auch J, imaginär vWrd, bleiben die
Lösungen (11) auch in diesem Fall reell; sie lassen sich dann
freilich bequemer mitHilfe der Hyperbelfunktionen ausdrücken.

Die beiden ersten Randbedingungen (10) fordern
aa — ai. b2 — bi >

die beiden anderen alsdann

(coso, r — cosffaT)a, -|- (<?, sinter — d„ aiatftx) fc, 0,

-(-Lsinff,r--Lsinff2r)a, +

+ (COSff, T — costar) b, 0.
Eine von Null verschiedene, auch diesen Bedingungen
genügende Lösung existiert nur dann, wenn die Determinante
des letzten Systems verschwindet, mithin

(14) cosff,r coso-2r -f -^- l-j- + ~-\ sino",* sino2T 1

ist. Sie ist durch die Konstanten
cos ö, t — cos cr2 r

ât sin o, r — tf, sin a2 z
t i-—SMtf. T — SÌnO,T

_ &l ài
COS 0, T — COS tf2 X

gekennzeichnet und lautet

a,

(15)

COS ff, t — COS tf2 t —

COS ff, X — COS tf2 X

sina.Ô, sin o, x

COS ff. x

ô, sin ff, r sino.,
1

(o, sin tf, t — Sa sin tf31)

COS CT, t — COS ff, t) —

sin ö, t 4 —t- sino, t

Für einen Stab mit gegebenen Werten E, J,, Js, o> und
x wird durch die Beziehungen (7) nur das Verhältnis /i/v
festgelegt, während (i und damit auch P noch unbestimmt bleiben.

Die kritischen Lasten P„ ergeben sich dann vermittelst
(7) aus den Eigenwerten/in, d. h. aus denjenigen Werten^,
deren nach (12) und (13) berechnete Grössen o,, o-2, 6,, S3

der Bedingung (14) genügen. Der Umweg über diese Werte,
die sich nicht eliminieren lassen, gestaltet ihre Ermittlung
verhältnismässig umständlich.

Sind die Eigenwerte samt den zugehörigen Grössen (12)
und (13) bekannt, so liefert (15) die Eigenfunktionen, die
noch die freie Amplitude a, aufweisen. Es sind — in einem
(t,u, v)-Koordinatensystem aufgetragen — aus Kreis- oder
Hyperbelfunktionen zusammengesetzte Raumkurven, die aber

— da it und v die Verschiebungskomponenten im Hauptaxen-
system sind — erst nach Vornahme einer Verwindung a> die
elastischen Linien unter den kritischen Lasten darstellen.
4. Die Knicklast

Setzt man die beiden Hauptträgheitsmomente J, und J3

gleich J an, so liegt ein Stab vor, dessen Verwindung ohne
Einfluss auf die Knicklast bleiben muss. In der Tat erhält
man mit fi v aus (12) und (13)

ff^ 2 1/7 + 1 undö,;2= + l,
infolge (14) damit

cos (2 yVx) 1 oder j/j> n — (n 1, 2,

d. h. vermöge (7) und (9) die von x unabhängigen kritischen
Lasten

M2Jta EJl n"n2EJ

deren kleinste

um
die Knicklast darstellt. Ferner liefern die Beziehungen (15)
zwei Eigenfunktionen u und v, die durch (2) in die bekannten
sinusförmigen elastischen Linien übergeführt werden.

Sind die Hauptträgheitsmomente verschieden, und zwar
J, > J,, so kann man die Knicklast in der Form

(16) Pk fc jj-L-

anschreiben ; der Korrekturfaktor fc gibt dann den Einfluss
der Verwindung an. Man geht in diesem Falle zweckmässig
von zwei frei gewählten Werten v, fi mit

d?) _§_Ë_W______m
l ji

nach (7) also von einem festen Verhältnis der
Hauptträgheitsmomente und einer bestimmten Belastung

ni
(18) P fxEJ, u>3 lix3——

aus und ermittelt mit Hilfe von (12) und (13) die Grössen o,,
ff2, 3,, <$2. Diese ergeben — in (14) eingesetzt — diejenigen
VerwindungenT„, für die P P„ eine kritische Belastung
darstellt. Setzt man das kleinste so gewonnene % in (18) ein,
so erhält man die Knicklast oder durch Vergleich mit (16)
den Korrekturfaktor

(19) fc

Die Rechnung, durchgeführt für die Verhältnisse ß 1,
2, 5 zwischen den beiden Hauptträgheitsmomenten sowie für
den Grenzfall ß=oo, führt auf die Kurven von Bild 3, in denen
der Korrekturfaktor fc in Abhängigkeit von der Gesamtverwindung

x dargestellt Ist*). Er ist für ß 1 identisch 1 und
steigt für ß y. 1 mit r im grossen ganzen an, und zwar umso
stärker, je grösser ß ist. Dabei wird der Verlauf von fc für
ein gegebenes ß durch unendlich viele Bögen bestimmt, von
denen der erste etwas mehr als das Intervall 0<t^2ji
beherrscht, während die übrigen sich knapp oberhalb der Stellen
3 7t, 47t, ablösen. Diese Erscheinung erklärt sich damit,
dass die einigermassen ebene elastische Linie, mit der gerade
der stark verwundene Stab ausknickt, für einen Beobachter,
der sich mit dem Hauptaxensystem der «-Axe entlang
bewegt, schraubenförmige Gestalt und damit als Verallgemeinerung

derjenigen Form zu gelten hat, die der prismatische Stab
unter einer kritischen Last höherer Ordnung annehmen würde.
In diesem Sinne kann man den Uebergang vom »-ten Ast
des (r, fc)-Diagramms zum (n 4- l)-ten dahin deuten, dass

hier infolge der Verwindung die kritische Last (« + l)-ter
Ordnung diejenige der n-ten Ordnung unterschreitet.

Da die Knicklast eines Stabes mit gegebenen Werten E,
J,, Je, w beliebig klein werden muss, wenn seine Länge l und
mit ihr die Gesamtverwindung x über alle Grenzen wächst,
gehen fi und v m p\ß nach (18) und (17) mit wachsendem

t gegen Null. Gleichzeitig streben vermöge (12) die beiden
Wurzeln ff,', tf2a der Frequenzengleichung wie

l 4- V2 (l 4- ß) v

') Die numerische Ausrechnung erfolgte mit Unterstützung durch
die P. Bloch, A. Huber und W. Leutert.
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Bild 3. Verhältnis le zwischen der tatsächlichen und der
Eulerschen Knicklast in Abhängigkeit vom totalen Verwindungs-

J2winke! | und von der Schlankheit ß
Ji

des Querschnittes

gegen 1, mit ihnen infolge (13) auch 3, und S,

(14) kann daher für grosse Werte von r durch

cos (ff, — ff2) x cos (y2 (1 -f ß)~vx) 1

Gleichung

oder

2n
]/2(l + ß)v

ersetzt werden, so dass man nach (17) und (19) für den
Korrekturfaktor die asymptotische Näherung

*^
k

1.5

Iß

-

/

10 15 20 25 30 SS 10 US ß SO

Grenzwert E des Korrekturfaktors h für r —y to InBild 4,

Abhängigkeit von der Schlankheit des Querschnittes

(20) fc 2ß
1 + ß

erhält. Tatsächlich gehen die In Bild 3 dargestellten fc-Werte
mit zunehmendem | gegen 1, 4/a, 5/3 und 2. Bild 4 zeigt den
Verlauf von h(ß), d. h. den Grenzwert von fc, dem man bei
gegebenem ß durch Vergrösserung von x beliebig nahekommen

kann.
Für die Praxis ergibt sich aus diesen Ueberlegungen der

Schluss, dass die Knicklast eines Stabes durch Verwindung
erhöht werden kann, wobei der Hauptanstieg auf das Intervall

0 < x < 2jt entfällt und der Verbesserung, die sich durch
eine weitere Verstärkung der Verwindung erreichen lässt,
durch den vom Profil abhängigen Wert k < 2 eine obere
Grenze gesetzt ist.

Aus der schweizerischen Zementindustrie
Nach einem Vortrag von Dr. H. GYGI, Wildegg. gehalten am 11. Febr. 1948 im ZUrcher Ingenieur- und Architekten-Verein

DK 666.9(494)

(Schluss von Seite 458)

d) Der Drehofen mit elektrischer Heizung
Als sich nach dem Ausbruch des Krieges voraussehen

liess, dass die Versorgung unseres Landes mit guter Kohle
immer fraglicher wurde, nahm der Vortragende den Gedanken
auf, die Möglichkeiten der elektrischen Heizung des Zementofens

zu untersuchen. Dabei war ihm bekannt, dass schon
nach dem ersten Weltkrieg Versuche in dieser Richtung
durchgeführt worden waren, die leider aber ohne Ausnahme
fehlschlugen.

Das einzige Ofensystem, das Aussicht auf Erfolg haben
konnte, war der Drehofen, vorzugsweise nach dem
Trockenverfahren arbeitend, in Verbindung mit gut ausgebildeten
Wärmeaustauschern. Da beim Zementofen grosse Wärmemengen

teilweise bei sehr hohen Temperaturen übertragen
werden müssen, konnte als Wärmequelle ernstlich nur der
Lichtbogen in Frage kommen. Die klassische Gasführung
unter Verwendung von Luft im offenen Kreislauf war jedoch
nicht möglich, da sonst giftige Stickstoffoxyde in grossen
Mengen aus dem Schornstein austreten würden.

Diese Ueberlegungen führten den Sprechenden zu einem
Aufbau der Ofenanlage, ähnlich dem bereits beschriebenen
System. Auch hier sind die drei Hauptelemente: nämlich der
Vorwärmer, der Kalzinier- und Sinterofen und der Kühler
vorhanden. Zur Verformung des Rohmaterials dient wiederum
eine Granuliertrommel, da der Ofen wegen dem günstigeren
Wärmeverbrauch nach dem Trockenverfahren arbeiten wird.

Im Vergleich zu dem mit Kohle geheizten Ofen besteht
der Unterschied nun darin, dass bei der elektrischen Heizung
der Kalzinier- und Sinterofen im Gegensatz zu der bekannten
Bauart vom Vorwärmer getrennt ist. Ferner geht die
Gasführung nicht mehr im offenen Kreislauf vor sich, sondern
die gekühlten Abgase am Austritt des Vorwärmers werden
wiederum zur Kühlung des Klinkers verwendet und ln
Umgehung des Brennofens dem Vorwärmer zugeführt. Im
Gaskreislauf finden sich deshalb ausschliesslich Reaktionsgase,
also Kohlensäure und Wasserdampf, vor, wobei am Gasaustritt

des Vorwärmers pro Zeiteinheit diejenige Gasmenge in
den Schornstein entweicht, die in der gleichen Zeitspanne im
Ofen und Im Vorwärmer neu gebildet wird.

Am Ofenkopf sind an Stelle der Kohlenstaubdüse die
Elektrodenpaare angeordnet, wobei im Ofen die Wärme im
wesentlichen durch Strahlung übertragen wird, genau wie bei
der Kohlenfeuerung.

Eingehende Studien über den thermischen Wirkungsgrad
des nach dem Trockenverfahren arbeitenden Lichtbogenofens
in Verbindung mit reichlich dimensionierten Wärmeaustauschern

führten zum Ergebnis, dass der spezifische
Energieverbrauch bei 1,1 kWh/kg Klinker liegen muss. Unter
Zugrundelegung der Jahresproduktion der schweizerischen
Zementindu strie, die in den letzten Vorkriegsjähren rd. 600000 t
Klinker betrug, ergibt sich ein jährlicher Energiebedarf von
insgesamt 660 Mio kWb, entsprechend ungefähr 6,6 % der
gesamten schweizerischen Energieproduktion»

In Anbetracht dieser sehr grossen Energiemengen und
wegen dem entscheidenden Einfluss des Energiepreises auf
den Zementpreis dürfte es praktisch ausgeschlossen sein, dass
die schweizerische Zementindustrie je dazu kommen wird, die
gesamte, normale Jahresproduktion mit HUfe von elektrischer
Energie zu erbrennen. Sollte das Verfahren sich in der Praxis
als erfolgreich erweisen, wäre es jedoch möglich, einen Teil
dieser Produktion, schätzungsweise einen Drittel, unter
Verwendung von billiger Sommer-Energie zu erzeugen.

Ein Vergleich der beiden geschilderten Systeme lässt
erkennen, dass sich die elektrisch geheizte Ofenanlage ebenfalls

zur Heizung mit Kohlenstaub eignet. Zum Umstellen
muss bloss an Stelle der Elektroden die Kohlenstaubdüse
eingeführt und der geschlossene Gaskreislauf auf den offenen
umgestellt werden, was in kürzester Zeit, ohne Abkalten des
Ofens möglich 1st. Es handelt sich also hier im Grunde
genommen um einen Universal-Ofen,- der ebensogut elektrisch
wie mit Kohlenstaub geheizt werden kann. Aus diesem Grunde
dürfte sich dieser neuartige Ofen für schweizerische Verhältnisse

und wahrscheinlich auch In Oberitalien, In gewissen
Gegenden Frankreichs, sowie in anderen, an Kohle armen,
jedoch an Wasserkräften reichen Ländern-auch für die heutige

Zeit nach dem Kriege einführen, da derartige Oefen
jederzeit, auch kurzfristig, z. B. während der Nachtzeit,
erhebliche Mengen Ueberschuss-Energie aufnehmen können.

Um die praktische Brauchbarkelt der soeben geschilderten
Gedanken zu erproben, hat sich die Zementfabrik

Holderbank-Wildegg A.-G. im Sommer 1941 entschlossen, einen
semi-industriellen Versuchsofen mit einer Anschlussleistung
von 1000 kW aufzustellen. Aus Gründen der Sparsamkeit
wurde davon abgesehen, den Versuchsofen mit Wärmeaustauschern

auszustatten. Er weist einen Durchmesser von 2,50 m
auf und hat eine Länge von 8 m. Zur Speisung der Elektroden

wurde vorerst Drehstrom niederer Spannung verwendet,
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