Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 65 (1947)

Heft: 3

Artikel: Eine Erweiterung der technischen Biegungslehre

Autor: Ziegler, Hans

DOI: https://doi.org/10.5169/seals-55816

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

010

006 0,04

0,0

0.10

0.08 0,06

0,04

Beispiel.

Gegeben:

Holmquerschnitt H=22 cm, B=8 cm

Die grössten Momente betragen:

 $M_{\rm 1} = 300\,000$ kgcm, $M_{\rm 2} = 210\,000$ kgcm,

die Festigkeitswerte des Holzes: $\sigma_Z = 950 \text{ kg/cm}^2$, $\sigma_B = 830 \text{ kg/cm}^2$,

 $\sigma_D = 475 \text{ kg/cm}^2$,

d. h. $\sigma_Z/\sigma_D = 2$, $\sigma_B/\sigma_D = 1.75$.

Gesucht: Gurthöhen d_o und d_u .

Lösung: $M_1/M_2 = 300\,000/210\,000 = 1,43$

$$\frac{1}{\sigma_D} \frac{M_1}{B H^2} = \frac{300\,000}{475 \cdot 8 \cdot 484} = 0,163$$

Aus Bild 3 erhält man für den Schnittpunkt P dieser beiden Kurven die Werte:

$$\epsilon = 0.218$$
, $k = 0.670$.

Damit wird: $d_o = \varepsilon H = 0,218 \cdot 22 = 4,80$ cm,

$$d_u = \varepsilon H k = 4,80 \cdot 0,67 = 3,22 \text{ cm.}$$

Hinweise:

a) Wählt man einen symmetrischen Holm, so ist der Schnittpunkt der $M_1/B\,H^2$ -Kurve mit der Ordinate k = 1 zu nehmen;

b) Liegt der Schnittpunkt der $M_{\scriptscriptstyle 1}/M_{\scriptscriptstyle 2}$ - und M_1/BH^2 -Kurve unter der Grenzkurve σ_Z/σ_D , so nimmt man den Schnittpunkt der $M_{\mathrm{1}}/B\,H^{\mathrm{2}}\text{-Linie}$ mit der Grenzkurve.

Literaturverzeichnis:

handelt werden.

NACA Technical Reports No. 180, 181 und 187 Hütter, H.: «Dimensionierung von unsymmetrischen Holzholmen», Flugsport 1941, No. 1. Niles and Newell: «Airplane Structures», Vol. II, Seite

Niles and Newell: «Airplane Structures», Vol. 17, Bette 87, vgl. VFSF, Beilage 4, Blatt 11 des Eidg. Luftamtes. Gropp: «Beitrag zur Berechnung unsymmetrischer Holz-holme», Flugsport 1936, S. 120.

Etkin Bernard: «Chart for the Design of Wooden Spars», Aeronautical Sciences Vol. 13, No. 9, Sept. 1946.

Plath, E.: «Beitrag zur Vereinfachung statischer Rechnungen an Tragflügelholmen». ZFM; 19-9, nungen S. 555, 1930, S. 138.

Baranoff, A.: «Die Ermittlung des günstigsten Querschnitts eines auf Biegung beanspruchten Kastenholmes». ZFM; 1927, S. 81.

Prager, W.: «Ein neues Verfahren zur Bemessung auf Biegung beanspruchter Holzstäbe». SBZ Bd. 104, S. 201* (3. Nov. 1934).



K = 1,0 [SBZ] 0.7 Bild 3. Werte M_1/B H^2 und M_1/M_2 in Abhängigkeit von $k=d_a/d_\theta$ für $\sigma_B/\sigma_D=1.75$ und $\sigma_D = 1$.

0.6

Guérard, H.: «Ueber den Zusammenhang von Festigkeitsnachweis und Dimensionierung bei kasten- und I-förmigen Holzholmen und Angabe eines nomographischen Verfahrens». Jahrbuch der deutschen Luftfahrtforschung I, 1938, S. 461.

08

Eine Erweiterung der technischen Biegungslehre DK 539.384

Von Prof. Dr. HANS ZIEGLER, E. T. H., Zürich (Schluss von Seite 20)

4. Der prismatische Stab. Die in Abschnitt 2 bzw. 3 vollzogene — auch Grössen der Ordnung arepsilon einschliessende — Bestimmung der Spannungen σ_x , τ_{xz} und σ_z hat nur dann einen Sinn, wenn die in Wirklichkeit auch vorhandenen Spannungskomponenten σ_y , τ_{xy} , τ_{yz} mindestens von der Ordnung ε klein sind. Die Bedingungen dafür sind in Voraussetzung 4 (Abschn. 1) umschrieben; ihre exakte Formulierung würde eine besondere, vom räumlichen Spannungszustand ausgehende Untersuchung erfordern. Nun ist aber im praktisch wichtigsten Falle, nämlich beim Stab mit gleichbreiten Rechteckquerschnitten, der Spannungszustand hinreichend eben, sofern nur die Breite des Querschnittes genügend klein im Verhältnis zu seiner Höhe ist. Auf diesen Fall — und damit auf die Ergebnisse des Abschnittes 2 - soll sich die folgende Diskussion beschränken, und zwar soll hier vorerst der prismatische Stab und anschliessend in Abschnitt 5 der Balken mit schwach veränderlicher Höhe be-

Für den Stab ohne Anzug erhält man aus (21), (15), (8) und (24) die Formel (35). Alle ihre vier Ausdrücke unterscheiden sich von den elementaren Formeln — die man aus (7) mit $\varphi = 0$ enthält — in Zusatzgliedern der Grössenordnung e, die auf den unmittelbaren Einfluss der Belastung — sei es an den Rändern oder durch das Eigengewicht - zurückzuführen sind. Bemerkenswert ist dabei, dass in dieser Näherung eine Vertauschung von p_{zo} mit — $p_{z\,u}$ die Spannungskomponente σ_z und ein Austausch von p_{zo} oder

— p_{zu} mit $b\,h\gamma\,\cos\,\psi\,$ sowohl σ_z wie 1/arrho ändert. Im Gegensatz zur zweiten Näherung ist demnach hier ein Ersatz der zur Axe normalen Belastung längs des einen Randes durch eine statisch gleichwertige Belastung am anderen Rande nicht durchwegs gestattet; ebensowenig der Ersatz des Eigengewichtes durch eine aequivalente Oberflächenbelastung.

$$\begin{cases} \sigma_{x} = \frac{12}{b h^{2}} \frac{z}{h} M + \frac{1}{b h} Z + \\ + \frac{3}{5 b} \left(1 - \frac{20}{3} \frac{z^{2}}{h^{2}}\right) \frac{z}{h} \left(p_{zo} - p_{zu} + b h \gamma \cos \psi\right), \\ \tau_{xz} = -\frac{3}{2 b h} \left(1 - 4 \frac{z^{2}}{h^{2}}\right) Q - \frac{1}{4 b} \left(1 + 2 \frac{z}{h}\right). \\ \cdot \left(1 - 6 \frac{z}{h}\right) p_{xo} - \frac{1}{4 b} \left(1 - 2 \frac{z}{h}\right) \left(1 + 6 \frac{z}{h}\right) p_{xu}, \\ \sigma_{z} = -\frac{1}{2 b} \left(1 - \frac{z}{h}\right) \left(1 + 2 \frac{z}{h}\right)^{2} p_{zo} - \frac{1}{2 b} \left(1 + \frac{z}{h}\right). \\ \cdot \left(1 - 2 \frac{z}{h}\right)^{2} p_{zu} - \frac{1}{2} \left(1 - 4 \frac{z^{2}}{h^{2}}\right) \frac{z}{h} h \gamma \cos \psi, \\ \frac{1}{\varrho} = \frac{12}{E b h^{3}} M - \frac{1}{E b h} \left(\frac{12}{5} + \frac{3}{2 m}\right). \\ \cdot \left(p_{zo} - p_{zu}\right) - \frac{1}{E} \left(\frac{12}{5} + \frac{5}{2 m}\right) \gamma \cos \psi. \end{cases}$$

Nun ist das Problem des prismatischen Balkens unter der Annahme einer ebenen Spannungsverteilung durch Th. v. Karman 3) und F. Seewald 4) exakt gelöst worden, freilich

³⁾ Th. v. Karman, Ueber die Grundlagen der Balkentheorie, Abhandlung aus dem Aerodynamischen Institut an der Technischen Hochschule Aachen, Berlin 1927, S. 3.

unter Beschränkung auf die reine Biegung durch eine über den oberen Rand verteilte Belastung, anderseits aber ohne die hier verwendeten einschränkenden Voraussetzungen über die Art des Kraftangriffs. Damit besteht die Möglichkeit einer partiellen Ueberprüfung der Beziehungen (35), die für diesen Fall, d. h. mit

$$Z = 0, \quad p_{x\,o} = p_{x\,u} = 0, \quad p_{z\,u} = 0, \quad \gamma = 0$$
 in
$$\begin{cases} \sigma_x = \frac{12}{b\,h^2} \frac{z}{h}\,M + \frac{3}{5\,b} \left(1 - \frac{20}{3} \frac{z^2}{h^2}\right) \frac{z}{h}\,p_{z\,o} \\ \tau_{x\,z} = -\frac{3}{2\,b\,h} \left(1 - 4\frac{z^2}{h^2}\right)Q\,, \\ \sigma_z = -\frac{1}{2\,b} \left(1 - \frac{z}{h}\right) \left(1 + 2\frac{z}{h}\right)^2 p_{z\,o}\,, \\ \frac{1}{\varrho} = \frac{12}{E\,b\,h^3}\,M - \frac{1}{E\,b\,h} \left(\frac{12}{5} + \frac{3}{2\,m}\right)p_{z\,o} \end{cases}$$

übergehen. In der Tat stimmen — abgesehen davon, dass hier M, Q und ϱ in umgekehrtem Sinne positiv gerechnet werden — die letzte Beziehung mit der von Th. v. Karman 5) als Näherung angegebenen Krümmung und die drei ersten im wesentlichen mit den Ergebnissen überein, die aus den Formeln von F. Seewald 6) erhalten werden, wenn man die Ableitungen der Belastung nach x vernachlässigt.

Die Schubspannung au_{xz} hat noch den parabolischen Verlauf, wie er von der elementaren Theorie geliefert wird. Die zur Axe normale Druckspannung — σ_z fällt zwischen dem oberen und unteren Rand monoton vom Werte p_{zo}/b auf Null ab. Die axiale Normalspannung σ_x ist nicht mehr linear über den Querschnitt verteilt, sondern weist ein Korrekturglied auf, das auf zwei Einflüsse zurückzuführen ist. Erstens verwölben sich infolge der Veränderlichkeit der Querkraft zwei benachbarte Querschnitte verschieden und geben damit zu zusätzlichen Dehnungen in Richtung der Stabaxe Anlass; zweitens erzeugt die Druckspannung - oz axiale Querdehnungen. Es ist leicht einzusehen, dass sich in den äussersten Fasern die beiden Effekte beim einseitig eingespannten Stab in einem Spannungsabfall, beim beidseitig aufgelegten Balken dagegen in einem Anstieg auswirken müssen, so dass der Verlauf von σ_x im ersten Falle unter-, im zweiten überlinear ist. Auch die Krümmung enthält ein Zusatzglied, das gewöhnlich als Schubspannungskorrektur bezeichnet wird, in Wirklichkeit aber nicht auf die Schubspannungen schlechthin, sondern — wie Th. von Karman 7) gezeigt hat — auf ihre Aenderung mit x sowie auf die durch — σ_z erzeugte Querdehnung zurückgeht. Diese Korrektur, die an einem Sonderfalle erstmals von K. Pearson 8) nachgewiesen worden ist, ruft - wie wiederum leicht verifiziert werden kann — bei beidseitiger Auflage zwar eine Verstärkung der Krümmung, bei einseitiger Einspannung dagegen eine Verminderung derselben hervor; die Vergrösserung der Durchbiegung rührt im letztgenannten Falle davon her, dass die elastische Linie schon an der Einspannstelle eine Neigung besitzt. Dass diese zweite Möglichkeit gelegentlich verkannt worden ist, liegt offenbar an der unrichtigen Interpretation 9) der Formel von K. Pearson; diese bezieht sich nämlich nicht auf den eingespannten, sondern auf den beidseitig aufgelegten Stab.

Kehrt man, indem man die Grössen Z, p_{xo} , p_{xu} , p_{zu} und γ von Null verschieden annimmt, wieder zum allgemeineren Fall und damit zu den Beziehungen (35) zurück, so ist bei σ_x zunächst das bekannte, von der Zugkraft Z herrührende Zusatzglied anzubringen. Ferner treten bei σ_x , σ_z und $1/\varrho$ den schon in (36) enthaltenen, auf die Belastung p_{zo} zurückgehenden Zusatzgliedern entsprechende und leicht verständliche Korrekturen für die Belastung p_{zu} am gegenüberliegenden Rand und durch die zur Axe normale Komponente $b\,h\,\gamma\,\cos\psi$ des Eigengewichtes zur Seite. Schliesslich ist τ_{xz} durch zwei Spannungsverteilungen zu ergänzen, die von der axialen Belastung herrühren und von den Randwerten p_{xo}/b bzw. p_{xu}/b auf Null am anderen Rande abfallen.

5. Der Balken mit Anzug. Die Spannungsverteilung sowie die Krümmung der elastischen Linie werden für den Stab mit gleichbreiten, aber verschieden hohen Rechteckquerschnitten durch die Ausdrücke (21), (15), (18) und (24) gegeben. Sie enthalten neben den in Abschnitt 4 besprochenen weitere Korrekturen, die vom Anzug arphi sowie von seiner Aenderung mit x abhängen; das wichtigste davon — nämlich das einzige der Grössenordnung 1 — tritt als zweites Glied in der eckigen Klammer (15) auf und wird schon durch die zweite Näherung gegeben.

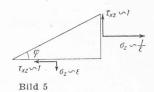
Beschränkt man sich - um nur die auf den Anzug zurückgehenden Korrekturen zu erhalten, mit

$$p_{zo} = p_{z\,u} = 0$$
 , $p_{x\,o} = p_{x\,u} = 0$, $\gamma = 0$

auf einen weder am Rande noch durch das Eigengewicht be-

auf einen weder am Rande noch durch das Eigengewicht belasteten Stababschnitt, so hat man
$$\begin{cases} \sigma_x = \frac{12}{b \, h^2} \left[1 + \frac{3}{5} \left(1 - \frac{20}{3} \, \frac{z^2}{h^2} \right) \left(4 \, \varphi^2 - \frac{h}{2} \, \frac{d \, \varphi}{d \, x} \right) \right] \frac{z}{h} M + \\ + \frac{1}{b \, h} \, Z + \frac{36}{5 \, b \, h} \left(1 - \frac{20}{3} \, \frac{z^2}{h^2} \right) \frac{z}{h} \, \varphi \, Q \,, \\ \tau_{x \, z} = - \, \frac{3}{2 \, b \, h} \left[\left(1 - 4 \, \frac{z^2}{h^2} \right) Q + 2 \left(1 - 12 \, \frac{z^2}{h^2} \right) \frac{\varphi}{h} M \right] + \\ + \frac{2}{b \, h} \, \frac{z}{h} \, \varphi \, Z \,, \\ \sigma_z = \frac{3}{b \, h^2} \left[\left(1 - 4 \, \frac{z^2}{h^2} \right) h \, \frac{d \, \varphi}{d \, x} - 4 \left(1 - 8 \, \frac{z^2}{h^2} \right) \varphi^2 \right] \frac{z}{h} \, M - \\ - \frac{6}{b \, h} \left(1 - 4 \, \frac{z^2}{h^2} \right) \frac{z}{h} \, \varphi \, Q \,, \\ \frac{1}{\varrho} = \frac{12}{E \, b \, h^3} \left[1 + \left(\frac{2}{5} - \frac{1}{m} \right) \varphi^2 + \left(\frac{2}{5} + \frac{1}{2 \, m} \right) \frac{h}{2} \, \frac{d \, \varphi}{d \, x} \right] M - \\ - \frac{12}{E \, b \, h^2} \left(\frac{2}{5} + \frac{1}{2 \, m} \right) \varphi \, Q \,. \end{cases}$$

Die Schubspannung τ_{xz} verläuft zwar noch parabolisch, verschwindet aber im Gegensatz zum prismatischen Stab am Rande nicht 10), sondern ist hier von der Grössenordnung 1, da sonst das in Bild 5 dargestellte Stabelement nicht im Gleichgewicht wäre. Mit au_{xz} muss aber — ebenfalls aus Gleichge-



wichtsgründen — auch eine zur Axe senkrechte Normalspannung $\sigma_z \sim \varepsilon$ auftreten. Die von die- $\sigma_z \sim \frac{1}{E}$ ser Normalspannung verursachte Querdehnung führt zusammen mit denjenigen axialen Dehnungen, die sich daraus ergeben, dass die Schubspannungs-Verteilung in be-

nachbarten (verschieden hohen) Querschnitten nicht übereinstimmt, diese sich mithin verschieden verwölben, auf Korrekturen der Grössenordnung ε auch für σ_x und $1/\varrho$. Dabei ist bemerkenswert, dass ox auch hier nicht mehr linear ist, und dass sowohl die Spannungsverteilung wie die Krümmung durch die Aenderung des Winkels φ mitbestimmt werden.

Von diesen Ergebnissen kann dasjenige für σ_x mit einer Formel verglichen werden, die von J. Résal 11) auf elementarem Wege erhalten worden ist. Dabei ergibt sich wenigstens in der Aussage Uebereinstimmung, dass der von der elementaren Biegungslehre (d. h. von der zweiten Näherung) gelieferte Wert einen Fehler der Grössenordnung $\varepsilon \varpropto \varphi^2 \sigma_x$ aufweist 12), der bei Balken mit stärkerem Anzug nicht mehr

⁴⁾ F. Seewald, Die Spannungen und Formänderungen von Balken mit rechteckigem Querschnitt, Abhandlung aus dem Aerodynamischen Institut an der Technischen Hochschule Aachen, Berlin 1927, S. 11.

⁵⁾ Th. v. Karman, a. a. O. S. 10.

⁶⁾ F. Seewald, a. a. O. S. 19. Die hier mit (8) bezeichneten Formeln enthalten allerdings einige offensichtliche Unrichtigkeiten. So weisen die mit p behafteten Glieder falsche Vorzeichen auf, wie man etwa anhand der Randbedingung σ_y (y=h)=-p leicht überprüft; ferner fehlt beim ersten Glied der dritten Beziehung ein Faktor $^{1}/_{2}$. -p leicht überprüft; ferner fehlt

⁷⁾ Th. v. Karman, a. a. O., S. 10.

⁸⁾ K. Pearson, On the Flexure of heavy Beams, Quarterly Journal of Math., Bd. 24, 1890, S. 96.

 $^{^9)}$ Z. B. bei $\it J.\,W.\,Geckeler,\,$ Elastostatik, Handbuch der Physik, Bd. 6, S. 176.

¹⁰⁾ Vgl. auch R. Bereuter, Experimentelle Untersuchungen der Spannungsverteilung in freiaufliegenden Balken. Publications du Labora-toire de photo-élasticité de la Chaire de Mécanique en langue française de l'E. P. F., Zürlch 1946.

¹¹⁾ J. Résal, Résistance des matériaux, Paris 1898, S. 404.

¹²) Dieser Fehler wird übrigens von Th. von Karman, Enc. d. math. Wiss., Bd. 4, S. 330, sowie von J. W. Geckeler, Handbuch der Physik, Bd. 6, S. 179, mit ε^2 ω $\varphi^3\sigma_X$ angegeben.

vernachlässigt werden darf. Die Beziehung von J. Résal liefert indessen nur einen Teil der notwendigen Korrektur, indem sie — ganz abgesehen davon, dass sie über τ_{xz} und σ_z nichts aussagt — den Beitrag von $d\varphi/dx$ nicht wiedergibt, aber auch bei konstantem Anzug noch auf die lineare Verteilung führt.

Zur Ueberprüfung der Resultate sei der in Bild 6 wiedergegebene, keilförmige, am freien Ende durch die Kräfte Z und Q belastete Balken betrachtet, für den sich aus (37) mit Rücksicht auf

Bild 6

$$M= Qx$$
 und $\varphi=\frac{h}{2x}=$ konst.

der Spannungszustand

(38)
$$\begin{cases} \sigma_x = -\frac{12 Q z}{b h^3 x} \left(x^2 - 2 z^2 + \frac{3}{10} h^2 \right) + \frac{Z}{b h}, \\ \tau_{xz} = -\frac{12 Q z^2}{b h^3} + \frac{Z z}{b h x}, \sigma_z = -\frac{12 Q z^3}{b h^3 x} \end{cases}$$

sowie die Krümmun

$$rac{1}{arrho} = - \, rac{12\,Q}{E\,b\,h^3\,x} \Big(x^2 + rac{3}{10}h^2 \Big)$$

der elastischen Linie ergibt. Der exakte Spannungszustand 13) lautet in diesem Falle

(39)
$$\begin{cases} \sigma_{x} = \frac{x^{2}}{b r^{4}} \left(\frac{Z x}{\varphi + \frac{1}{2} \sin 2 \varphi} - \frac{Q z}{\varphi - \frac{1}{2} \sin 2 \varphi} \right), \\ \tau_{xz} = \frac{z}{x} \sigma_{x}, \sigma_{z} = \frac{z^{2}}{x^{2}} \sigma_{x} \end{cases}$$

und geht bei Entwicklung nach Potenzen von z/x bzw. h/2xunter Vernachlässigung von Gliedern zweiter und höherer Ordnung in der Tat in (38) über, während die Formel von J. Résal - für diesen Fall angeschrieben und entsprechend behandelt - auf

$$\sigma_x = -\frac{12 \, Q \, z}{b \, h^3 \, x} \left(x^2 + \frac{3}{20} h^2 \right)$$

führt und damit die elementare Beziehung nur teilweise verbessert.

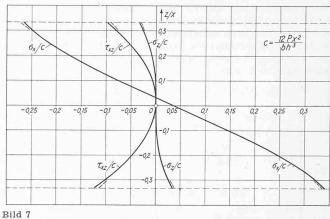
In Bild 7 sind die Spannungsverteilungen (38) für den keilförmigen Balken numerisch ausgewertet, und zwar mit

$$\frac{h}{2x} = \frac{1}{3}$$
 und $Z = Q = P$

für einen verhältnismässig grossen Anzug sowie eine unter 45° geneigte Einzelkraft am linken Ende. Die auf

$$c = \frac{12 P x^2}{b h^3}$$

bezogenen Spannungen



$$rac{\sigma_x}{c} = rac{1}{27} - rac{17}{15} rac{z}{x} + 2 rac{z^2}{x^2}, \quad rac{ au_{x\,z}}{c} = rac{1}{27} rac{z}{x} - rac{z^2}{x^2},
onumber \ rac{\sigma_z}{c} = -rac{z^3}{x^3}$$

sind nur von $z/x=\operatorname{tg} \vartheta$ abhängig und können daher für alle Schnitte gleichzeitig aufgetragen werden. Im Unterschied zur zweiten Näherung 14), die der richtig angewendeten elementaren Theorie entspricht, ist der Verlauf von or (infolge des Anzuges) merklich unterlinear, derjenige von τ_{xz} (mit Rücksicht auf den Einfluss der Zugkraft) nicht mehr symmetrisch zur x-Axe und σ_z (wiederum infolge des Anzuges) von Null verschieden; die Schubspannungsverteilung unterscheidet sich (wie schon in der zweiten Näherung) grundsätzlich von derjenigen des prismatischen Balkens.

Die gewonnenen Näherungen weichen nur an den Rändern merklich von den exakten Werten ab, deren Verteilungen 15) in Bild 7 gestrichelt angedeutet sind. Die wahren Höchstwerte von σ_x , τ_{xz} und σ_z verhalten sich — vom Vorzeichen abgesehen — wie $3:1:\frac{1}{3}$ und bestätigen mit Rücksicht darauf, dass hier

$$\varepsilon = \frac{h}{2x} = \frac{1}{3}$$

zu setzen ist, dass τ_{xz} von der Ordnung $1 \circ \epsilon \sigma_x$ und $\sigma_z \circ \sigma_x$ $\varepsilon \smile \varepsilon^2 \sigma_x$ ist. Der grösste Fehler beträgt — auf den Höchstwert von σ_x bezogen — 2,24 $^0/_0$ für σ_x , 3,10 $^0/_0$ für τ_{xz} und 1,06 $^{\circ}/_{\circ}$ für σ_z und ist damit erwartungsgemäss von der Grössenordnung $\epsilon^3 \sigma_x$, während die entsprechenden Werte im Falle der zweiten Näherung

$$\frac{\sigma_x}{c} = \frac{1}{27} - \frac{z}{x}, \ \frac{\tau_{x\,z}}{c} = -\,\frac{z^2}{x^2}, \ \frac{\sigma_z}{c} = 0$$
 der Reihe nach 9,33 $^{\text{0}}/_{\text{0}}$, 5,79 $^{\text{0}}/_{\text{0}}$ und 11,11 $^{\text{0}}/_{\text{0}}$, im Falle der

$$\frac{\sigma_x}{c} = -\frac{z}{x}$$
, $\frac{\tau_{xz}}{c} = 0$, $\frac{\sigma_z}{c} = 0$

17,4 $^{\rm 0}/_{\rm 0}$, 33,3 $^{\rm 0}/_{\rm 0}$ und 11,1 $^{\rm 0}/_{\rm 0}$ betragen und damit von den Ordnungen $\epsilon^2\sigma_x$ bzw. $\epsilon\,\sigma_x$ sind.

14) Vgl. H. Ziegler, a. a. O., S. 190.

Umbau der Landquartbrücke der Rhätischen Bahn in Klosters

DK 624.21.012.4.00467

III. Technische Einzelheiten der Rekonstruktion Von Ing. L. MEISSER, Genf (Schluss von S. 24)

Aus den vorangehenden Abschnitten geht hervor, dass alles aufzubieten war, um eine weitere Verschiebung des linksufrigen Brückenkopfes, d. h. der Konstruktionselemente gegen die Talsohle hin zu unterbinden, indem eine fortschreitende Verlagerung der Fundamente in absehbarer Zeit einerseits zur Zerstörung des Verbandes zwischen den Stützenköpfen der Anschlussöffnungen mit den Fahrbahnträgern und anderseits sogar zu einem Zusammenquetschen des versteiften Stabbogens führen musste. Die Behebung dieser Gefahr bedingte eine weitgehende Entlastung der betreffenden Konstruktionsteile vom passiven Erddruck und die gegenseitige Aussteifung der Fundationen, bzw. deren Loslösung von der aufgehenden Konstruktion (Bild 21).

Die letztgenannte Massnahme kam für das als Bremsbock ausgebildete Endauflager, Seite Davos, in Betracht

(siehe Längsschnitt I). Dieses musste also aus seiner starren Verbindung gelöst und als Gleitlager (2) ausgebildet werden. Auf die Wirkung des Bremsbockes als solcher durfte aus dem Grunde verzichtet werden, weil die Fahrbahntafel der Anschlussöffnungen links infolge des in der Längsaxe wirkenden Druckes stets satt an die Hauptöffnung angepresst wird.

Bei der konstruktiven Durchbildung des Gleitlagers war zu berücksichtigen, dass sich nicht nur horizontale, sondern auch vertikale Verschiebungen einstellen können. Dementsprechend konstruierte man dieses Lager so, dass es einerseits als Gleitlager die Wirkung der horizontalen Bodenbewegungen unschädlich macht, und dass anderseits Hebungen oder Senkungen des Geländes durch Lösen bzw. Nachschlagen von eisernen Keilen ausgeglichen werden können. Praktisch dürfte es sich freilich nur um Senkungen handeln, deren Auftreten durch periodisch vorzunehmende Kontrollen festgestellt und entsprechend korrigiert werden müssen. Zum Schutze

¹⁸⁾ Vgl. auch H. Ziegler, a. a. O., S. 190.

¹⁵⁾ Ihre Berechnung verdanke ich W. Leutert, der auch die allgemeinen Näherungsformeln für τ_{xz} und σ_z auf anderem Wege abge-