Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 65 (1947)

Heft: 3

Artikel: Dimensionierung von unsymmetrischen Holzholmen

Autor: Dubs, F.

DOI: https://doi.org/10.5169/seals-55815

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Dimensionierung von unsymmetrischen Holzholmen

Von Flug-Ing. F. DUBS, Zürich

In der Zeitschrift «Flugsport» Nr. 1/1941, Bd. 33 erschien seinerzeit ein Artikel von Dipl. Ing. Wolfgang Hütter über das Dimensionieren von unsymmetrischen Holzholmen. Eine Nachrechnung der dort angegebenen Gleichungen und Formeln ergab jedoch einige Unstimmigkeiten. Da das völlig neuartige Verfahren die Ermittlung der optimalen Querschnittsabmessungen mit minimalem Zeitaufwand ermöglicht, sei es hier in teilweise neuer Fassung wiedergegeben.

Als Grundlage für die Erläuterung des Verfahrens dient in Holmquerschniett nach Bild 1.

Zeichenerklärung:

H = Holmhöhe[cm]

B = Holmbreite [cm]

 $d_o = \text{Dicke des Obergurtes [cm]}$

 $d_u =$ Dicke des Untergurtes [cm]

 $e_0 = \text{Abstand Neutralaxe} - \text{oberste}$ Faser [cm]

 $e_u = { t Abstand Neutralaxe} - { t unterste}$

Faser [cm]

σ_o = Grösste Spannung im Obergurt

querschnitt

Bild 1. Holm-

do

[kg/cm²]

σ_u = Grösste Spannung im Untergurt [kg/cm²]

 $\sigma_b = ext{Bruchbiegefestigkeit des betrachteten Holmquerschnitts}$ [kg/cm²]

 $\sigma_D = Bruchdruckspannung [kg/cm^2]$

 $\sigma_Z = Bruchzugspannung [kg/cm^2]$

 $\sigma_B = Bruchbiegespannung für vollen Rechteckquerschnitt$ [kg/cm²]

 $J = \text{Trägheitsmoment des Holmquerschnitts} [\text{cm}^4]$

 $M_1 =$ Grösstes positives Moment (beansprucht Obergurt auf Druck) [kgcm]

 $M_2 = ext{Gr\"{o}sstes}$ negatives Moment (beansprucht Untergurt auf Zug) [kgcm]

Gleichzeitig wird vorausgesetzt, dass der absolute Betrag des grössten positiven Momentes den des grössten negativen übersteigt, dass also

$$|M_1| > |M_2|$$

Im Gegenfalle ist einfach der Obergurt als Untergurt anzusehen und umgekehrt.

Für den oben angegebenen Holmquerschnitt beträgt das Trägheitsmoment:

$$J = \frac{B}{3} \left[e_o^3 + e_u^3 - (e_o - d_o)^3 - (e_u - d_u)^3 \right] \text{ [cm}^4]$$

Führt man nun ein:

$$arepsilon \equiv d_o/H$$
 und $k \equiv d_u/d_o$

so wird:

$$d_o = \varepsilon H, \ d_u = \varepsilon k H$$

$$e_o = rac{H\left[2k + arepsilon\left(1-k^2
ight)
ight]}{2\left(1+k
ight)} \; ext{[cm]}$$

$$e_u = rac{H \left[2 - arepsilon \left(1 - k^2
ight)
ight]}{2 \left(1 + k
ight)} \; ext{[cm]}$$

Werden nun in J die Ausdrücke für d_o , d_u , e_o und e_u eingesetzt, so wird:

$$J = B \, H^3 \Big\{ rac{arepsilon^2}{3} (1 + k^3) \, + \,$$

$$\theta \equiv BH^{\epsilon}\left\{\frac{1}{3}(1+k^{\epsilon})+\frac{\epsilon}{2}\left[\frac{k}{1+k}-\left(\frac{\epsilon}{2}\right)^{2}(1-k^{2})(1-k)-k\epsilon\right]\right\} \text{ [cm}^{4}]$$
Weiterhin ist:

$$M_{\scriptscriptstyle 1} = \sigma_{o} rac{J}{e_{o}}$$
 , $M_{\scriptscriptstyle 2} = \sigma_{u} rac{J}{e_{u}}$

Werden die Werte für J und e_o in die Gleichung für M_1

$$egin{split} rac{M_1}{BH^2} = & \sigma_o \, rac{2\,(1+k)}{2\,k+arepsilon\,(1-k^2)} \left\{rac{arepsilon^3}{3}\,(1+k^3)
ight. + & \left. + arepsilon \left[rac{k}{1+k} - \left(rac{arepsilon}{2}
ight)^2\,(1-k^2)\,(1-k) - k\,arepsilon
ight.
ight]
ight\} \end{split}$$

Ausserdem ist:

$$\frac{\mathit{M}_{1}}{\mathit{M}_{2}} = \frac{\mathit{\sigma_{o}}\,\mathit{e}_{u}}{\mathit{\sigma_{u}}\,\mathit{e}_{o}} = \frac{\mathit{\sigma_{o}}\,[2\,-\,\varepsilon\,(1\,-\,k^{2})\,]}{\mathit{\sigma_{u}}\,[2\,k\,+\,\varepsilon\,(1\,-\,k^{2})\,]}$$

Die Stützwirkung der innenliegenden geringer beanspruchten Druckfasern gegenüber den äusseren Fasern wird auf Grund der Versuche von Newlin und Trayer, NACA Technical Report 181 berücksichtigt. Diese Schrift gibt für einen symmetrischen Holm die Bruchbiegefestigkeit oh bei gegebenem Verhältnis Gurtstärke zu Holmhöhe. Ausserdem muss für das betreffende Holz die Druck- und Biegebruchfestigkeit für einen vollen Rechteckquerschnitt bekannt sein. Wird an Stelle eines symmetrischen ein unsymmetrischer Querschnitt gewählt, so tritt an Stelle des Verhältnisses Gurtstärke zu Holmhöhe das Verhältnis Gurtstärke zum doppelten Abstand der äussersten Druckfaser von der Neutralaxe. In Bild 2 ist der Verlauf des Wertes σ_b/σ_D über d/2e für zwei Verhältnisse σ_B/σ_D eingetragen. Unter Zugrundelegung eines bestimmten Verhältnisses σ_B/σ_D ist somit die Bruchbiegespannung σ_b im Druckgurt eine Funktion von d/2e.

Anmerkung:

- a) Bei normalen Holmabmessungen tritt der Bruch immer im Druckgurt durch Knicken der Holzfasern ein (nichtschraffierter Bereich in Bild 3).
- b) Die Bruchbiegefestigkeit im Zug-Gurt entspricht der Zugbruchfestigkeit σ_Z .

Mit ε und h lässt sich der Wert d/2e wie folgt ausdrücken:

$$\frac{d_o}{2\,e_o} = \frac{(1+k)\,\varepsilon}{2\,k + \varepsilon\,(1-k^2)} \;\; \text{bzw.} \; \frac{d_u}{2\,e_u} = \frac{(1+k)\,\varepsilon\,k}{2 - \varepsilon\,(1-k^2)}$$

- a) Begrenzungslinie für Vollholm. Wird $\varepsilon + \varepsilon \, k = 1$ so ist $d_o + d_u = H$, d. h. die beiden Gurten ergeben zusammen die volle Holmhöhe.
- b) Begrenzungslinie, für die sich die Zugbeanspruchung im Untergurt der Bruchgrenze nähert. Der Bruch tritt in diesem Fall im Zug-Gurt ein (schraffierter Teil unten links

$$\sigma_u = \sigma_Z = M_1 \, e_u/J = \sigma_o \, e_u/e_o$$

$$\sigma_u = \sigma_o \, rac{2 - arepsilon \, (1 - k^2)}{2 \, k + arepsilon \, (1 - k^2)} \, \, [\, \mathrm{kg/cm^2}]$$

In Bild 3 sind die Kurvenscharen für $M_{\scriptscriptstyle 1}/B\,H^{\scriptscriptstyle 2}$ und $M_{\scriptscriptstyle 1}/M_{\scriptscriptstyle 2}$ für das Verhältnis $\sigma_B/\sigma_D=1,75$ zusammengestellt. Die Druckfestigkeit σ_D ist gleich 1 gesetzt. Bei der Verwendung des Kurvenblattes ist daher der Wert M_1/BH^2 noch mit dem Faktor 1/oD zu multiplizieren, um die effektive Druckfestigkeit zu berücksichtigen. Verfolgt man die M_1/B H^2 -Linien, so stellt man fest, dass bei einem unsymmetrischen Holm nicht nur der Unter- sondern auch der Obergurt gegenüber dem symmetrischen Holm kleiner werden kann.

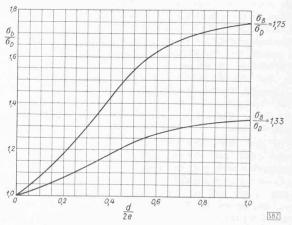


Bild 2. Werte σ_b/σ_D in Abhängigkeit von d/2e

010

006 0,04

0,0

0.10

0.08 0,06

0,04

Beispiel.

Gegeben:

Holmquerschnitt H=22 cm, B=8 cm

Die grössten Momente betragen:

 $M_{\rm 1} = 300\,000$ kgcm, $M_{\rm 2} = 210\,000$ kgcm,

die Festigkeitswerte des Holzes: $\sigma_Z = 950 \text{ kg/cm}^2$, $\sigma_B = 830 \text{ kg/cm}^2$,

 $\sigma_D = 475 \text{ kg/cm}^2$,

d. h. $\sigma_Z/\sigma_D = 2$, $\sigma_B/\sigma_D = 1.75$.

Gesucht: Gurthöhen d_o und d_u .

Lösung: $M_1/M_2 = 300\,000/210\,000 = 1,43$

$$\frac{1}{\sigma_D} \frac{M_1}{B H^2} = \frac{300\,000}{475 \cdot 8 \cdot 484} = 0,163$$

Aus Bild 3 erhält man für den Schnittpunkt P dieser beiden Kurven die Werte:

$$\epsilon = 0.218$$
, $k = 0.670$.

Damit wird: $d_o = \varepsilon H = 0,218 \cdot 22 = 4,80$ cm,

$$d_u = \varepsilon H k = 4,80 \cdot 0,67 = 3,22 \text{ cm.}$$

Hinweise:

a) Wählt man einen symmetrischen Holm, so ist der Schnittpunkt der $M_1/B\,H^2$ -Kurve mit der Ordinate k = 1 zu nehmen;

b) Liegt der Schnittpunkt der $M_{\scriptscriptstyle 1}/M_{\scriptscriptstyle 2}$ - und M_1/BH^2 -Kurve unter der Grenzkurve σ_Z/σ_D , so nimmt man den Schnittpunkt der $M_{\mathrm{1}}/B\,H^{\mathrm{2}}\text{-Linie}$ mit der Grenzkurve.

Literaturverzeichnis:

handelt werden.

NACA Technical Reports No. 180, 181 und 187 Hütter, H.: «Dimensionierung von unsymmetrischen Holzholmen», Flugsport 1941, No. 1. Niles and Newell: «Airplane Structures», Vol. II, Seite

Niles and Newell: «Airplane Structures», Vol. 17, Bette 87, vgl. VFSF, Beilage 4, Blatt 11 des Eidg. Luftamtes. Gropp: «Beitrag zur Berechnung unsymmetrischer Holz-holme», Flugsport 1936, S. 120.

Etkin Bernard: «Chart for the Design of Wooden Spars», Aeronautical Sciences Vol. 13, No. 9, Sept. 1946.

Plath, E.: «Beitrag zur Vereinfachung statischer Rechnungen an Tragflügelholmen». ZFM; 19-9, nungen S. 555, 1930, S. 138.

Baranoff, A.: «Die Ermittlung des günstigsten Querschnitts eines auf Biegung beanspruchten Kastenholmes». ZFM; 1927, S. 81.

Prager, W.: «Ein neues Verfahren zur Bemessung auf Biegung beanspruchter Holzstäbe». SBZ Bd. 104, S. 201* (3. Nov. 1934).



K = 1,0 [SBZ] 0.7 Bild 3. Werte M_1/B H^2 und M_1/M_2 in Abhängigkeit von $k=d_a/d_\theta$ für $\sigma_B/\sigma_D=1.75$ und $\sigma_D = 1$.

0.6

Guérard, H.: «Ueber den Zusammenhang von Festigkeitsnachweis und Dimensionierung bei kasten- und I-förmigen Holzholmen und Angabe eines nomographischen Verfahrens». Jahrbuch der deutschen Luftfahrtforschung I, 1938, S. 461.

08

Eine Erweiterung der technischen Biegungslehre DK 539.384

Von Prof. Dr. HANS ZIEGLER, E. T. H., Zürich (Schluss von Seite 20)

4. Der prismatische Stab. Die in Abschnitt 2 bzw. 3 vollzogene — auch Grössen der Ordnung arepsilon einschliessende — Bestimmung der Spannungen σ_x , τ_{xz} und σ_z hat nur dann einen Sinn, wenn die in Wirklichkeit auch vorhandenen Spannungskomponenten σ_y , τ_{xy} , τ_{yz} mindestens von der Ordnung ε klein sind. Die Bedingungen dafür sind in Voraussetzung 4 (Abschn. 1) umschrieben; ihre exakte Formulierung würde eine besondere, vom räumlichen Spannungszustand ausgehende Untersuchung erfordern. Nun ist aber im praktisch wichtigsten Falle, nämlich beim Stab mit gleichbreiten Rechteckquerschnitten, der Spannungszustand hinreichend eben, sofern nur die Breite des Querschnittes genügend klein im Verhältnis zu seiner Höhe ist. Auf diesen Fall — und damit auf die Ergebnisse des Abschnittes 2 - soll sich die folgende Diskussion beschränken, und zwar soll hier vorerst der prismatische Stab und anschliessend in Abschnitt 5 der Balken mit schwach veränderlicher Höhe be-

Für den Stab ohne Anzug erhält man aus (21), (15), (8) und (24) die Formel (35). Alle ihre vier Ausdrücke unterscheiden sich von den elementaren Formeln — die man aus (7) mit $\varphi = 0$ enthält — in Zusatzgliedern der Grössenordnung e, die auf den unmittelbaren Einfluss der Belastung — sei es an den Rändern oder durch das Eigengewicht - zurückzuführen sind. Bemerkenswert ist dabei, dass in dieser Näherung eine Vertauschung von p_{zo} mit — $p_{z\,u}$ die Spannungskomponente σ_z und ein Austausch von p_{zo} oder

— p_{zu} mit $b\,h\gamma\,\cos\,\psi\,$ sowohl σ_z wie 1/arrho ändert. Im Gegensatz zur zweiten Näherung ist demnach hier ein Ersatz der zur Axe normalen Belastung längs des einen Randes durch eine statisch gleichwertige Belastung am anderen Rande nicht durchwegs gestattet; ebensowenig der Ersatz des Eigengewichtes durch eine aequivalente Oberflächenbelastung.

$$\begin{cases} \sigma_{x} = \frac{12}{b h^{2}} \frac{z}{h} M + \frac{1}{b h} Z + \\ + \frac{3}{5 b} \left(1 - \frac{20}{3} \frac{z^{2}}{h^{2}}\right) \frac{z}{h} \left(p_{zo} - p_{zu} + b h \gamma \cos \psi\right), \\ \tau_{xz} = -\frac{3}{2 b h} \left(1 - 4 \frac{z^{2}}{h^{2}}\right) Q - \frac{1}{4 b} \left(1 + 2 \frac{z}{h}\right). \\ \cdot \left(1 - 6 \frac{z}{h}\right) p_{xo} - \frac{1}{4 b} \left(1 - 2 \frac{z}{h}\right) \left(1 + 6 \frac{z}{h}\right) p_{xu}, \\ \sigma_{z} = -\frac{1}{2 b} \left(1 - \frac{z}{h}\right) \left(1 + 2 \frac{z}{h}\right)^{2} p_{zo} - \frac{1}{2 b} \left(1 + \frac{z}{h}\right). \\ \cdot \left(1 - 2 \frac{z}{h}\right)^{2} p_{zu} - \frac{1}{2} \left(1 - 4 \frac{z^{2}}{h^{2}}\right) \frac{z}{h} h \gamma \cos \psi, \\ \frac{1}{\varrho} = \frac{12}{E b h^{3}} M - \frac{1}{E b h} \left(\frac{12}{5} + \frac{3}{2 m}\right). \\ \cdot \left(p_{zo} - p_{zu}\right) - \frac{1}{E} \left(\frac{12}{5} + \frac{5}{2 m}\right) \gamma \cos \psi. \end{cases}$$

Nun ist das Problem des prismatischen Balkens unter der Annahme einer ebenen Spannungsverteilung durch Th. v. Karman 3) und F. Seewald 4) exakt gelöst worden, freilich

³⁾ Th. v. Karman, Ueber die Grundlagen der Balkentheorie, Abhandlung aus dem Aerodynamischen Institut an der Technischen Hochschule Aachen, Berlin 1927, S. 3.