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Knickstabilität dk 624.075.2

Einfluss der Einspannungsverhältnisse bei zentrischer
Belastung
Von Ing. Dr. J. SgtUNNER, EMPA, Zürich

[Wir verweisen auf die einleitende Bemerkung beim
Artikel «Knickstabilität», SBZ. Bd. 123, S. 247* vom 20. Mai
1944, und führen hier ein weiteres Kapitel an.]

Den Untersuchungen legen wir meistens Stäbe zugrunde,
die an beiden Enden als gelenkig gelagert vorausgesetzt werden.

Das fundamentale Problem der elastischen Stabilität
ist die Bestimmung der Knickfestigkeit des geraden Stabes
mit konstantem Querschnitt. Auf diesen theoretisch klaren
Fall lassen sich nun auch fest oder teilweise eingespannte
Stäbe zurückführen.

Um die Einspannungsgrösse g zu definieren, denken wir
uns den Stab aus seiner Einspannung gelöst und ihn
beidseitig gelenkig gelagert. Dann bringen wir am zu betrachtenden

Stabende ein Moment 1 1 an und berechnen den
Drehwinkel qpstab. Ebenso bringen wir dieses Moment M 1

am Auflager an. Das Verhältnis des Drehwinkels des
Stabendes zum Drehwinkel des Lagers, den dieses Moment erzeugt,
nennen wir die Einspannungsgrösse:

9 <PsI<Pl
Ist die Lagerpartie starr, so wird ç>t=0, also die

Einspannungsgrösse g co; ist das Lager ein Gelenk, so ist
a>L= oo, d. h. unbeschränkt beweglich, somit die Einspannungsgrösse

g 0.
Weisen sowohl Stab wie Einspannungsstelle für ein

Moment den gleichen Drehwinkel auf, so ist die Einspannungs¬
grösse g 1. Die Ein-
spannungs - Verhältnisse
sind bei Ueberschreiten
der Elastizitätsgrenze
durch Rekursion zu
bestimmen. Bei der Definition

der Einspannungsgrösse

wurdeWert darauf
gelegt, dass mit dem
Begriff g eine anschauliche
Vorstellung verbunden
werden kann.

Als Endergebnis dieses
Kapitels stellen wir in
den Bildern 6 u. 7 S. 380)
den Wert l0/l als Punktion

der Einspannungsgrösse

g dar. Z0 ist die
Stablänge zwischen den
Wendepunkten, die für
die Knicklast massgebend
ist ; l bezeichnet die ganze
Stablänge zwischen den
Lagern. Der Wert IJl
wird dabei für folgende

fur ehe virhelle Auslegung
stellt sich marhemat. eine
Sinuswelle ein

Abstand der
Wendepunkte
festgehalten

0/e Tragkraft des Besamt-

Stabes Ist gleich der Tragkr.
des l„-ßooens

Bild 1. Beidseitig starr oder teilweise
eingespannter, auf Knickfestigkeit
beanspruchter Stab
a Zone der Verschiebung der
Endpunkte je nach Einspannungs-GriSsse

il

Einspannungsarten dargestellt: beidseitig gleich grosse,
elastische Einspannung; einseitig elastische Einspannung, ander-
seitig gelenkige Führung; einseitig elastische Einspannung,
anderseitig völlig freies Ende.

Die dargestellten Kurven wurden sowohl analytisch wie
graphisch berechnet. Bei der graphischen Ableitung wurde
eine Doppel-Sinuswelle in grossem Masstabe aufgezeichnet
und die betreffenden Werte der Zeichnung entnommen.
Allgemein verweisen wir auf Bild 1, auf dem die wichtigsten
Daten eingeschrieben sind.

Zur Berechnung betrachten wir die Gleichgewichtslage
eines elastisch eingespannten, virtuell ausgebogenen Stabes,
der unter der Knicklast P& steht. Die Einspannung sei vorerst
symmetrisch angenommen und die Beanspruchung liege unterhalb

der Elastizitätsgrenze.
Wir gehen von einem beiderseits gelenkig gelagerten Stab

von der Länge l0 aus. Unter der «Eulerschen Knicklast» bleibt
ein virtuell ausgebogener Stab für jeden Ausbiegungspfeil im
Gleichgewicht. (Wir sehen dabei ab von der kleinen
Knicklasterhöhung mit wachsendem Ausbiegungspfeil, wie sie sich
aus dem im früheren Artikel erwähnten «Grashof-Effekt»
ergibt.) Die Gleichgewichtsfigur ist also unabhängig von der
Grösse des Ausbiegungspfeils ; der Abstand der Gelenkpunkte
ergibt die Tragkraft

'o

Als Gleichgewichtsfigur behalten wir diesen Z0-Bogen bei
und verlängern die Sinuslinienwelle über die ursprünglichen
Gelenkpunkte hinaus, die nun Wendepunkte werden. Die beiden

Zweige werden verlängert bis zu einer Gesamtstablänge
l, so dass nun für die Gleichgewichtsfigur charakteristisch
ist das Verhältnis l0ß. Das Gleichgewicht wird wieder
hergestellt, indem wir an den Kopfenden die Kraft P& und das
Moment M P& /' anbringen.

Für einen solchen Stab berechnen wir die Endtangenten-
Neigung, die dann mit der Lagerverdrehung verträglich
gemacht wird. Je länger der Stab wird (für gleiches l0, das
wir aus rechnerisch-praktischen Gründen festhalten und dafür
l variieren), desto geringer wird die Tangenten-Neigung, desto
stärker muss also die Einspannung sein. Für starre Einspannung

ist die Lagerverdrehung 9L 0 und das Verhältnis
Z0/Z 0,5, die massgebende «freie Knicklänge Z0» ist also hier
nur die Hälfte der ganzen Stablänge l.

Zum Erfassen der Lagerelastizität nehmen wir einen
«Einheita-Lagerstab» von gleicher Länge l, gleichem E und
J an, wie der durch ihn eingespannte Tragstab (Bild 2). In
diesem Falle ist der Einspannungsgrad g 1. Verdoppeln
oder verdreifachen wir z. B. die Zahl der Einheitsstäbe, so
wären die entsprechenden Einspannungsgrade g 2 bzw. S

(Bild 4).
Der Verdrehungswinkel <f'i des Kopfendes eines «Einheits-

Lagerstabes» berechnet sich für ein Moment M zu:

U-s
J,-J i-n

j,=j.e=Jt£!
k ir~ l

l-l» *

JL'JS

J,-Jl-"s

g Bild 2 (links).
Beidseitig elastisch
eingespannter Stab

Bild 8 (rechts).
Einseitle; völlig freier,

anderseitig elastisch
eingespannter Stab

7T-EJ
k iZ

y

PL H
Ji=JL"5 \r±_ i in£ j,=js

gla=-^

l-l» k
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Einspannungsgrössen
Oben: 5=2

P

b=l
unten 4

/ Vf Flache

Bild 5

Bild 4 (links).
Einspannungsbilder
für verschiedene
Einspannungsgrade

Der Wert kann z. B. nach dem Prinzip der virtuellen
Arbeit berechnet werden. Aus Bild 5 folgt:

7 i
M

<P

0

M» r
EJ [X

M l

d X: wm M
x)* dx ¦.

+ A
3 E J

Die Axe eines virtuell ausgebogenen Knickstabes ist
bekanntlich eine Sinuslinie und entspricht mit den Bezeichnungen
von Bild 1 der Gleichung:

y /„ sin (n x/l0) also ist der Tangentenwinkel:

-^- n cos (^=— x)dx l0
v

Z„

FUr die Endtangente des durch die Zweige auf l verlängerten

Stabes wird die Abszisse, gemessen in der Stabaxe
(Bild 1)

- 4" U - V 8 U + h)

tg9>s

x L
2 v m 2

Wir schreiben das Winkelargument vereinfachend y

— x— üLl+A — \™l{_1
la ~~ h 2Y WÈLWÈ

Für ein bestimmtes Verhältnis l0ß ergibt sich der
Drehwinkel des eingespannten Stabendes zu:

<Ps ïhoV+1) -1Ï- 7t COS y

(Für die hier vorkommenden kleinen Winkel wird tg <ps

dyjdx cps gesetzt.)
Da der Tragstab mit dem Lager fest verbunden ist, muss

9>s <pl sein. Der Drehwinkel des Lagers ist :

<pL <p'l Ig
Vorangehend haben.wir den Winkel tp't als Drehwinkel

eines «Einheits-Lagerstabes» definiert. Je mehr solcher Lagerstäbe

wir voraussetzen, desto kleiner wird für ein bestimmtes
Moment der Lagerdrehwinkel <pi; die Anzahl der

angenommenen Lagerstäbe entspricht der 'Einspannungsgrösse g
(BUd 4).

Die Kurven auf Bild 6 wurden wie folgt berechnet: Die
senkrecht zur Stabaxe (y-Richtung) zu messende Verschiebung

/' der durch die Wendepunkte gelegten Nullinie gegenüber
den feststehenden Endpunkten des Stabes ist:
/' /„ sin y

mm 7ia e j M
|

M Pkf=—p—/„sin y

<Pl=M
l

3EJ
/„ sin Y

TT h sln Y
Z

Tg~

g
i

*~g

n*EJ
/«sin y

l
3EJ g

/o»
h
1

hfl

cos y

+ 1

Für die Grenzfälle ergeben sich

ü 1 (keine Einspannung) : g -^- — tg te 0

n 1
l0;l 0,5 (starre Einspannung): g -g- -^-^ tg d'h'
Für die folgenden Verhältnisse Z„/Z ergeben sich aus Gl.

(A) als notwendige Einspannungsgrössen:

\jl 0,75; g 0 'nfTK tg [1,57 • 2,33] ix 0,1

Z0/Z 0,60; g

3 • 0,75
3,14

tg [1,57 ¦ 2,67] - 3,0
3 • 0,60

Grundsätzlich gleich gestaltet sich die Ableitung für den
einseitig elastisch eingespannten, anderseitig gelenkig
geführten Stab, wobei zu bemerken ist, dass bei einseitig starrer
Einspannung bekanntlich Z„ ~ 0,7 Z wird. Die Ergebnisse
zeigt Bild 6.

Für den einseitig elastisch eingespannten, anderseitig
völlig freien Stab ergibt sich die Ableitung wie folgt:

An einem einfachen Sinuslinienbogen von der Länge Z0

und dem Pfeile /„ (Bild 3) betrachten wir einen gewissen
Abschnitt von der Länge Z und legen damit das Verhältnis
Z0/Z fest (x l).

Am untern Ende dieses Teilstückes beträgt der End-
Tangentenwinkel a>s! er wird berechnet aus:

Da es sich um kleine Winkel <p handelt, setzen wir wieder

tg <pS <ps-
Die Tragkraft dieses Teilstückes ist gleich der Tragkraft

des zur vollen Sinuslinie ergänzt gedachten Stabes, also
7C*EJ

tg <ps- \ hfl

iDie Pfeilweite am Fusse beträgt:

Su.) :j
und das dort wirksame Moment:

jt*EJPf l. /„sin hfl)
für das Winkelargument setzen wir hfl) Y-

Dieses Moment muss durch das Lager aufgenommen
werden und erzeugt für die sr-fachen «Einheits-Lagerstäbe»
einen Drehwinkel :

<pL m
1

3 EJ g
n'EJ

to Bin y
l

3 EJ g
71» ZI
TT/oSiny TT
SO

iü m
.Einseitig eiasriscn eingespannt anaersemcj geienmg geführt

SE

ntR
Beidseitig gleich elastisch eirfnhpannr

1 -nL&X T
1 /1ll vi

JU 1
0 ^T

5,0

*

I
Id

anderseitig völlig Pre

Wkz

Bild 6.

Einspannungsgrösse 0

Stablänge, l„ —

7 8 S * K 0 i 2 3 4- S

Einspannungsgrösse ß

Werte l0ß als Funktion der Einspannungsgrösse g.
Rechnerische Knicklänge für eine bestimmte Einspannungsgrösse g

Bild 7.
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Da Stab und Lager starr verbunden sind, muss dieser
Einspannungswinkel mit dem Winkel <ps gleich sein, woraus
sich für das angenommene Verhältnis Zu/Z die notwendige
Steifigkeit g des Lagers bestimmt. Man erhält:

ln /„ sin y

g
n

I 1

3"T

te y tg ./»)hl

l.

hfl 3

Für die angenommenen Werte Z0'Z berechnen wir das
zugehörige g und erhalten so die Kurven auf Bild 6 und 7.

Für den Grenzfall Z0/Z 2 ist:
1,4 ™ n 1 f7t\— l0 (starre Einspannung) g =_ _ tg I—-I oo

Ist die Einspannung g 9 0, so hat der Stab natürlich keine
Tragkraft. In derP ormel wird dementsprechend Z0/Z oo,
also die massgebende Knicklänge Z„ oo, was wiederum
heisst: keine Tragkraft.

Die Kurven auf Bild 6 können auch bei unten und oben
verschieden grosser Einspannung verwendet werden. Haben
wir unten z. B. g 6, oben g 2, so muss der gesuchte Wert
Z0/Z als Interpolationswert zwischen den beiden Ablesungen
liegen. Wie Bild 6 zeigt, bleibt zum Abschätzen nur ein kleiner
Spielraum.

FUr unsere baulichen Verhältnisse wird die Einspannungsgrösse
meist über 1 liegen. Alsdann ergeben sich folgende

Verhältnisse :

Für den beidseitig symmetrisch elastisch eingespannten
Stab (Bild 2) vermindert sich für die Einspannungsgrösse
g 1 die freie Knicklänge auf Z„ 0,72111 für g 3 auf
Z0 0,60 Z. Schon bei g 3 befindet sich die freie Knicklänge
recht nahe am Grenzwert für starre Einspannung, l0 0,5 Z,

so dass bei einer weitern Vergrösserung der Einspannung die
freie Knicklänge sich nur noch wenig ändert; z. B. für g
10 ist Z0 0,53 l.

Ganz ähnlich liegen die Verhältnisse beim einseitig
elastisch eingespannten, anderseits gelenkig geführten Stab. Bei
der Einspannungsgrösse g 1 wird Z„ 0,85 Z, bei g 3

wird Z0 0,76 l. Der unterste Grenzwert bei starrer
Einspannung wird Z„ 0,7 l.

Beim einseitig elastisch eingespannten, anderseitig aber
völlig freien Stab haben wir ebenfalls analoge Verhältnisse.
Beim Einspannungsgrad g 1 ist das Verhältnis Z„/Z B 2,65i
bei g 2 ist Z0/Z 2,4, also schon recht nahe an seiner

2)S0

2000

-. WO

Bi
Moduli Tk aus Spannungs-

Dehnunos -Diagr. abgeleitet.

T -AIL

Baustahl.
BD t/cm2

2,70 IIcm'

4,00 t/cm2

?ioo

1920

700

'300

705 u_

m 14-5

iß m u
Spezi? Spannunc

2,5

in t/cm2
3,5 40

IISO
7100

2000

1770

TkJ
500 —im

o'-i-Q
1/70

1000 TS

630

500

¦#¦
i/i-*r>

m 20 30 40 SO SO 70 80 90 WO -ISO

Schlankheirsgrad l/i
Bild 8. Moduli Tk für Baustahl, oben als Funktion der
Spannung, unten als Funktion des Schlankheitsgrades

Grenze Z0/Z B 2,0, was bekanntlich einer einseitig starren Ein.
Spannung entsprechen würde. Sinkt aber der Einspannungsgrad

unter 1, so wächst die rechnerische Knicklänge sehr
rasch und nähert sich asymptotisch dem Wert oo, d. h. der
Stab vermag keine Last mehr aufzunehmen.

Die Betrachtungen gelten vorerst für den elastischen
Bereich, den Bereich der Gültigkeit des Moduls E. Kommen
Stab und Lager in ungleiche Beanspruchungsbereiche, wird
z. B. der Stab über die Elastizitätsgrenze beansprucht, während

die Lagerbeanspruchung noch im elastischen Bereiche
liegt, so sind die Drehwinkel, die zur Bestimmung des Ein-
spannungsgrades dienen, unter den vorhandenen Druckverhältnissen

festzulegen oder abzuschätzen. Kennen wir die
Einspannungsgrösse, so ist damit auch der Abstand der
Wendepunkte l0 und damit auch der massgebende
Schlankheitsgrad l0/i gegeben. Für einen bestimmten Schlankheitsgrad
gilt nun die Eulersehe Formel oder im unelastischen Bereich
die modifizierte Formel mit dem Knickmodul Tk ')

n'TkJ
'• Ok

Pk
h*

n*Tk
F

0k= (ÜR-*
Wir geben in den Bildern 8 und 9 für Baustahl und

Bauhole die Werte von Tk, wie sie aus dem Spannungs-Deh-
nungs-Diagramm des betreffenden Materials direkt abgeleitet
werden können oder durch Versuche bestimmt sind.

Für den praktischen Gebrauch entnehmen wir der
graphischen Tabelle für ein gefundenes l0ji den entsprechenden
Wert Tk und können so durchgehend mit dem Eulerschen
Ausdruck rechnen.

Eine direkte Abschätzung der Wendepunkte der
Ausbiegungslinie und ihres Abstandes Z0 (zum Vergleich mit ihrem
Abstand Z„, wie wir ihn aus dem Einspannungsgrad berechnen)

kann ebenfalls gute Dienste leisten, so besonders bei
mehrstöckigen Rahmenwerken.

Zusammenfassend können wir sagen, dass im Bereiche
g > 2 (und das ist in der Baupraxis vielfach der Fall) die
Tragkraft vom Einspannungsmass g nicht mehr sehr stark
beeinflusst wird. Die Kurven der Bilder 6 und 7 verlaufen
in diesem Bereiche ziemlich flach, was uns rechnerisch und
konstruktiv oft sehr zustatten kommt.

Wir haben in der vorliegenden Abhandlung nur ein
«Bauelement-», den einfachen, elastisch eingespannten Stab,
betrachtet, aber unter klaren Voraussetzungen.

Bei komplizierteren Verhältnissen, wie wir sie bei
ungern Bauwerken ja meist antreffen, gestatten uns solche
Untersuchungen aber eine dem wirklichen Werte naheliegende
Abschätzung und einen sichern Ueberblick.

<) Vgl. M. Rob & J. Brunner. Die Knicksicherheit von an beiden Enden

gelenkig gelagerten Stäben aus Konstruktionsstahl. Eidg. Material-
prüfungs- und Versuchsanstalt. Zürich. \l. Ros. Knickung exzentrisch
belasteter Stäbe. Internationale Vereinigung für Brückenbau und
Hochbau. Kongre?sbericht Paris 1932.
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