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Nr. 28

Knickstabilitat DK 624.075.2
Einfluss der Einspannungsverhiltnisse bei zentrischer
Belastung

Von Ing. Dr. J. BRUNNER, EMPA, Zirich

[Wir verweisen auf die einleitende Bemerkung beim Ar-
tikel «Knickstabilitdts, SBZ. Bd. 123, 8. 247* vom 20. Mai
1944, und fithren hier ein weiteres Kapitel an.]

Den Untersuchungen legen wir meistens Stdbe zugrunde,
die an beiden Enden als gelenkig gelagert vorausgesetzt wer-
den. Das fundamentale Problem der elastischen Stabilitédt
ist die Bestimmung der Knickfestigkeit des geraden Stabes
mit konstantem Querschnitt. Auf diesen theoretisch klaren
Fall lassen sich nun auch fest oder teilweise eingespannte
Stdbe zuriickfithren.

Um die Einspannungsgrosse g zu definieren, denken wir
uns den Stab aus seiner Einspannung gelost und ihn beid-
seitig gelenkig gelagert. Dann bringen wir am zu betrach-
tenden Stabende ein Moment M — 1 an und berechnen den
Drehwinkel ¢stap. Ebenso bringen wir dieses Moment M =1
am Auflager an. Das Verhiltnis des Drehwinkels des Stab-
endes zum Drehwinkel des Lagers, den dieses Moment erzeugt,
nennen wir die Einspannungsgrosse:

9=9s/pL

Ist die Lagerpartie starr, so wird ¢,= 0, also die Ein-
spannungsgrosse g — co; ist das Lager ein Gelenk, so ist
gr= oo, d. h. unbeschrénkt beweglich, somit die Einspannungs-
grosse g = 0.

Weisen sowohl Stab wie Einspannungsstelle fiir ein Mo-
ment den gleichen Drehwinkel auf, so ist die Einspannungs-
grosse g — 1. Die Ein-
spannungs - Verhéltnisse

M, sind bei Ueberschreiten

Fir eine virtuelle Ausbiegung 4 der Elastizitatsgrenze

stellt sich mathemat. eine iL durch Rekursion zu be-

Siusliele. 8. o i % stimmen. Bei der Defini-

5 - i ! ) tion der Einspannungs-

i % grosse wurde Wert darauf

J 1 gelegt, dass mit dem Be-

L= | | is griff g eine anschauliche

Abstand der | —Jf“’« W el Vorstellung  verbunden
Wendepunkfe x I's T don 1t

Festgehalten. | g werden kann.

L=l | P Als Endergebnis dieses

i i Kapitels stellen wir in

'?“_'* N den Bildern 6 u. 7 (S. 380)

Die Tragkraft des Gesamt- -\t ]% a d.en Nrert ZO/ Fals Fiuic

stabes ist gleich der Tragkr. i tion der Einspannungs-

des 1,- Bogens L]y v grosse g dar. I, ist die

M Stablédnge zwischen den

R Wendepunkten, die fiir

die Knicklast massgebend
ist; I bezeichnet die ganze
Stabldnge zwischen den
Lagern. Der Wert [/l
wird dabei fiir folgende

Bild 1. Beidseitig starr oder teilweise
eingespannter, auf Knickfestigkeit
beanspruchter Stab

a = Zone der Verschiebung der End-
punkte je nach Einspannungs-Grisse

Jy=ds

Einspannungsarten dargestellt: beidseitig gleich grosse, elas-
tische Einspannung; einseitig elastische Einspannung, ander-
seitig gelenkige Fiihrung; einseitig elastische Einspannung,
anderseitig vollig freies Ende.

Die dargestellten Kurven wurden sowohl analytisch wie
graphisch berechnet. Bei der graphischen Ableitung wurde
eine Doppel-Sinuswelle in grossem Masstabe aufgezeichnet
und die betreffenden Werte der Zeichnung entnommen. All-
gemein verweisen wir auf Bild 1, auf dem die wichtigsten
Daten eingeschrieben sind.

Zur Berechnung betrachten wir die Gleichgewichtslage
eines elastisch eingespannten, virtuell ausgebogenen Stabes,
der unter der Knicklast P steht. Die Einspannung sei vorerst
symmetrisch angenommen und die Beanspruchung liege unter-
halb der Elastizitdtsgrenze.

Wir gehen von einem beiderseits gelenkig gelagerten Stab
von der Lénge I, aus. Unter der «Eulerschen Knicklast» bleibt
ein virtuell ausgebogener Stab fiir jeden Ausbiegungspfeil im
Gleichgewicht. (Wir sehen dabei ab von der kleinen Knick-
lasterh6hung mit wachsendem Ausbiegungspfeil, wie sie sich
aus dem im fritheren Artikel erwdhnten (Grashof-Effekt» er-
gibt.) Die Gleichgewichtsfigur ist also unabhéngig von der
Grosse des Ausbiegungspfeils; der Abstand der Gelenkpunkte
ergibt die Tragkraft
n*EJ

1,2

Als Gleichgewichtsfigur behalten wir diesen [ -Bogen bei
und verldngern die Sinuslinienwelle iiber die urspriinglichen
Gelenkpunkte hinaus, die nun Wendepunkte werden. Die bei-
den Zweige werden verldngert bis zu einer Gesamtstablénge
1, so dass nun fiir die Gleichgewichtsfigur charakteristisch
ist das Verhéltnis J;/I. Das Gleichgewicht wird wieder her-
gestellt, indem wir an den Kopfenden die Kraft P; und das
Moment M — Py, f' anbringen.

Fiir einen solchen Stab berechnen wir die Endtangenten-
Neigung, die dann mit der Lagerverdrehung vertrdglich ge-
macht wird. Je ldnger der Stab wird (fiir gleiches 7,, das
wir aus rechnerisch-praktischen Griinden festhalten und dafiir
1 variieren), desto geringer wird die Tangenten-Neigung, desto
stdrker muss also die Einspannung sein. Fiir starre Einspan-
nung ist die Lagerverdrehung ¢ =0 und das Verhéltnis
L,/ = 0,5, die massgebende (freie Knicklidnge [» ist also hier
nur die Hilfte der ganzen Stabldnge I.

Zum Erfassen der Lagerelastizitit nehmen wir einen
«Einheits-Lagerstab» von gleicher Lénge I, gleichem E und
J an, wie der durch ihn eingespannte Tragstab (Bild 2). In
diesem Falle ist der Einspannungsgrad g — 1. Verdoppeln
oder verdreifachen wir z. B. die Zahl der Einheitsstédbe, so
wéren die entsprechenden Einspannungsgrade g — 2 bzw. 3
(Bild 4).

Der Verdrehungswinkel ¢y, des Kopfendes eines «Einheits-
Lagerstabes» berechnet sich fiir ein Moment M zu:

1
PreM gy

Pp. =

Bild 2 (links).
Beidseitig elastisch
eingespannter Stab

Bild 3 (rechts).
Einseitig vollig freier,
anderseitig elastisch
eingespannter Stab
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Einspannungsgrossen
Oben: g=2
P
O J =
J A .
J Bild 5

ﬁ Bild 4 (links).

"""" J"B L" Einspannungsbilder
Unten: i fiir verschiedene

mens g= 2 Einspannungsgrade

Der Wert kann z. B. nach dem Prinzip der virtuellen
Arbeit berechnet werden. Aus Bild 5 folgt:

1
Mq;:fM"“ dx:Lf(M_ﬁx)zdx:

EJ EJ 1
0 0
1
M2 x2 X3
= [’“‘T*‘ 3121
0
=" 3EJ

Die Axe eines virtuell ausgebogenen Knickstabes ist be-
kanntlich eine Sinuslinie und entspricht mit den Bezeichnungen
von Bild 1 der Gleichung:

Yy = fo sin (7 x/l,) also ist der Tangentenwinkel:
tg(pszj_iz i_“I ncos(—z— x)

Fiir die Endtangente des durch die Zweige auf ! verldn-
gerten Stabes wird die Abszisse, gemessen in der Stabaxe
(Bild 1)

1 y |
x:lo_[-?(l_lo):?(l_{-lo)

Wir schreiben das Winkelargument vereinfachend y

L, n_ wml4l [ 1 )
PR g b=l 2]

Fir ein bestimmtes Verhiltnis 7,/ ergibt sich der Dreh-

winkel des eingespannten Stabendes zu:
) 7 1 fo
®s = —Zo—ncos [7 (—lo/l +1)] = 7 COoS p

(Fiir die hier vorkommenden kleinen Winkel wird tg ¢s—
dyldx = ¢s gesetzt.)

Da der Tragstab mit dem Lager fest verbunden ist, muss
¢s = ¢, sein. Der Drehwinkel des Lagers ist:

YL =Q'L[9

Vorangehend haben wir den Winkel ¢’ als Drehwinkel
eines «Einheits-Lagerstabes» definiert. Je mehr solcher Lager-
stédbe wir voraussetzen, desto kleiner wird fiir ein bestimm-
tes Moment der Lagerdrehwinkel ¢r; die Anzahl der ange-
nommenen Lagerstdbe entspricht der !Einspannungsgrosse g
(Bild 4).

Die Kurven auf Bild 6 wurden wie folgt berechnet: Die
senkrecht zur Stabaxe (y-Richtung) zu messende Verschie-
bung f der durch die Wendepunkte gelegten Nullinie gegen-
iiber den feststehenden Endpunkten des Stabes ist:

fr=1F, sin y

n: KB J
M:P[; f':

— f, 8in y
0

10

' | [ | | | | l I

09 ", Einseitig elastisch eingespannt, anderseitiq gelenkiq gefihrt
\ N 9 gesp g ? 9‘9 u

' 4

_ap ol e BB 1
PL=%3g7r g 17 1" V3Eig
. f, sin ! ly

=gz b 7 3g =@s

w2 . l fom

e s smyW: Olo cos y

A) _n 1 t 71 1 1
(89 = B R
Fir die Grenzfille ergeben sich:

70 il
[,/ =1 (keine Einspannung): g = 2

11
. 1 3
l,’l = 0,5 (starre Einspannung): g — o5 tg (—2— 7():00
Fiir die folgenden Verhéltnisse [/l ergeben sich aus Gl
(A) als notwendige Einspannungsgrossen:

3,14
L/l =05; g = e tg [1,57 - 2,33] — 0,8
3,14
1/l =10,60; g = = tg [1,57 2,671 =30

Grundsétzlich gleich gestaltet sich die Ableitung fiir den
einseitig elastisch eingespannten, anderseitig gelenkig ge-
fiihrten Stab, wobei zu bemerken ist, dass bei einseitig starrer
Einspannung bekanntlich I, — 0,71 wird. Die Ergebnisse
zeigt Bild 6.

Fir den einseitig elastisch eingespannten, anderseitig
vollig freien Stab ergibt sich die Ableitung wie folgt:

An einem einfachen Sinuslinienbogen von der Lénge I,
und dem Pfeile f, (Bild 3) betrachten wir einen gewissen
Abschnitt von der Lédnge I und legen damit das Verhiltnis
I/l fest (z =1).

Am untern Ende dieses Teilstlickes betrdgt der End-
Tangentenwinkel g¢g; er wird berechnet aus:

b 9 n
tg (psz%‘n cos (f x> = {Tz cos (T/l)

Da es sich um kleine Winkel ¢ handelt, setzen wir wie-
der tg ¢s — gs.-

Die Tragkraft dieses Teilstlickes ist gleich der Tragkraft
des zur vollen Sinuslinie ergédnzt gedachten Stabes, also

nEJ
1,2
Die Pfeilweite am Fusse betrdgt:

und das dort wirksame Moment:
n*EJ . 7
Pfr—= i f, sin (lo/l)
T

fiir das Winkelargument setzen wir (Tﬁ) =iy
0
Dieses Moment muss durch das Lager aufgenommen
werden und erzeugt fiir die g-fachen «Einheits-Lagerstidbe»
einen Drehwinkel:

1 1 n: EJ 1 1

=Magrg=—17 "™V 35 g =

0

P =

B, ol T
— 0 )Ts'?j’

7,

N T D o )

Einseitig elastisch eingespannt,
andenseitig vollig Frei.

| |

08 i [ | | |
7 \\ I — I 1 e S - A‘ | S | S
Sl o,s Beidseitig gleich elastisch eingespannt N
n iy = r - ~ — ) - — B ' "1 i == =
B gsl——1= R < | — @ -
5 g ! 2
) A4 T S N I T == I =1
£ | | | T | | |
B 03— —[— — e ——— S | =i=— 1
2 = — s e - l o [ = _nsl T —
02 \ f—1 i \ o]
of = — T T L= e =
0 L | |
0 1 2 34 5. 6 7 8 9 * 10 3 4 5 6 7 8
Einspannungsgrasse Einspannungsgré'sse g
Bild 6. Werte [yl als Funktion der Einspannungsgrosse ¢. Bild 7.
! = Stablinge, I, = Rechnerische Knicklinge fiir eine bestimmte Einspannungsgrosse ¢
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Da Stab und Lager starr verbunden sind, muss dieser
Einspannungswinkel mit dem Winkel ¢s gleich sein, woraus
sich fiir das angenommene Verhdltnis [/l die notwendige
Steifigkeit g des Lagers bestimmt. Man erhilt:

72 11 Ta

‘Ffu sin y 3‘!7* lo

7T ¢ T 1 ¢ 7
g“‘zz g Er=gmae %ﬂ)
Fiir die angenommenen Werte [;'l berechnen wir das zu-

gehorige g und erhalten so die Kurven auf Bild 6 und 7.
Fir den Grenzfall 1)/l — 2 ist:
w 1 b1
=573 tg (-2-) — oo

Ist die Einspannung g — 0, so hat der Stab natiirlich keine
Tragkraft. In derF ormel wird dementsprechend [/l = cc,
also die massgebende Knickldnge I, — co, was wiederum
heisst: keine Tragkraft.

Die Kurven auf Bild 6 konnen auch bei unten und oben
verschieden grosser Einspannung verwendet werden. Haben
wir unten z. B. g — 6, oben g — 2, so muss der gesuchte Wert
1,/ als Interpolationswert zwischen den beiden Ablesungen
liegen. Wie Bild 6 zeigt, bleibt zum Abschétzen nur ein kleiner
Spielraum.

Fir unsere baulichen Verhédltnisse wird die Einspannungs-
grosse meist iiber 1 liegen. Alsdann ergeben sich folgende
Verhéltnisse:

Fir den beidseitig symmetrisch elastisch eingespannten
Stab (Bild 2) vermindert sich fiir die Einspannungsgrosse

=1 die freie Knickldnge auf I, — 0,72 1; fiir g — 3 auf
l,— 0,60 I. Schon bei g — 3 befindet sich die freie Knickldnge
recht nahe am Grenzwert fiir starre Einspannung, }, = 0,51,
so dass bei einer weitern Vergrosserung der Einspannung die
freie Knickldnge sich nur noch wenig &dndert; z. B. fir g —
10 ist 7, = 0,53 1.

Ganz &hnlich liegen die Verhéltnisse beim einseitig ela-
stisch eingespannten, anderseits gelenkig gefiihrten Stab. Bei
der Einspannungsgrésse g — 1 wird I, = 0,851, bei g —3
wird I, = 0,76 1. Der unterste Grenzwert bei starrer Ein-
spannung wird [, — 0,7 1.

Beim einseitig elastisch eingespannten, anderseitig aber
vollig freien Stab haben wir ebenfalls analoge Verhiltnisse.
Beim Einspannungsgrad g — 1 ist das Verhiltnis 1/l — 2,65,
bei g —2 ist [/l = 2,4, also schon recht nahe an seiner

7 COS y

il
l:7 l, (starre Einspannung) g

2150
2150 } J‘ J‘ < 2100 Bausi-ahl.
2000 = i £ = 2150 b/cm?
|Moduli T, aus Spannungs- | Op= 190 tlem®
« Dehnungs Diagr. abgeleitet ﬁ“ Op= 270 t/cm
S 1500|——— 4TE &l . BT 400 t/cm”
= = ly
== B! S
= | iz
— 1000( — &t i o>
= 1 = |3
2 s 1=
= \ St IS
| & 510
50| i :
B T ‘ | N
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g \ | 19 al ||
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Schlankheitsgrad 1/1

Bild 8. Moduli 7', fir Baustahl, oben als Funktion der
Spannung, unten als Funktion des Schlankheitsgrades

Grenze [,/ = 2,0, was bekanntlich einer einseitig starren Ein.
spannung entsprechen wiirde. Sinkt aber der Einspannungs-
grad unter 1, so wéchst die rechnerische Knickldnge sehr
rasch und ndhert sich asymptotisch dem Wert co, d.h. der
Stab vermag keine Last mehr aufzunehmen.

Die Betrachtungen gelten vorerst fiir den elastischen Be-
reich, den Bereich der Giiltigkeit des Moduls E. Kommen
Stab und Lager in ungleiche Beanspruchungsbereiche, wird
z. B. der Stab {iber die Elastizitdtsgrenze beansprucht, wih-
rend die Lagerbeanspruchung noch im elastischen Bereiche
liegt, so sind die Drehwinkel, die zur Bestimmung des Ein-
spannungsgrades dienen, unter den vorhandenen Druckver-
hidltnissen festzulegen oder abzuschitzen. Kennen wir die
Einspannungsgrosse, so ist damit auch der Abstand der
Wendepunkte I, und damit auch der massgebende Schlank-
heitsgrad [,/i gegeben. Fiir einen bestimmten Schlankheitsgrad
gilt nun die Eulersche Formel oder im unelastischen Bereich
die modifizierte Formel mit dem Knickmodul 7T 1)

e T[- J B

P i 2B g o T

k i Ok 7
o 72 Tk
R TAHE

Wir geben in den Bildern 8 und 9 fiir Baustahl und
Bauholz die Werte von T, wie sie aus dem Spannungs-Deh-
nungs-Diagramm des betreffenden Materials direkt abgeleitet
werden konnen oder durch Versuche bestimmt sind.

Fiur den praktischen Gebrauch entnehmen wir der gra-
phischen Tabelle fiir ein gefundenes },/i den entsprechenden
Wert T, und konnen so durchgehend mit dem Eulerschen
Ausdruck rechnen.

Eine direkte Abschitzung der Wendepunkte der Ausbie-
gungslinie und ihres Abstandes 7, (zum Vergleich mit ihrem
Abstand [,, wie wir ihn aus dem Einspannungsgrad berech-
nen) kann ebenfalls gute Dienste leisten, so besonders bei
mehrstockigen Rahmenwerken.

Zusammenfassend konnen wir sagen, dass im Bereiche
g > 2 (und das ist in der Baupraxis vielfach der Fall) die
Tragkraft vom Einspannungsmass g nicht mehr sehr stark
beeinflusst wird. Die Kurven der Bilder 6 und 7 verlaufen
in diesem Bereiche ziemlich flach, was uns rechnerisch und
konstruktiv oft sehr zustatten kommt.

Wir haben in der vorliegenden Abhandlung nur ein
«Bauelement», den einfachen, elastisch eingespannten Stab,
betrachtet, aber unter klaren Voraussetzungen.

Bei komplizierteren Verhiltnissen, wie wir sie bei un-
sern Bauwerken ja meist antreffen, gestatten uns solche Un-
tersuchungen aber eine dem wirklichen Werte naheliegende
Abschitzung und einen sichern Ueberblick.

) Vgl. M. Ros & J. Brunner. Die Knicksicherheit von an beiden En-
den gelenkig gelagerten Stiben aus Konstruktionsstahl. Eidg, Material-
priifungs- und Versuchsanstalt, Ziirich. M. Ros. Knickung exzentrisch
belasteter Stdbe. Internationale Vereinigung fiir Briickenbau und
Hochbau. Kongressbericht Paris 1932.
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Schlankheitsgrad 1 /1
Bild 9. Wie Bild 8, jedoch fiir Bauholz
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