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Zur Berechnung der Eigenschwingungszahlen von
Dem Andenken von Ing. Carl Jegher gewidmet von H. NYFFENEGGER,

Einleitung
Zur Bestimmung der Eigenschwingungszahlen der Kurbelwellen

von Kolbenmaschinen-Anlagen stehen ausser den klassischen

Berechnungsverfahren, die einen grossen rechnerischen
Aufwand erfordern, eine Reihe
von andern Verfahren zur
Verfügung, von denen das Grammeische1)

wohl das bekannteste und
auch universalste sein dürfte.
Grammel geht davon aus, dass
die zu untersuchende Maschinenanlage

aus einem vielzylindrigen
Kolbenmotor mit durchwegs
gleichen Triebwerken in elastisch
gleichen Abständen (homogener
Motor) und beliebig vielen Zusatz-
Drehmassen zusammengesetzt ist,
die beidseitig des Motors
angeordnet sein können. Das Verfahren

erlaubt sämtliche (k — 1)
Eigenschwingungszahlen bei
insgesamt fc schwingenden Massen
zu berechnen. Grammel benötigt
aber ein umfangreiches Tabellen-
material und muss auch die mit
Hilfe dieser Tabellen berechneten
Funktionen aufzeichnen, um die
gesuchten Werte zu erhalten.
Weniger allgemein gültige
Verfahren, die den vielzylindrigen
homogenen Motor auf irgendwelche

Art auf eine Masse
reduzieren und die eine oder zwei
Zusatzmassen auf einer Motorseite
einschliessen, stützen sich auf zum (fy *#2+&s * e»j

voraus berechnete Kurvenblätter
und auf die Angaben von Zahlentafeln.

Es liegt in der Natur dieser

zuletzt genannten Verfahren,
dass nur Schwingungen ersten und zweiten Grades mit
Knotenpunkten ausserhalb des Kolbenmotors berechnet werden können,

was aber in den meisten Fällen genügen dürfte.
Im folgenden wird gezeigt, wie die bei den eingeschränkten

Verfahren immer notwendige Reduktion der vielen Kolben-
Triebwerkmassen auf nur eine schwingende Masse in einfachster
Weise ein für alle Mal durchgeführt werden kann und wie unter
Benützung einer erweiterten Dreimassenformel einige wichtige
Anwendungsfälle mit einfachen rechnerischen Mitteln behandelt
werden können.

I. Das allgemeine Reduktionsverfahren
Das vorliegende Verfahren zur Berechnung der Eigen-Schwin-

gungszahl ersten Grades einer vielzylindrigen, vorläufig inhomogen

angenommenen Kolbenmaschine mit fester Einspannung am
rechtseitigen Ende nach Abb. 1, gründet sich auf folgende
Ueberlegungen: Wird von den Drehmassen mit den Massenträgheitsmomenten

0, ©3 03... 0z zunächst die Drehmasse 0S festgehalten,

so schwingt das nach links freie, aus den beiden
Drehmassen ©, und 0a, sowie den beiden Federungen c, und c,
bestehende Zweimassensystem nach Abb. la mit einer der beiden

möglichen Kreisfrequenzen s/ und e'i, die sich aus der bekannten

Dreimassenformel

Kurbelwellen
Oberingenieur der SLM Winterthur

spannstelle findet sich dann als Auflösung der biquadratischen
Gleichung 2:

c, (°i + ca> »1 + cs ©s
* 1=

(e,+02+e3) O
W HW-p
% Ci ctf i.

O
O

Ò
r

4-(4-
Ol \0,

+

/ + 0 (1)
i©8 ' tafcsr

; 00 gesetzt wird. Gleichung 1bestimmen lassen, wenn darin c-\ -.

geht dann über in die Gleichung :

eicl c.0,0,— «3{(Cl + c2) g, + c,0,} + 1 0 (2)

Hierin bedeuten c, und ca die Verdrehungen der Wellenstücke
unter der Wirkung des Einheitsdrehmoments,' für eine glatte
Ersatzwelle mit dem polaren Trägheitsmoment Jp und mit der
Länge l ist c=zljGJp (<? Schubelastizitätsmodul).

Das Quadrat der hier allein interessierenden Eigenschwingung

ersten Grades mit nur einem Knotenpunkt in der Eln-

') Qrammel, Ingenieur-Archiv II. Bd. 1932, III. Bd. 1932.

2 c, ca yt 0,

fXc, + c8) »1 + c2 2 \2 (3)
2 C1 Ca 0j ö2 / ct ca 0j 03

Dieses erste Zweimassensystem nach Abb. la kann durch ein
dynamisch völlig gleichwertiges Einmassensystem gleicher
Eigenfrequenz «j ersetzt werden, das nach Abb. lb aus den vereinigten

Massen ('-•, + (-)2) besteht und dessen Ersatzelastizität sich

aus der Elementarformel:

"i= 1. (4)

bestimmt.
s*i (t ¦«•)

Nun wird das erste Einmassen-Ersatzsystem mit der nächsten

Drehmasse 0, zu einem zweiten Zweimassensystem nach
Abb. lc mit dem Festpunkt bei 04 zusammengesetzt. Die
Kreisfrequenz ersten Grades sa dieses Systems bestimmt sich nach
dem Vorbild der Gleichung 3, wobei an Stelle von 0t und 0a

die Werte (0,+0a) und 03, und an Stelle von c1 und ca die
Werte cx und c3 zu setzen sind.

Das zweite Zweimassensystem Abb. lc wird nach Abb. Id
wiederum durch ein Einmassensystem ersetzt, dessen Masse

gleich der Summe (0t + 02 -t- 03) ist und dessen Ersatz-Elastizität

sich aus der Gleichung:

cn (5)

ergibt.
Dieser einfache Recbnungsgang wird, wie die Abb. le und

lf andeuten, nach rechtsschreitend fortgesetzt, bis die Kreis-
frequenz ez des letzten Zweimassen- bzw. des letzten Einmassen-
Ersatzsystems gefunden ist, womit dann auch die vielzylindrige
inhomogene Kolbenmaschine auf ein Einmassen-System mit der
Masse (0t -)- g9 + 0S + • • • • 0*) und mit der Elastizität:

1 1

(ê\ + 0s + 08 + - - 0*)
(6)

e*z2 0

entsprechend Abb. lf reduziert ist.
In Wirklichkeit ist die Kurbelwelle am rechtsseitigen Ende

meist nicht fest eingespannt, sondern nach Abb. 2 mit mindestens

einer grossen Schwungmasse 0, gekuppelt. Nach der
altbekannten Zweimassenformel ergibt sich hierbei die Kreisfrequenz

zu:

o

"ME (7)

Abb

bzw. die sekundliche Schwingungszahl zu:
6

2n~ ' ' ' ' (8)

Mit p als Ordnungszahl der Harmonischen des Drehkraft-
Diagramms findet man die kritischen Drehzahlen der Welle zu :

30 e
nKr U/min (9)

pn
wobei für einfachwirkende Zweitakt-Motoren

p 1 2 3 4 5 6

für einfachwirkende Viertakt-Motoren
V Va 1 i'/s 2 27,

bzw. die zweifachen Werte für doppeltwirkende Maschinen zu
setzen ist. Voraussetzungsgemäss kann dieser Rechnungsgang
nur streng richtige Resultate geben, wenn der Schwingungsknotenpunkt

ausserhalb der Kolbentriebwerksmassen in n. — r
liegt, d. h. also wenn:

^l^J (10)

Diese einfache Kontrolle empfiehlt sich vor allem dann, wenn
die Zylinderzahl gross und das Schwungrad 0, verhältnismässig
klein ist. Es wird sich im Verlaufe der weiteren Darlegungen
noch mehrfach Gelegenheit bieten, auf Kontrollen und ihre strenge
Erfüllung zurückzukommen.

II. Die Reduktion inhomogener Kolbenmaschinen
mit Hilfe eines Diagramms

Das im vorangegangenen Abschnitt behandelte allgemeine
Reduktionsverfahren kann auch mit Hilfe der Verhältniszahlen
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Abb. 3

y, —i- und 8, —?-71
ct i 0,

durchgeführt werden. Gleichung (3) geht dann über in die Glei-

(12)

(11)

chung:
s'i ct0i / (/i 9i)

wobei:

(i + y.+y^,)
n 2yi^ rein Ausdruck, der nur aus Verhältniszahlen aufgebaut ist.

das erste Ersatz-Einmassensystem mit der Masse 0, (1
tritt an Stelle von Gleichung (4) die Ersatzelastizität:

c °i
I_~ (i + 91)/(y,81)

Für das folgende, aus 0, (1 + dti und 03, sowie aus cr imd
c. aufgebaute Zweimassensystem werden die Verhältniszahlen:

c^ 0,

(13)

Für
h&0

(14)

und 9ä
>i »i (l + Öi)

gebildet und daraus der neue Wert / (ya(9a) bestimmt, sodass auch:

el 1,, „ / (y8 9s) -A-'^i ôi> '<* W (15)(1 + ^)0, 0i
bekannt wird. Die EInmassen-Ersatzelastizität entsprechend der
früheren Gleichung (5) wird dann:

c -
C)

CH- (16)(l + ö,) d + 9s) /(/i 9,)/(y2da)
usw. nach bereits erkennbarem Bildungsgesetz. Wie ersichtlich,
treten die Faktoren 1/Cj 0, bzw. c, immer wieder auf, sie
kennzeichnen das System in seiner absoluten Grösse.

Die Reduktion einer inhomogenen Kolbenmaschine, beispielsweise

einer Mehrfachexpansions-Schiffsmaschine erfordert eine
beachtliche Rechenarbeit. Diese wird erleichtert, wenn die schrittweise

zu bestimmenden Werte/(y 9) einem Diagramm, wie es
Abb. 3 darstellt, entnommen werden können. Solche Berechnungen
inhomogener Maschinen dürften aber heute nur noch ganz
ausnahmsweise durchzuführen sein, weshalb darauf verzichtet wird,
das / (y d) -Diagramm in grösserem Masstabe und mit dichteren
8-Linien zu geben. Im übrigen gestaltet sich die nötigenfalls
durchzuführende Zahlenrechnung einfacher und übersichtlicher
als an Hand der formalen Rechnung erscheinen mag.

III. Die Reduktion homogener Kolbenmaschinen
Für homogene Motoren nach Abb. 4 mit z durchwegs

gleichen Drehmassen 0 und ebensovielen durchwegs gleichen
Elastizitäten c lässt sich die Kreisfrequenz ersten Grades mit Hilfe
der fortlaufenden Verhältniszahlen y und 9 bzw. der daraus ge-
bildeten Funktionswerte //, (y9) ein für alle Mal zum voraus
zahlenmässig berechnen, was den besonderen Wert des Verfahrens

ausmachen dürfte. (Der Index h ist
gesetzt, um den homogenen Motor zu kennzeichnen.)

Nach dem Vorbild der Gleichung (15)
wird, wenn man das allererste, aus 0 und c
gebildete Einmassensystem ebenfalls
anschreibt, die Reihe der fortlaufenden
Eigenfrequenzen :

Z0

Abb. 4

C0
1

00
1

C0

//.(/, 9,)

fhiYxdJ lh(Y,dt)

cy
l

cy
1

00
F„

let
1

2C0
1

3cl

K,

K,

K,

e>, —— th (y, <5,) h (ya 9a) //, (y, 9,)cy fh (fz—l dz-\)
1

C0 Ft — K,zcy

(17)

wobei also allgemein
Fz fh(7l dt) fh<.Y,da) /&(y893).-.. fh(Yz-\dz-\) (18)

Kz zF% (19)
Fz und Kz sind Zahlenwerte, die sich bei der Rechnung

unmittelbar ergeben und die für alle homogenen Motoren gleicher
Zylinderzahl gleich gross sind.

Führen wir noch den Wert ein:

0* -^- (20)

so berechnet sich die Schwingung des in Abb. 4 dargestellten
homogenen s-Zylinder-Motors nach der Gleichung:

1

z cz0
wie ein Einmassensystem mit der Masse
00 und mit der nunmehr ebenfalls
bekannten Elastizität cz.

Ist die Kurbelwelle in Wirklichkeit
rechts nicht fest eingespannt, sondern
nach Abb. 5 mit einer grossen Schwungmasse

0, versehen und ist ferner die
zwischen innerster Triebwerkmasse und
Schwungmasse vorhandene Elastizität
nicht c sondern c0, so ist noch folgende
Umrechnung notwendig: Nach Abb. 5
ist: cs c0 — c
und damit wird die einzusetzende Ge-
samtelastizität

c
cz + cs =cz + c0 — c -g— -\-c„ — c c

Setzen wir für den reinen Zahlenfaktor:

a-m- ¦ ¦

so wird schliesslich:

(21)

z9 Oes

ffffin
Ij: ic ic '• c^cic 1 <£ v-/

00
-CR, ->t<-

Ca+cRi

Abb. 5
Ô

O

Ò

W^M

+ cs c0 cRz

(22)

(23)

und damit kann die Kreisfrequenz sx für homogene s-Zylinder-
Motoren mit einerZusatz-Drehmasse sofort angeschrieben werden:

i r i lì
(c0 + cRz m\zby+ er/ (24)

Die Reduktionsziffer Rx ist der für alle homogenen Motoren,
gleichgültig welcher Grösse, geltenden Tabelle 1 zu entnehmen.

TalDelle 1

101
Zahl z

l 2 3 4 5 6 7 8 9 10 11 12

Rz 0 0,309 0,707 1,128 1,550 1,987 2,458 2,923 3,399 3,883 4,368 4,838

Die Anwendbarkeit der Formel (24) kann nach dem Vorbild
der Ungleichung (10) kontrolliert werden. Es muss sein:

e»z > —-— (25)
eo0s

Darüber hinaus lässt sich aber aus der Bedingung, dass im
Grenzfall der Schwingungsknotenpunkt gerade in die innerste
Triebwerkmasse fällt, die Gleichung aufstellen:

1
_ î f ?__\

c0 ts (° + e Rz-ì) \ (z — 1

bzw.
l)y i (26)

0s

0
(1 +Ä,_i)(«-1). (27)

oder, da meist — < 1, darf Formel (24) benutzt werden, solange
c0 -

das Massenverhältnis
0j
Z0 ^(l + B.-l) (« —1)

(28)

mit R, — i aus Tabelle 1. In Tabelle 2 sind nun die für homogene,
mit einer Schwungmasse gekuppelten s-Zylinder-Motoren zum
vornherein angebbaren Massenverhältniszahlen zusammengefasst.
In praktischen Anwendungsfällen dürften diese Zahlenbedingungen

wohl ausnahmslos erfüllt sein.

Tabelle 2

Zyl.
Zahl z

2 3 4 5 6 7 8 9 10 11 12

0, _zy
0,5 0,87 1,28 1,70 2,12 2,56 3,02 3,49 3,96 4,44 4,92
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IV. Eigenschwingungen ersten und zweiten Grades
einer einwelligen Maschinenanlage bestehend aus
einem homogenen Motor und zwei auf der einen
Motorseite angeordneten Zusatzdrehmassen
(Schwungrad und Generator)

Auf Grund der bisherigen
Darlegungen lassen sich unter Benützung
der altbekannten Dreimassenformel
(1) die Schwingungen ersten und
zweiten Grades der in Abb. 6
dargestellten Maschinengruppe leicht und
rasch berechnen. Beachten wir, dass :

0! Z 0 0! 1

c, c0 + c Rz r, i
zu setzen sind bzw. gesetzt werden, so wird mit:

i r i jy\ j_ rj_ i ~i

1 1 IT

6V-2Ô

U/»-Ia^|a'4a^W-|—<w

Abb. 6 -

A

B i
r, c, L0I0S ' 0103

die Bestimmungsgleichung für s:
s* — e*A + B

0s

(29)

(30)

0 (31)

Die Auflösung dieser biquadratischen Gleichung ist bekanntlich:

...=l/4+fA2

Der kleinere Wert s, entspricht der Schwingung ersten Grades
mit einem Knotenpunkt. Dieser liegt wohl fast ausnahmslos
ausserhalb der Zylinder-Triebwerkmassen, sodass s, streng richtig
gefunden wird. e2 entspricht der Schwingung zweiten Grades mit
zwei Knotenpunkten. Diese raschere Schwingung wird solange
aus den Gleichungen (30), (31) und (32) ebenfalls streng richtig
bestimmt, als folgende Bedingung erfüllt ist:

1 r I 1
(3-1)0 J

r.2C n (33)
:c(l + Bz_i)

Dies ist nun bei vielzylindrigen Motoren vielfach oder sogar
meist nicht der Fall, da der zweite Knotenpunkt bis über die
innerste oder sogar zweitinnerste Triebwerkmasse nach aussen
rückt. Dennoch kann &2 als sehr guter Annäherungswert gelten
und zwar einfach aus dem Grunde, weil die Triebwerkmassen,
die sich in der Nähe des zweiten Knotenpunktes befinden, im
Gegensatz zu der Mehrzahl der weiter aussen liegenden
Triebwerkmassen, die Schwingung nur ganz wenig beeinflussen.
Durchgerechnete Vergleichsbeispiele erhärten diese Aussage.

V. Die Berechnung der Eigenschwingungen eines
verzweigten Drei - Massensystems mit Ueberset-
zungen

Für weitere praktische Anwendungsfälle ist es nützlich, die
Eigenschwingungen des in Abb. 7 dargestellten verzweigten Drei-
Massensystems mit Uebersetzungen zu kennen. Eine oder zwei
der drei Massen können hierbei homogene Vielzylinder-Motoren
sein. tp1, tft, tf3 bedeuten die Ausschläge der Drehmassen von der
Ruhelage aus gemessen, ferner:

w, re,8 n3
%, »a ;^s »3 ^=

nls ns w,j
die Uebersetzungsverhältnisse, die kleiner oder grösser als 1 sein
können. Ohne nun die etwas lange, aber nichts besonderes
bietende Ableitung an dieser Stelle vorzulegen, sei lediglich das
Endresultat gegeben.

Mit (9, — i, i2 cf2) d <p, und (9P3 — i3i2cp2) d y* erhält man
die sowohl für dtpt als auch für d cp2 geltende Differentialgleichung

:

dtp + dtpM + N=0 (34)

und daraus die der Bestimmung der gesuchten Kreisfrequenzen
6, und e, dienende charakteristische Gleichung:

e* — s*M-{.N 0 (35)

M und N haben folgende ausgeschriebenen Werte:

M -.

fcj fcg -)- i22 c2 (i32 fc, -f- i,2 k3) X

X

N:

\kj±
- \0» 0i ?aw^o

+ 0s 03

(36)

(37)

fci *s + «sa «s V K + *i3 K) L0i 0s ' 0i 0s
worin :

fc, (c, + i,2 c,2) 1

fcs (c3 + is2 c23) /
Aus den Gleichungen (36) und (37) können sofort einige

Spezialfälle abgeleitet werden, nämlich:
a) FUr ia 1 und starre Wellenstücke cia und cf3, d. h. also

für c,a ca3 0 entsteht bei rein bildlicher Umstellung das in
Abb. 8 dargestellte System, wobei Ma und Na folgende Werte
annehmen :

1
Ma I — x(Cl CS + Cl CS V + °2 *3 \*)

X

N„

(i4S+C2(ï+^-)+c*(l"+i-)
0*0» JJ0!0S ©103

(38)

(ClC8+ClC3*33 + C3C8«2l)

b) Wird i2 1 und e2 0 gesetzt, so entsteht ein System
nach Abb. 9 mit den Werten:

(32) Mb--

Nh

(c, + i2, c„)
1

0, + 0a J + K + i32 e33) L ©s +
r_ia i *.

L0.

(39)

(C1+i12CI2)(C3+is2C23) L ©.©s 0.03 0303
c) Setzen wir im voranstehenden Falle %=1 und c,a

e23 0, so rückt die Mittelmasse 02 in das bisher immer masselos

angenommene Zahnradgetriebe und zwar in das grosse Zahnrad
der langsamer laufenden Welle. Die Masse des durch die
Verzahnung starr gekuppelten Gegen-Zahnrades kann alsdann mit
entsprechender Drehzahlumrechnung ebenfalls berücksichtigt
werden. Abb. 10 zeigt das derart aufgebaute Drei-Massensystem.
Die ausgeschriebenen Ausdrücke für Mc und Nc lauten wie folgt :

Mc
1

c,

Wc

- + -

1

©Tes"B
+

1

©s J
j3

©3©3

(40)
©!©8

worin: ©a 03" -f i*0l
Diese Formeln sind in etwas anderer Form in der «Hütte»

ebenfalls zu finden. Es sei noch darauf hingewiesen, dass
allfällig in die Zahnräder eingebaute Linear-Federungen auf
entsprechende Wellenverdrehungen umgerechnet werden können und
zu den jeweils benachbarten Wellenelastizitäten c hinzuzuzählen
sind.

d) Wird in c) i 1 gesetzt, so fallen 0'3 und 0"a zu ©a

zusammen und es erscheint die altbekannte Drei-Massenformel,
die wir schon in Abschnitt I gebraucht haben, mit dem
Unterschied, dass c3 in cs umgetauft ist. Es kann deshalb darauf
verzichtet werden, die bekannten Werte M,i und Nj anzuschreiben.

e) Machen wir in Abb. 9 03 00, c3 0 und i3 1, so
ergibt sich eine Anordnung nach Abb. 11 und das Gleichungspaar

(39) geht über in das Paar

M,
(C, -f VC,2) |_©1 ^ 0S J «28 L ©8

NB
(c, +t,2C,a)Cj, L01©8

(41)

auf das wir später zurückkommen werden. Wir erkennen
übrigens, dass, wenn Gl. (41) in Gl. (35) eingesetzt und i, 1 und

c,, 0 gemacht werden, die Ausgangsgleichung (2) unserer
Betrachtungen in etwas anderer Gestalt erscheint.

f) Werden die unter a), b), c) und d) behandelten Systeme
vollkommen symmetrisch ausgebildet, so ist eine vereinfachte
Rechnung möglich. Ist beispielsweise in d)

©1 ©8 0
C1z=C,—C

so wird mit : 0a 0,

9e< t-5t L-iß- (,-5*- a"<"TJJ h'nj 's'Tg &

9*

Abb. 7

nUjTTin> A

?Ù

O '< n

Ó c<

i n
Abb. 8

et Ì.DL
O ' n« F Tf)1 o 2 a

< n

Abb. 9

Â »«'

Abb. 10

&9 Vri
Abb. 11
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Abb. 12 Abb.13

0 O 0 010 0 0 0I m-ct-z-,)—m

M,
C \ 0 +

Nf c20 + "£")= hö~]h~{^r + "ori] I
(42)

Die Auflösung der zugehörigen Gleichung (35) ergibt dann
die Kreisfrequenzen der beiden Teilschwingungen:

1

C0
e,2

1

~9 + lì
Werte, die nicht nur ohne weiteres hätten angegeben werden
können, sondern die wir auch in den eckigen Klammern von Nf
wieder erkennen. Es gilt deshalb ganz allgemein in Symmetrie-
fäUen, wenn man Nf in Ns umtauft

Ws e,2sa2 (43)
Demnach ist es gar nicht notwendig, bei dem durch die

Symmetrie hervorgerufenen Zerfall eines Drei-Massensystems
in zwei Zwei-Massensysteme zur Bestimmung der beiden Teil-
Kreisfrequenzen e, und s2 die vollständige Gleichung (35)
anzuschreiben, vorausgesetzt, dass man überhaupt den entsprechenden

unsymmetrischen Fall zum Ausgangspunkt der Rechnung
machen will.

g) Wird Gleichung (35) mit M, N, fc,, fc3 vollständig
angeschrieben, mit 03 erweitert und darin alsdann 03 0 gesetzt,
so erhält man die Kreisfrequenz des in Abb. 12 dargestellten
übersetzten Zwei-Massensystems :

1 f 1 (*,*a)a[w + (44)
(Cl + VC1S + *ia»32cs) L ©1 ' ©S

Mit i, ia 1 und c12 ca 0 erscheint schliesslich die
ganz elementare Zwei-Massenformel.

VI. Eigenschwingungen ersten Grades einer
Maschinengruppe bestehend aus einem homogenen
Motor mit beidseits angeordneten Zusatz-Drehmassen

Auf Grund der bisherigen Erklärungen ist es nun ohne
weiteres möglich, jene Aufgaben zu lösen, bei denen sich ein oder
zwei homogene Motoren in den äussern Zweigen eines Drei-
Massensystems befinden und bei denen der Knotenpunkt der
Schwingung ersten Grades ausserhalb des Motors bzw. der
Motoren liegt. Es sei nun noch die Behandlung solcher
Maschinengruppen aufgezeigt, bei denen sich ein homogener Motor
zwischen zwei Zusatz-Drehmassen befindet, und bei denen nicht
zum vornherein feststeht, auf welcher Seite des Motors der
Knotenpunkt ersten Grades liegt, oder bei denen dieser sogar
innerhalb des Motors zu erwarten ist.

I. Annahme des

zQ / Knotenpunklei

OOQOQQOQ/OQQQ

Abb.15

Abb. 15a

<¦

(i-t)c

oo

tp.-1-R) Cl-Hi'l

Ctl"-1-R7

I. AnnahmeX. Annehme e"

e2=zebooooo 5 "* ft

0 o o o o o

oAbb. w

Wenn sich der Knotenpunkt in Abb. 13 rechts befindet, so
ist die Unterteilung der Gesamtelastizität c (z — 1) der Kurbelwelle

durch die Ersatzmasse z0 gegeben durch die Werte:
cRz und c {z — 1 — Rz) (46)

wie es ohne weiteres aus Abb. 13 abgelesen werden kann. Damit
lassen sich aber auch die Elastizitäten der links- und rechtsseitig

angeschlossenen Zusatz-Drehmassen anfügen.
Läge der Knotenpunkt auf der linken Seite des Motors, so

wären einfach die beiden Teilelastizitäten (46) miteinander zu
vertauschen.

a) Das Schwingungssystem nach Abb. 14 mit beidseits des
homogenen Motors über Zahnradgetriebe angekuppelten Zusatz-
Drehmassen hat den Grundaufbau nach Abb. 9. Es kann also
mit Hilfe der Gleichungen (39) bzw. (35) untersucht werden,
wobei 03 «0 wird. Um die Reduktion des homogenen Motors
aber richtig vorzunehmen, muss man sich über die Lage des
Knotenpunktes der Schwingung ersten Grades zuerst Rechenschaft

geben. Ist i,20, trotz der Uebersetzung gegenüber Z0
klein und 03/i82 trotz der Untersetzung gegenüber z0 gross, so
liegt der Knotenpunkt innerhalb e3 oder c03. Auf Grund der
Gleichungen (46) können die in den Gleichungen (39) einzusetzenden
Elastizitäten wie folgt angeschrieben werden:

c, + iv'cla c, + i,2[e0, + c (0 — 1 — Rz)i r, 1

C3 + »33C23 C3 + *»' CC03 + C Rzi ft '
Ist umgekehrt i,20, gegenüber 00 gross und tSjig* wegen

der Untersetzung gegenüber z0 klein, so Uegt der Knotenpunkt
in c, oder c0,. Alsdann sind in Gleichung (47) die Glieder mit
Rz einfach miteinander zu vertauschen, wie bereits gesagt worden

ist. Die Abb. 14 bzw. die Gleichungen (47) schliessen
selbstredend auch die Fälle ein, bei denen i, oder i3 oder auch beide
miteinander 1 sind.

b) Wenn i,a0, und 03/i32 ungefähr gleich gross sind, kann
der erste Knotenpunkt innerhalb des Motors liegen. Die Rechnung

geht nun so vor sich, dass man den Knotenpunkt zunächst
willkürlich in einer der a-Motormassen annimmt, den linken und
rechten Teil des so aufgeteilten homogenen Motors je für sich
reduziert und so das ursprüngliche System in zwei getrennte
Zwei-Massensysteme zerlegt. Die entstehenden reduzierten Zwei-
Massensysteme haben denselben Aufbau wie Abb. 11 und sie
können deshalb auch nach dem Vorbild der Gleichungen (41)
berechnet werden. Wenn die Zahl der links bzw. rechts des
angenommenen Knotenpunktes befindlichen Motormassen mit z'
und z" bezeichnet wird, so ist bei der Art der vorgenommenen
Aufteilung der insgesamt «-Motormassen:

0 z> -f 1 -f- z" (48)
Die wirksamen Elastizitäten können in Abb. 15 sofort

angeschrieben werden, wobei an Stelle von R. die entsprechenden
Reduktionsziffern R' und R" treten, die wiederum der Tabelle 1
entnommen werden können.

FUr das linke Teilsystem wird dann:
ci + *i3CiS c, + i,2 [c0, -f c (0' — 1 — R')} =r jy

c(l + B') r,' J

und somit :

M'

N"

i r l »,'
"V~ L fc', z'y

-m \mmVa L ©l z 0 J

+ i-1
"' 0 J

Für das Teilsystem rechts ist:
V c3 + Vue,,, + c(0"
r," c(l + R")

sodass nun :

R"

M"

N"
ri" L©8 *"© J

»Y'V [_ Osz"y J

+
¦El
ra" L «"0 J

(49)

(50)

(51)

wird. Die Teilfrequenzen c und e" ersten Grades gewinnt man
wiederum aus Gleichung (35).

Wäre die Aufteilung richtig vorgenommen worden, so mussten

die für beide Teile berechneten Kreisfrequenzen s' und e"
miteinander übereinstimmen. Ist diese Uebereinstimmung nicht
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vorhanden, so muss die Rechnung für eine andere Annahme des
Knotenpunktes innerhalb des homogenen Motors wiederholt werden.

Die wahre Kreisfrequenz e und der wahre Knotenpunkt
ergeben sich dann durch lineare Interpolation nach Abb. 15 a mit
grosser Annäherung.

Systeme mit beidseits eines homogenen Motors befindlichen
Zusatz-Drehmassen lassen sich also nicht mehr ganz so einfach
und schnell berechnen wie die früher behandelten Fälle. Die
vorstehenden Untersuchungen unter a) und b), insbesondere unter
b), sollen zeigen, dass man sich aber auch in weniger häufigen
Ausnahmefällen helfen kann.

VII. Zusammenfassung
Auf Grund eines einfachen Gedankenganges wird zunächst

eine inhomogene Kolbenmaschine (Dampfmaschine mit mehreren
Zylindern verschiedener Grösse) stufenweise auf eine einzige,
dynamisch gleichwertige Masse reduziert. Die zugehörigen
Rechnungen können mit Hilfe des Diagrammes (Abb. 3), erleichtert

werden. Homogene Kolbenmaschinen (Verbrennungsmotoren)
mit bis zu zwölf Zylindern bzw. zwölf Kurbeln können indessen
ohne ein solches Diagramm, mit Hilfe einer jeder Kurbelzahl z
zugeordneten Reduktionsziffer Rz auf eine einzige Masse reduziert

werden. Die Reduktionsziffer ist der Tabelle 1 zu entnehmen.

Weiter werden für ein allgemeines Drei-Massensystem mit
Zahnradgetrieben Gleichungen zur Bestimmung der Kreisfrequenzen

ersten und zweiten Grades angegeben und daraus in
Verbindung mit dem Reduktionsverfahren für homogene Motoren
einige Anwendungen als Spezialfälle abgeleitet. Zur Erleichterung

der Rechnung sind folgende Fälle in Tabelle 3 zusammengefasst

:

1. Stationäre Maschinengruppe üblicher Bauart mit Schwungrad
und Generator.

2. Maschinengruppe mit schwerem Schwungrad am einen
und leichter Zusatz-Drehmasse am andern Ende der Kurbelwelle.

3. Schiffsmaschinengruppe mit schwerem Zahnradgetriebe
und mit untersetztem Propeller; Fahrzeug-Antrieb.

4. Plugzeugmotor mit untersetztem Propellerantrieb am einen
und mit übersetztem Laderantrieb am andern Ende der Kurbelwelle.

5. Flugzeugmotor mit untersetztem Propellerantrieb und mit
übersetztem Laderantrieb am gleichen Wellenende.

6. Symmetrische Maschinengruppe mit zwei Motoren, die
parallel auf einen zwischenliegenden Generator arbeiten.

7. Symmetrische Maschinengruppe mit zwei Motoren, die
parallel über zugehörige Getriebe auf einen gemeinsamen Generator

arbeiten.
In den Fällen 1 bis 3 können die gesuchten Kreisfrequenzen

e, und sa der Schwingungen ersten und zweiten Grades mit Hilfe
der in Tabelle 3 angegebenen M- und N-Werte aus der charak-
teristischen Gleichung :

si_gaM+N 0 (35)
berechnet werden. Dabei wird in den meisten praktischen
Anwendungsfällen s, strengrichtig und s3 mit sehr guter Annäherung

gefunden. Bedingungen für streng richtige Lösungen werden

angegeben.
In den Fällen 6 und 7 lassen sich die Ausdrücke für die

Kreisfrequenzen e, und ea unmittelbar aus der Gleichung ablesen:
tfs e,2es3 (43)

Fall 5 kann eventuell mit vertauschten Werten cRz und
c (0 — 1 — Rz) wie die Fälle 1 bis 3 berechnet werden, doch ist
nur e, brauchbar. Gegebenenfalls ist das Probierverfahren nach
Abschnitt VI unter b) anzuwenden.

Weitere Anwendungsfälle lassen sich auf Grund der
vorliegenden Untersuchungen leicht lösen.

Der expansive Beton im Wiederaufbau Frankreichs
In Fortsetzung seiner Veröffentlichungen im Jahre 1944J)

gibt Henri Lossier in «Le Génie Civil» vom 15. Oktober und 1.
November 1945 unter dem Titel : «L'Utilisation de Ciments expan-
sifs pour la réparation et la reconstruction d'ouvrages d'art
sinistrés» einen wertvollen Einblick in die Anwendungsmöglichkeiten

des expansiven Betons auf dem Gebiete der Ausbesse-
rungs- und Wiederinstandstellungsarbeiten von Bauwerken, die
durch den Krieg beschädigt oder teilweise zerstört wurden. Die
Ausführungen Dossiers sind bemerkenswert ; sie zeigen vor allem,
in welchem Umfange bereits der expansive Beton in Frankreich
zu den verschiedensten konstruktiven Problemen, die vorerst
notgedrungen mit dem Wiederaufbau zusammenhängen,
herangezogen wird. Man gewinnt den Eindruck, dass Lossier sowohl
die materialtechnischen, im besonderen die chemischen und
«dynamischen» Grundlagen, als auch die konstruktiv-technische Seite
seiner Erfindung soweit ausgebaut hat, dass er zahlreiche,
gegenwärtig für Frankreich sehr dringende Bauaufgaben mannigfacher
Art mit einfachen Mitteln zu lösen im Stande ist.

Der Mechanismus der Expansion kann reguliert werden.
Knapp nach dem Abbinden des Betons wird der Expansionspro-
zess durch intensive Befeuchtung eingeleitet, deren Dauer (5 bis
15 Tage) entsprechend der gewünschten Intensität der Expansion
bemessen und bei deren Aufhören der Expansionsprozess
automatisch und endgültig gedrosselt wird. Damit ist die Hauptforderimg

an den expansiven Beton, nämlich die quantitative
Beherrschung der Expansion, erfüllt. Lossier hat verschiedene
Kategorien von expansivem Beton geschaffen, vom schwindfreien
bis zum stark expansiven Beton mit einem Dehnungsmass von
15 mm/m. Jede Kategorie wird durch die sogen, «dynamische
Expansionskurve» charakterisiert, die, experimentell bestimmt,
den spezifischen Expansionsdruck in Abhängigkeit der Dehnung
darstellt und damit eine gewisse Analogie mit dem üblichen
Spannungs-Dehnungsdiagramm aufweist. Auf dieser Grundlage
kann den Erfordernissen entsprechend der quantitative Einsatz
des expansiven Betons abgestuft und der zu erzielenden Wirkung
angepasst werden.

In den von Lossier beschriebenen Beispielen kommt der
expansive Beton vorwiegend ohne Armierung zur Anwendung.
Der entstehende Spannungszustand ist ein solcher zweiter Art,
d. h. die erzeugte Vorspannung entsteht am Widerstand der
Auflager bzw. Widerlager gegen die Expansion, im Gegensatz
zum Widerstand, den beim armierten Expansivbeton die Armierungen

erzeugen (Spannungszustand erster Art). Die Rolle, die
Lossier hier dem expansiven Beton zuweist, ist die eines
Spannungsregulators im Sinne einer Wiederherstellung des ursprünglichen,

durch die Bombardierungsschäden gestörten Spannungs-
') Siehe diesbezgl. SBZ Bd. 124, 8. 96 (1944).

Zustandes. FUr die Gewölbe ist damit auf einfache Art und Weise
ein von hydraulischen Pressen unabhängiges Gewölbeexpansions-
Verfahren geschaffen, das bemerkenswerte technische und
wirtschaftliche Vorzüge besitzt. Das Verfahren lässt sich sowohl auf
Beton- und Eisenbeton- als auch auf Mauerwerkgewölbe ohne
wesentliche Unterschiede gleich gut anwenden. Aehnlich kann ein
an seiner Oberseite beschädigter Balken durch Behandlung mit
expansivem Beton künstlich in einen günstigeren Spannungs-
Zustand versetzt werden.

Lossier wählt fünf typische Beispiele aus : Die Wiederinstand-
stellung einer Bogenbrücke aus Mauerwerk mit elliptischen
Gewölben, eines Mauerwerkviaduktes auf hohen Pfeilern, einer
Balkenbrücke mit Kastenquerschnitt und veränderlichem
Trägheitsmoment, eines rechteckförmigen Kranbahnträgers, sowie
den Wiederaufbau einer fast vollständig zerstörten Bogenbrücke
mittels vorgespannter Eisenbetongewölbe mit schwacher Armierung.

Sämtliche Brücken sind zweigleisige Eisenbahnbrücken.
Wir beschränken uns auf einige charakteristische Hinweise. Bei
der Ausbesserung von Breschen in Gewölben wurde i. a. auf
komplizierte Gerüstkonstruktionen verzichtet zu Gunsten des
Einbaues von Hilfsbögen aus Eisenbeton, die sich im gesunden
Mauerwerk abstützen. Auf dieser Unterlage wurden die zur
Schliessung der Bresche bestimmten Gewölbeteile aus schwach
expansivem Beton hergestellt, in deren Scheitelpartie ein «Zap-
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Bild 2. Blick in den neuen Fischpass des Stauwehrs Kembs
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