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Band 127
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Nr. 1

.

Zur Berechnung der Eigenschwingungszahlen von Kurbelwellen
Dem Andenken von Ing. Carl Jegher gewidmet von H. NYFFENEGGER, Oberingenieur der SLM Winterthur

Einleitung

Zur Bestimmung der Eigenschwingungszahlen der Kurbel-
wellen von Kolbenmaschinen-Anlagen stehen ausser den klassi-
schen Berechnungsverfahren, die einen grossen rechnerischen
Aufwand erfordern, eine Reihe
von andern Verfahren zur Ver-
fiigung, von denen das Grammel-
sche!) wohl das bekannteste und
auch universalste sein diirfte.
Grammel geht davon aus, dass
die zu untersuchende Maschinen-
anlage aus einem vielzylindrigen
Kolbenmotor mit durchwegs glei-
chen Triebwerken in elastisch
gleichen Abstédnden (homogener
Motor) und beliebig vielen Zusatz-
Drehmassen zusammengesetzt ist,
die beidseitig des Motors ange-
ordnet sein konnen. Das Verfah-
ren erlaubt sdmtliche (kK — 1)
Eigenschwingungszahlen bei ins-
gesamt k schwingenden Massen
zu berechnen. Grammel bendtigt
aber ein umfangreiches Tabellen-
material und muss auch die mit
Hilfe dieser Tabellen berechneten
Funktionen aufzeichnen, um die
gesuchten Werte zu erhalten.
Weniger allgemein giiltige Ver-
fahren, die den vielzylindrigen
homogenen Motor auf irgend-
welche Art auf eine Masse redu-
zieren und die eine oder zwei Zu-
satzmassen auf einer Motorseite
einschliessen, stiitzen sich auf zum (0,+0,+65+6, )
voraus berechnete Kurvenblitter CF
und auf die Angaben von Zahlen- Cr
tafeln. Es liegt in der Natur die-
ser zuletzt genannten Verfahren,
dass nur Schwingungen ersten und zweiten Grades mit Knoten-
punkten ausserhalb des Kolbenmotors berechnet werden kon-
nen, was aber in den meisten Fillen geniigen dirfte.

Im folgenden wird gezeigt, wie die bei den eingeschrinkten
Verfahren immer notwendige Reduktion der vielen Kolben-
Triebwerkmassen auf nur eine schwingende Masse in einfachster
Weise ein fiir alle Mal durchgefiihrt werden kann und wie unter
Beniitzung einer erweiterten Dreimassenformel einige wichtige
Anwendungsfille mit einfachen rechnerischen Mitteln behandelt
werden konnen.

(0;+05)

(91'*92 *93)

(6,46, +65)

I. Das allgemeine Reduktionsverfahren

Das vorliegende Verfahren zur Berechnung der Eigen-Schwin-
gungszahl ersten Grades einer vielzylindrigen, vorldufig inhomo-
gen angenommenen Kolbenmaschine mit fester Einspannung am
rechtseitigen Ende nach Abb. 1, griindet sich auf folgende Ueber-
legungen: Wird von den Drehmassen mit den Massentridgheits-
momenten @, @, @, ... @; zundchst die Drehmasse ¢, festge-
halten, so schwingt das nach links freie, aus den beiden Dreh-
massen @, und @, sowie den beiden Federungen ¢, und ¢, be-
stehende Zweimassensystem nach Abb. la mit einer der beiden
moglichen Kreisfrequenzen ¢ und ¢';, die sich aus der bekann-
ten Dreimassenformel

8"452,K_L(__1._+ . ) : jﬁ_(,l,,_;_ _L)] +
l ¢y (&) € 2% i =3 1
1] i
¢, 0 |66y €10,
bestimmen lassen, wenn darin @, — co gesetzt wird. Gleichung 1
geht dann iiber in die Gleichung:
£40,6,0,0,— e {(6,+¢) @ + 0,6} +1=0 . . (2)

Hierin bedeuten ¢, und ¢, die Verdrehungen der Wellenstiicke
unter der Wirkung des Einheitsdrehmoments; fiir eine glatte
Ersatzwelle mit dem polaren Tridgheitsmoment J, und mit der
Lénge I ist c=1/G J, (G = Schubelastizitdtsmodul).

Das Quadrat der hier allein interessierenden Eigenschwin-
gung ersten Grades mit nur einem Knotenpunkt in der Ein-

}:0.. )

talg

1) Grammel, Ingenieur-Archiv II. Bd. 1932, III. Bd. 1932.

spannstelle findet sich dann als Auflésung der biquadratischen
Gleichung 2:
i (¢ +ﬁ) O+ 0
T 2¢,6,0,0,

_V; (6, + ) 0+ 6 2}2_ 1 Ay
\ 20, Cy 5y Uy €y Cy O By

Dieses erste Zweimassensystem nach Abb.la kann durch ein
dynamisch vollig gleichwertiges Einmassensystem gleicher Eigen-
frequenz ¢; ersetzt werden, das nach Abb. 1b aus den vereinig-
ten Massen (&, 4+ @,) besteht und dessen Ersatzelastizitédt sich
aus der Elementarformel:

1———......‘(4)

Ol —emers
€% (cq + Gq)
bestimmt.

Nun wird das erste Einmassen-Ersatzsystem mit der néch-
sten Drehmasse @, zu einem zweiten Zweimassensystem nach
Abb. 1¢c mit dem Festpunkt bei ¢, zusammengesetzt. Die Kreis-
frequenz ersten Grades g dieses Systems bestimmt sich nach
dem Vorbild der Gleichung 3, wobei an Stelle von @, und O,
die Werte (0, +0,) und @y, und an Stelle von ¢, und ¢, die
Werte c; und ¢, zu setzen sind.

Das zweite Zweimassensystem Abb.lc wird nach Abb. 1d
wiederum durch ein Einmassensystem ersetzt, dessen Masse
gleich der Summe (@, + @, + @;) ist und dessen Ersatz-Elasti-
zitdt sich aus der Gleichung:

1

e ey (6, + €a + ©O5) >
ergibt.

Dieser einfache Recbnungsgang wird, wie die Abb. le und
1f andeuten, nach rechtsschreitend fortgesetzt, bis die Kreis-
frequenz &, des letzten Zweimassen- bzw. des letzten Einmassen-
Ersatzsystems gefunden ist, womit dann auch die vielzylindrige
inhomogene Kolbenmaschine auf ein Einmassen-System mit der
Masse (@, + €5 + @3 +....0z) und mit der Elastizitdt:

1 it
£ = 2 (6)

c =
&2, (6, + Ga + 95 + -+ 0x) eE

entsprechend Abb. 1f reduziert ist.

In Wirklichkeit ist die Kurbelwelle am rechtsseitigen Ende
meist nicht fest eingespannt, sondern nach Abb.2 mit minde-
stens einer grossen Schwungmasse @, gekuppelt. Nach der alt-
bekannten Zweimassenformel ergibt sich hierbei die Kreisfre-
quenz zu:

3 el oo 5

B
¥y A s raReas A AL
lz\") O s (7
1

bzw. die sekundliche Schwingungszahl zu:

€
1’:§R_.....(8)

Abb. 2

Mit p als Ordnungszahl der Harmonischen des Drehkraft-
Diagramms findet man die kritischen Drenzahlen der Welle zu:

30 ¢ 2
nK,:W—U/mm ce el i G S S (D)

wobei fiir einfachwirkende Zweitakt-Motoren

p=—1 2 =3 "4 F0 0
fiir einfachwirkende Viertakt-Motoren

p =1 1 1 2 24 3
bzw. die zweifachen Werte fiir doppeltwirkende Maschinen zu
setzen ist. Voraussetzungsgemdiss kann dieser Rechnungsgang
nur streng richtige Resultate geben, wenn der Schwingungs-
knotenpunkt ausserhalb der Kolbentriebwerksmassen in ¢, =¢,

liegt, d. h. also wenn:

e0 == i

(COT Sl U (1 0))

Diese einfache Kontrolle empfiehlt sich vor allem dann, wenn

die Zylinderzahl gross und das Schwungrad O, verhdltnisméssig
klein ist. Bls wird sich im Verlaufe der weiteren Darlegungen
noch mehrfach Gelegenheit bieten, auf Kontrollen und ihre strenge
Erfiillung zuriickzukommen.

II. Die Reduktion inhomogener Kolbenmaschinen
mit Hilfe eines Diagramms

Das im vorangegangenen Abschnitt behandelte allgemeine
Reduktionsverfahren kann auch mit Hilfe der Verhéltniszahlen
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Bd. 127 Nr. 1

\\‘\\—
. 5 8§ 7 8 - } }/ 10
% i 11
e und = e (11)
durchgefiihrt werden. Gleichung (3) geht dann iiber in die Glei-
3 at
chung €A — B e e e (12)
¢ 6y
wobei:
149, +79) VI(1+71+7161)12 1
- o - (13)
562 8 2y, 0, l 27,0, J Y1 0

ein Ausdruck, der nur aus Verhiltniszahlen aufgebaut ist. Fiir
das erste Ersatz-Einmassensystem mit der Masse @, (1 + d,)
tritt an Stelle von Gleichung (4) die Ersatzelastizitit:
cl
@) 8y
Fiir das folgende, aus @, (1 4 ¢,) und @,, sowie aus ¢; und
¢, aufgebaute Zweimassensystem werden die Verhiltniszahlen:
= Cy @,
o =@ aLs)
gebildet und daraus der neue Wert f (y, d,) bestimmt, sodass auch:

T 1
. S e () T S e et
£ L0 6 f(ys05) % flyy 6,) F(y2 8,) (15)

bekannt wird. Die Einmassen-Ersatzelastizitdt entsprechend der
fritheren Gleichung (5) wird dann:

c 4

T @ +86) T +8) 7010, 7 (7260
usw. nach bereits erkennbarem Bildungsgesetz. Wie ersichtlich,
treten die Faktoren 1/c, @, bzw. ¢, immer wieder auf, sie kenn-
zeichnen das System in seiner absoluten Grosse.

Die Reduktion einer inhomogenen Kolbenmaschine, beispiels-
weise einer Mehrfachexpansions-Schiffsmaschine erfordert eine
beachtliche Rechenarbeit. Diese wird erleichtert, wenn die schritt-
weise zu bestimmenden Werte f (¢ () einem Diagramm, wie es
Abb. 3 darstellt, entnommen werden kénnen. Solche Berechnungen
inhomogener Maschinen diirften aber heute nur noch ganz aus-
nahmsweise durchzufiihren sein, weshalb darauf verzichtet wird,
das f (yd)-Diagramm in grésserem Masstabe und mit dichteren
0-Linien zu geben. Im {iibrigen gestaltet sich die nétigenfalls
durchzufiihrende Zahlenrechnung einfacher und iibersichtlicher
als an Hand der formalen Rechnung erscheinen mag.

o = (14)

und 0,

(16)

III. Die Reduktion homogener Kolbenmaschinen
Fiir homogene Motoren nach Abb. 4 mit z durchwegs glei-
chen Drehmassen @ und ebensovielen durchwegs gleichen Ela-
stizitdten c lasst sich die Kreisfrequenz ersten Grades mit Hilfe
der fortlaufenden Verhéltniszahlen y und ¢ bzw. der daraus ge-
bildeten Funktionswerte f, (y¢) ein fiir alle Mal zum voraus
zahlenméssig berechnen, was den besonderen Wert des Verfah-
rens ausmachen diirfte. (Der Index h ist ge-
setzt, um den homogenen Motor zu kennzeich- 20
nen.) Nach dem Vorbild der Gleichung (15)
wird, wenn man das allererste, aus @ und ¢

gebildete Einmassensystem ebenfalls an-
schreibt, die Reihe der fortlaufenden Eigen- Abb.4
frequenzen:
1 1 i
élz T = Fx TP 1
cE ce lco
1, 1 1
.,2 = — 47 i¢ e e i K
£, T fu Gy 0)) TR e T
i 1 1
& =g b (71 01 Ta (72 Bs) g Beg )
1 3
&%y :?}7(;— Fn(16,) Ta(yg 05) Fu(ys D) « oo (21 0;-1) =
ik 1
ARG o) e

wobei also allgemein

Fo=Tn(i 0) e (r20)) Ta(ys 8g) ---. Fr(y2o10.21)  (18)
Ko —2 Bt s e el

F, und K, sind Zahlenwerte, die sich bei der Rechnung un-
mittelbar ergeben und die fiir alle homogenen Motoren gleicher
Zylinderzahl gleich gross sind.

Fiihren wir noch den Wert ein:

c
Ter
so berechnet sich die Schwingung des in Abb. 4 dargestellten
homogenen z-Zylinder-Motors nach der Gleichung:

1
522——M o cnvainERhe T s e e (O] )
wie ein Einmassensystem mit der Masse
2 und mit der nunmehr ebenfalls be-
kannten Elastizitét c,.

Ist die Kurbelwelle in Wirklichkeit
rechts nicht fest eingespannt, sondern
nach Abb. 5 mit einer grossen Schwung-
masse @ versehen und ist ferner die
zwischen innerster Triebwerkmasse und
Schwungmasse vorhandene Elastizitit
nicht ¢ sondern c,, so ist noch folgende
Umrechnung notwendig: Nach Abb.5

C; =

(20)

o

ist: C; = C,— C
und damit wird die einzusetzende Ge- Abb.5
samtelastizitit
& 3
[ =oz_|-co—c—_—K—z+co—c_—:c(Kz _1)-‘-00
Setzen wir fiir den reinen Zahlenfaktor:
1
—PESIRS ) s SR e e

(1) -=
so wird schliesslich:

C: ECs —mGu CRop Coninin . s an(23)

und damit kann die Kreisfrequenz ¢, fiir homogene z-Zylinder-

Motoren mit einer Zusatz-Drehmasse sofort angeschrieben werden:
3 1 1 1

Cof—se et S R T

2 (¢, + ¢ B, {zw T Os }

Die Reduktionsziffer R, ist der fiir alle homogenen Motoren,
gleichgiiltig welcher Grésse, geltenden Tabelle 1 zu entnehmen.

(24)

Tabelle 1

Iylind.
Tahl =

R. | 0 [0,309/0,707|1,128]1,550

1 2 3 4 5 6 T 8 e O s b

1,987|2,458/2,923|3,399|3,883/4,368(4,838

Die Anwendbarkeit der Formel (24) kann nach dem Vorbild
der Ungleichung (10) kontrolliert werden. Es muss sein:
&8, =
S O P
Dariiber hinaus ldsst sich aber aus der Bedingung, dass im
Grenzfall der Schwingungsknotenpunkt gerade in die innerste
Triebwerkmasse fillt, die Gleichung aufstellen:

(25)

1 @ 1 1 1 (26)
R T N S { (—1) & J
bzw.
B iR O o) (27
T | — 0‘0 P S MR
oder, da meist —CC— = 1, darf Formel (24) beniitzt werden, solange
0
das Massenverhéltnis
Os (2 —-1)
L J N RERIE TR o o R S
20 >(1+R;_1) = (28)

mit R, 1 aus Tabelle 1. In Tabelle 2 sind nun die fiir homogene,
mit einer Schwungmasse gekuppelten z-Zylinder-Motoren zum
vornherein angebbaren Massenverhiltniszahlen zusammengefasst.
In praktischen Anwendungsfillen diirften diese Zahlenbedin-
gungen wohl ausnahmslos erfiillt sein.

Tabelle 2

Zyl.

=
Zahl 2 2 3 4 5 6 { 8 9 1011

12

0,5 0,87 /1,28 (1,70 | 2,12 | 2,56 | 3,02 | 3,49 | 3,96 4,44)4,92

e——
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IV. Eigenschwingungen ersten und zweiten Grades
einer einwelligen Maschinenanlage bestehend aus
einem homogenen Motor und zwei auf der einen
Motorseite angeordneten Zusatzdrehmassen
(Schwungrad und Generator)

o, Auf Grund der bisherigen Dar-
0, legungen lassen sich unter Beniitzung
der altbekannten Dreimassenformel
(1) die Schwingungen ersten und
zweiten Grades der in Abb. 6 darge-
stellten Maschinengruppe leicht und
rasch berechnen. Beachten wir, dass:
€, =%0=061 \

¢,=¢C +cR, =1 ()
zu setzen sind bzw. gesetzt werden, so wird mit:
e e L[S )
r L O (G2} Cas | Co G (30)
1 1 1 il
T [ 616 TG ' 00 ]
die Bestimmungsgleichung fiir &:
@A LB —0. . . . . (31)

Die Auflosung dieser biquadratischen Gleichung ist bekannt-

lich:
e [ ]
81"22V7+VT_B *

Der kleinere Wert ¢, entspricht der Schwingung ersten Grades
mit einem Knotenpunkt. Dieser liegt wohl fast ausnahmslos
ausserhalb der Zylinder-Triebwerkmassen, sodass ¢, streng richtig
gefunden wird. ¢, entspricht der Schwingung zweiten Grades mit
zwei Knotenpunkten. Diese raschere Schwingung wird solange
aus den Gleichungen (30), (31) und (32) ebenfalls streng richtig
bestimmt, als folgende Bedingung erfiillt ist:

(32)

i1 1

=

=c(l1+R._1) [ (e—1)8 ]
Dies ist nun bei vielzylindrigen Motoren vielfach oder sogar
meist nicht der Fall, da der zweite Knotenpunkt bis iiber die
innerste oder sogar zweitinnerste Triebwerkmasse nach aussen
riickt. Dennoch kann g, als sehr guter Ann#dherungswert gelten
und zwar einfach aus dem Grunde, weil die Triebwerkmassen,
die sich in der Ndhe des zweiten Knotenpunktes befinden, im
Gegensatz zu der Mehrzahl der weiter aussen liegenden Trieb-
werkmassen, die Schwingung nur ganz wenig beeinflussen. Durch-
gerechnete Vergleichsbeispiele erhérten diese Aussage.

(33)

V. Die Berechnung der Eigenschwingungen eines
verzweigten Drei-Massensystems mit Ueberset-
zungen

Fiir weitere praktische Anwendungsfille ist es niitzlich, die
Eigenschwingungen des in Abb. 7 dargestellten verzweigten Drei-
Massensystems mit Uebersetzungen zu kennen. Eine oder zwei
der drei Massen konnen hierbei homogene Vielzylinder-Motoren
sein. ¢,, ¢,, ¢, bedeuten die Ausschlége der Drehmassen von der
Ruhelage aus gemessen, ferner:

* ; Mg 110 ]
1/1— ”—13’ 12:?’ 23— nlS
die Uebersetzungsverhiltnisse, die kleiner oder grosser als 1 sein
konnen. Ohne nun die etwas lange, aber nichts besonderes bie-
tende Ableitung an dieser Stelle vorzulegen, sei lediglich das
Endresultat gegeben. i

Mit (¢, — 4,4, @) = d o, und (g — 30y py) = 4 ¢, erhélt man
die sowohl fiir 4¢, als auch fur 4 ¢, geltende Differentialglei-
chung:

dp demaN-0 (34)

und daraus die der Bestimmung der gesuchten Kreisfrequenzen
¢ und ¢, dienende charakteristische Gleichung:
& —e2M |+ N=0.
M und N haben folgende ausgeschriebenen Werte:

(35)

Abb.9

1
ki Ky 4 1,% €y (152 oy 4, Ky) .

1y it Q2 i,24,2 1
<[k (o ‘r~)+zqec., (B 5w (51 )
[ S ATE) + Oy T\ ey ©s L ©y T 2R (39)

il [i‘f 142 . . ili'i??]
ky Ky 4157 ¢, (42 Ky 46, Kg) | 0,0, 0,03 O Oy

worin:

M —=

N —

k= (¢, + ,? Cy) 1
ky = (¢; 4+ isz Cy3) f

Aus den Gleichungen (36) und (37) konnen sofort einige
Spezialfille abgeleitet werden, ndmlich:

a) Fiir i, = 1 und starre Wellenstiicke ¢, und c¢,,, d. h. also
fiir ¢,, — ¢,; — 0 entsteht bei rein bildlicher Umstellung das in
Abb. 8 dargestellte System, wobei M, und N, folgende Werte
annehmen:

(37)

it
(¢, 05+ ¢, ¢y 1% 4 €, 15 4,?)

ot B) el n) ra i+ )]
s\ g, O, 2 (‘Jx+(’/’3 + ¢ 28 +(_)—3)] (38)
1 iy2 1 42
(6 G F 0, G 1% £ 0y 6y ) [91 O 5 ©,0, i 0, (')s-]
b) Wird i, —1 und ¢, =0 gesetzt, so entsteht ein System
nach Abb. 9 mit den Werten:

it 1 [ 1 zf] i [zs 1
by (e, + 1% ¢y) | O, & 0, t (cs + 152 C35) | O, 3 0_111 (39)
1 1,2 1 i2
N = . = 3 1
1 (¢, +14,20,5) (€5 + 1% Cy3) 0,0, 0, 0, e 0,0, ]

¢) Setzen wir im voranstehenden Falle i, —1 und ¢, =
Cyy =0, 80 riickt die Mittelmasse @, in das bisher immer masselos
angenommene Zahnradgetriebe und zwar in das grosse Zahnrad
der langsamer laufenden Welle. Die Masse des durch die Ver-
zahnung starr gekuppelten Gegen-Zahnrades kann alsdann mit
entsprechender Drehzahlumrechnung ebenfalls beriicksichtigt
werden. Abb. 10 zeigt das derart aufgebaute Drei-Massensystem.
Die ausgeschriebenen Ausdriicke fur M, und N, lauten wie folgt:

N Al 1 i2 1 1 1
C“T,[Fﬁ 02]+c—3[@—g+@:]l

1 1 ik i2 (40
No = __[ i ey e :
€ Cy | Oy 0,04 €90
worin: 0, = 0, + 120,

Diese Formeln sind in etwas anderer Form in der «Hiitte»
ebenfalls zu finden. Es sei noch darauf hingewiesen, dass all-
fillig in die Zahnrédder eingebaute Linear-Federungen auf ent-
sprechende Wellenverdrehungen umgerechnet werden konnen und
zu den jeweils benachbarten Wellenelastizitidten ¢ hinzuzuzdhlen
sind.

d) Wird in c) i — 1 gesetzt, so fallen @', und @”, zu @, zu-
sammen und es erscheint die altbekannte Drei-Massenformel,
die wir schon in Abschnitt I gebraucht haben, mit dem Unter-
schied, dass ¢, in ¢, umgetauft ist. Es kann deshalb darauf ver-
zichtet werden, die bekannten Werte M,; und N, anzuschreiben.

e) Machen wir in Abb.9 @, — co, ¢; =— 0 und i; =1, so er-
gibt sich eine Anordnung nach Abb. 11 und das Gleichungs-
paar (39) geht {iber in das Paar

- 1 [1+i,?]+1[1]
S5 (oo @ o Co3 | Oy

%= e e
(€, + 4,2Cy3) Co3 | 010y
auf das wir spiter zuriickkommen werden. Wir erkennen iibri-
gens, dass, wenn Gl (41) in Gl. (35) eingesetzt und i, =1 und
¢,, — 0 gemacht werden, die Ausgangsgleichung (2) unserer
Betrachtungen in etwas anderer Gestalt erscheint.

f) Werden die unter a), b), ¢) und d) behandelten Systeme
vollkommen symmetrisch ausgebildet, so ist eine vereinfachte
Rechnung moglich. Ist beispielsweise in d)

6= 03 =06

(41)

C,=0C=C

(“9 = @s

so wird mit:
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Ba 2N 1

2 3
a1 ks Mg s
f 0[(-)+e)s]

Gl 2lok sl Aol G % ](42)
N’*?(—)(W“L(-/s)_tw][01<')+”'s}]

Die Auflosung der zugehorigen Gleichung (35) ergibt dann
die Kreisfrequenzen der beiden Teilschwingungen :

e 82_1[1+2]
LN CH o S 5T Os

Werte, die nicht nur ohne weitéres hitten angegeben werden
konnen, sondern die wir auch in den eckigen Klammern von Ny
wieder erkennen. Es gilt deshalb ganz allgemein in Symmetrie-
fdllen, wenn man Ny in Ng umtauft

INGE— e a2 sl a s Rt s (43)

Demnach ist es gar nicht notwendig, bei dem durch die
Symmetrie hervorgerufenen Zerfall eines Drei-Massensystems
in zwei Zwei-Massensysteme zur Bestimmung der beiden Teil-
Kreisfrequenzen ¢ und & die vollstédndige Gleichung (35) anzu-
schreiben, vorausgesetzt, dass man iiberhaupt den entsprechen-
den unsymmetrischen Fall zum Ausgangspunkt der Rechnung
machen will.

g) Wird Gleichung (35) mit M, N, k,, k; vollstdndig ange-
schrieben, mit @, erweitert und darin alsdann @, = 0 gesetzt,
so erhdlt man die Kreisfrequenz des in Abb. 12 dargestellten
ibersetzten Zwei-Massensystems:

i i.)2
(7'1 1’2)_:| 5 (44)

5 1 1
3 A (e, + 4,2¢,5 + 1,20,2¢,) I:V()T (2
Mit i, =4, =1 und c¢,, = ¢, = 0 erscheint schliesslich die
ganz elementare Zwei-Massenformel.

VI. Eigenschwingungen ersten Grades einer Ma-
schinengruppe bestehend aus einem homogenen
Motor mit beidseits angeordneten Zusatz-Dreh-
massen

Auf Grund der bisherigen Erkldrungen ist es nun ohne wei-
teres moglich, jene Aufgaben zu lésen, bei denen sich ein oder
zwei homogene Motoren in den &ussern Zweigen eines Drei-
Massensystems befinden und bei denen der Knotenpunkt der
Schwingung ersten Grades ausserhalb des Motors bzw. der
Motoren liegt. Es sei nun noch die Behandlung solcher Maschi-
nengruppen aufgezeigt, bei denen sich ein homogener Motor
zwischen zwei Zusatz-Drehmassen befindet, und bei denen nicht
zum vornherein feststeht, auf welcher Seite des Motors der
Knotenpunkt ersten Grades liegt, oder bei denen dieser sogar
innerhalb des Motors zu erwarten ist.

9 I. Annahine des
Knotenpunktes
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Wenn sich der Knotenpunkt in Abb. 13 rechts befindet, so
ist die Unterteilung der Gesamtelastizitit ¢ (2 — 1) der Kurbel-
welle durch die Ersatzmasse 2@ gegeben durch die Werte:

cR undici(z — 1 - R ) iians i i (16)
wie es ohne weiteres aus Abb. 13 abgelesen werden kann. Damit
lassen sich aber auch die Elastizititen der links- und rechts-
seitig angeschlossenen Zusatz-Drehmassen anfiigen.

Lédge der Knotenpunkt auf der linken Seite des Motors, so
wiren einfach die beiden Teilelastizititen (46) miteinander zu
vertauschen.

a) Das Schwingungssystem nach Abb. 14 mit beidseits des
homogenen Motors iiber Zahnradgetriebe angekuppelten Zusatz-
Drehmassen hat den Grundaufbau nach Abb.9. Es kann also
mit Hilfe der Gleichungen (39) bzw. (35) untersucht werden,
wobei @, — 2@ wird. Um die Reduktion des homogenen Motors
aber richtig vorzunehmen, muss man sich iiber die Lage des
Knotenpunktes der Schwingung ersten Grades zuerst Rechen-
schaft geben. Ist 4,2@, trotz der Uebersetzung gegeniiber z@
klein und @,/i,* trotz der Untersetzung gegeniiber z@ gross, so
liegt der Knotenpunkt innerhalb ¢, oder ¢,,. Auf Grund der Glei-
chungen (46) konnen die in den Gleichungen (39) einzusetzenden
Elastizitdten wie folgt angeschrieben werden:

¢, +i2cy,=0¢ +i%lc, +¢c(2—1—_R,)] =1, } (a7
Cs + 1%Cyy = €3 + 42 [C)y 4 CR.] =1y

Ist umgekehrt i,2¢, gegeniiber 2@ gross und €,/i,2 wegen
der Untersetzung gegeniiber 2 klein, so liegt der Knotenpunkt
in ¢, oder ¢, . Alsdann sind in Gleichung (47) die Glieder mit
R, einfach miteinander zu vertauschen, wie bereits gesagt wor-
den ist. Die Abb. 14 bzw. die Gleichungen (47) schliessen selbst-
redend auch die Fiélle ein, bei denen i, oder i, oder auch beide
miteinander — 1 sind.

b) Wenn 2@, und @,/i,2 ungefdhr gleich gross sind, kann
der erste Knotenpunkt innerhalb des Motors liegen. Die Rech-
nung geht nun so vor sich, dass man den Knotenpunkt zunichst
willkiirlich in einer der z-Motormassen annimmt, den linken und
rechten Teil des so aufgeteilten homogenen Motors je fiir sich
reduziert und so das urspriingliche System in zwei getrennte
Zwei-Massensysteme zerlegt. Die entstehenden reduzierten Zwei-
Massensysteme haben denselben Aufbau wie Abb. 11 und sie
konnen deshalb auch nach dem Vorbild der Gleichungen (41)
berechnet werden. Wenn die Zahl der links bzw. rechts des an-
genommenen Knotenpunktes befindlichen Motormassen mit 2’
und 2" bezeichnet wird, so ist bei der Art der vorgenommenen
Aufteilung der insgesamt z-Motormassen:

2 g E i fa ORI (s LS (48)

Die wirksamen Elastizititen kénnen in Abb. 15 sofort ange-
schrieben werden, wobei an Stelle von R, die entsprechenden
Reduktionsziffern R’ und R’ treten, die wiederum der Tabelle 1
entnommen werden konnen.

Fiir das linke Teilsystem wird dann:

¢ + %y, =¢ + 4iley + ¢ (® —1—R)] = 1 } (49)
¢y =¢(1 4+ R') g i
und somit:
2.2
Pt [_L+ z}W e 1 [ 1 ]
i o &Y Tl LSO 05 (00)
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Ty | € R
Fiir das Teilsystem rechts ist:
n'' =0 + 4?lcy + ¢ (2" —1— R")] } (581)
7y =c(1 4+ Rv)

sodass nun:
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wird. Die Teilfrequenzen ¢ und ¢ ersten Grades gewinnt man
wiederum aus Gleichung (35).

Wire die Aufteilung richtig vorgenommen worden, so miiss-
ten die fiir beide Teile berechneten Kreisfrequenzen ¢ und s
miteinander iibereinstimmen. Ist diese Uebereinstimmung nicht
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vorhanden, so muss die Rechnung fiir eine andere Annahme des
Knotenpunktes innerhalb des homogenen Motors wiederholt wer-
den. Die wahre Kreisfrequenz ¢ und der wahre Knotenpunkt
ergeben sich dann durch lineare Interpolation nach Abb. 15a mit
grosser Anndherung.

Systeme mit beidseits eines homogenen Motors befindlichen
Zusatz-Drehmassen lassen sich also nicht mehr ganz so einfach
und schnell berechnen wie die frither behandelten Félle. Die vor-
stehenden Untersuchungen unter a) und b), insbesondere unter
b), sollen zeigen, dass man sich aber auch in weniger hiufigen
Ausnahmefillen helfen kann.

VII. Zusammenfassung

Auf Grund eines einfachen Gedankenganges wird zunéchst
eine inhomogene Kolbenmaschine (Dampfmaschine mit mehreren
Zylindern verschiedener Grosse) stufenweise auf eine einzige,
dynamisch gleichwertige Masse reduziert. Die zugehorigen
Rechnungen konnen mit Hilfe des Diagrammes (Abb. 3), erleich-
tert werden. Homogene Kolbenmaschinen (Verbrennungsmotoren)
mit bis zu zwolf Zylindern bzw. zwolf Kurbeln kdénnen indessen
ohne ein solches Diagramm, mit Hilfe einer jeder Kurbelzahl z
zugeordneten Reduktionsziffer R, auf eine einzige Masse redu-
ziert werden. Die Reduktionsziffer ist der Tabelle 1 zu entneh-
men. Weiter werden fiir ein allgemeines Drei-Massensystem mit
Zahnradgetrieben Gleichungen zur Bestimmung der Kreisfre-
quenzen ersten und zweiten Grades angegeben und daraus in
Verbindung mit dem Reduktionsverfahren fiir homogene Motoren
einige Anwendungen als Spezialfille abgeleitet. Zur Erleichte-
rung der Rechnung sind folgende Félle in Tabelle 3 zusammen-
gefasst:

1. Stationdre Maschinengruppe liblicher Bauart mit Schwung-
rad und Generator.

Der expansive Beton im Wiederaufbau Frankreichs

In Fortsetzung seiner Verodffentlichungen im Jahre 19441)
gibt Henri Lossier in «Le Génie Civil» vom 15. Oktober und 1. No-
vember 1945 unter dem Titel: «L’Utilisation de Ciments expan-
sifs pour la réparation et la reconstruction d’ouvrages d’art
sinistrés» einen wertvollen Einblick in die Anwendungsmoglich-
keiten des expansiven Betons auf dem Gebiete der Ausbesse-
rungs- und Wiederinstandstellungsarbeiten von Bauwerken, die
durch den Krieg beschidigt oder teilweise zerstort wurden. Die
Ausfithrungen Lossiers sind bemerkenswert; sie zeigen vor allem,
in welchem Umfange bereits der expansive Beton in Frankreich
zu den verschiedensten konstruktiven Problemen, die vorerst
notgedrungen mit dem Wiederaufbau zusammenhédngen, heran-
gezogen wird. Man gewinnt den Eindruck, dass Lossier sowohl
die materialtechnischen, im besonderen die chemischen und «dyna-
mischen» Grundlagen, als auch die konstruktiv-technische Seite
seiner Erfindung soweit ausgebaut hat, dass er zahlreiche, gegen-
wértig fiir Frankreich sehr dringende Bauaufgaben mannigfacher
Art mit einfachen Mitteln zu 16sen im Stande ist.

Der Mechanismus der Expansion kann reguliert werden.
Knapp nach dem Abbinden des Betons wird der Expansionspro-
zess durch intensive Befeuchtung eingeleitet, deren Dauer (5 bis
15 Tage) entsprechend der gewiinschten Intensitidt der Expansion
bemessen und bei deren Aufhdren der Expansionsprozess auto-
matisch und endgiiltig gedrosselt wird. Damit ist die Hauptfor-
derung an den expansiven Beton, ndmlich die quantitative Be-
herrschung der Expansion, erfiillt. Lossier hat verschiedene
Kategorien von expansivem Beton geschaffen, vom schwindfreien
bis zum stark expansiven Beton mit einem Dehnungsmass von
15 mm/m. Jede Kategorie wird durch die sogen. «dynamische
Expansionskurve» charakterisiert, die, experimentell bestimmt,
den spezifischen Expansionsdruck in Abhédngigkeit der Dehnung
darstellt und damit eine gewisse Analogie mit dem {iblichen
Spannungs-Dehnungsdiagramm aufweist. Auf dieser Grundlage
kann den Erfordernissen entsprechend der quantitative Einsatz
des expansiven Betons abgestuft und der zu erzielenden Wirkung
angepasst werden.

In den von Lossier beschriebenen Beispielen kommt der
expansive Beton vorwiegend ohne Armierung zur Anwendung.
Der entstehende Spannungszustand ist ein solcher zweiter Art,
d. h. die erzeugte Vorspannung entsteht am Widerstand der
Auflager bzw. Widerlager gegen die Expansion, im Gegensatz
zum Widerstand, den beim armierten Expansivbeton die Armie-
rungen erzeugen (Spannungszustand erster Art). Die Rolle, die
Lossier hier dem expansiven Beton zuweist, ist die eines Span-
nungsregulators im Sinne einer Wiederherstellung des urspriing-
lichen, durch die Bombardierungsschédden gestérten Spannungs-

1) Siehe diesbezgl. SBZ Bd. 124, S. 95 (1944).

2. Maschinengruppe mit schwerem Schwungrad am einen
und leichter Zusatz-Drehmasse am andern Ende der Kurbelwelle.

3. Schiffsmaschinengruppe mit schwerem Zahnradgetriebe
und mit untersetztem Propeller; Fahrzeug-Antrieb.

4. Flugzeugmotor mit untersetztem Propellerantrieb am einen
und mit libersetztem Laderantrieb am andern Ende der Kurbel-
welle.

5. Flugzeugmotor mit untersetztem Propellerantrieb und mit
iibersetztem Laderantrieb am gleichen Wellenende.

6. Symmetrische Maschinengruppe mit zwei Motoren, die
parallel auf einen zwischenliegenden Generator arbeiten.

7. Symmetrische Maschinengruppe mit zwei Motoren, die
parallel iiber zugehorige Getriebe auf einen gemeinsamen Gene-
rator arbeiten.

In den Fillen 1 bis 3 kdnnen die gesuchten Kreisfrequenzen
¢ und g der Schwingungen ersten und zweiten Grades mit Hilfe
der in Tabelle 3 angegebenen M- und N-Werte aus der charak-
teristischen Gleichung : s el Nag R e

berechnet werden. Dabei wird in den meisten praktischen An-
wendungsféllen & strengrichtig und & mit sehr guter Anndhe-
rung gefunden. Bedingungen fiir streng richtige Lésungen wer-
den angegebhen.

In den Féllen 6 und 7 lassen sich die Ausdriicke fiir die
Kreisfrequenzen ¢ und ¢, unmittelbar aus der Gleichung ablesen:

Nigi—igide 2=t (43)

Fall 5 kann eventuell mit vertauschten Werten c¢R, und
¢(2 —1 — R;) wie die Fille 1 bis 3 berechnet werden, doch ist
nur ¢ brauchbar. Gegebenenfalls ist das Probierverfahren nach
Abschnitt VI unter b) anzuwenden.

Weitere Anwendungsfélle lassen sich auf Grund der vorlie-
genden Untersuchungen leicht 16sen.

Zustandes. Fiir die Gewdlbe ist damit auf einfache Art und Weise
ein von hydraulischen Pressen unabhéngiges Gewdlbeexpansions-
Verfahren geschaffen, das bemerkenswerte technische und wirt-
schaftliche Vorziige besitzt. Das Verfahren ldsst sich sowohl auf
Beton- und Eisenbeton- als auch auf Mauerwerkgewdlbe ohne
wesentliche Unterschiede gleich gut anwenden. Aehnlich kann ein
an seiner Oberseite beschiddigter Balken durch Behandlung mit
expansivem Beton kiinstlich in einen giinstigeren Spannungs-
Zustand versetzt werden.

Lossier wéhlt fiinf typische Beispiele aus: Die Wiederinstand-
stellung einer Bogenbriicke aus Mauerwerk mit elliptischen
Gewdlben, eines Mauerwerkviaduktes auf hohen Pfeilern, einer
Balkenbriicke mit Kastenquerschnitt und verénderlichem Trig-
heitsmoment, eines rechteckféormigen Kranbahntrigers, sowie
den Wiederaufbau einer fast vollstdndig zerstdrten Bogenbriicke
mittels vorgespannter Eisenbetongewdlbe mit schwacher Armie-
rung. Sdmtliche Briicken sind zweigleisige Eisenbahnbriicken.
Wir beschréinken uns auf einige charakteristische Hinweise. Bei
der Ausbesserung von Breschen in Gewdlben wurde i. a. auf
komplizierte Geriistkonstruktionen verzichtet zu Gunsten des
Einbaues von Hilfsbogen aus Eisenbeton, die sich im gesunden
Mauerwerk abstiitzen. Auf dieser Unterlage wurden die zur
Schliessung der Bresche bestimmten Gewdlbeteile aus schwach
expansivem Beton hergestellt, in deren Scheitelpartie ein «Zap-

Bild 2. Blick in den neuen Fischpass des Stauwehrs Kembs
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