Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 127/128 (1946)

Heft: 22

Artikel: Zur Nachahmung von Volumkräften bei spannungsoptischen

Versuchen

Autor: Baud, R.V.

DOI: https://doi.org/10.5169/seals-83945

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Nr. 22

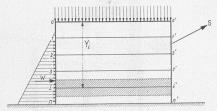
Zur Nachahmung von Volumkräften bei spannungsoptischen Versuchen Von Ing. Dr. R. V. BAUD, EMPA, Zürich

1. Allgemeines

Band 128

In der Mechanik unterscheidet man bekanntlich zwei Arten von äussern Kräften, die auf einen Körper wirken: Die Oberflächenkräfte und die Volumkräfte. Während die Oberflächenkräfte (Einzelkräfte, hydrostatischer Druck) nur an der Oberfläche des Körpers angreifen, wirken die Volumkräfte (Gravitationskräfte, magnetische Kräfte, kinetische Kräfte) verteilt auf den ganzen Körper, d. h. auf ein jedes seiner Volumelemente.

Schon die modellmässige Nachahmung der Oberflächenkräfte bereitet oft genug beträchtliche Schwierigkeiten1); in noch viel grösserem Masse trifft dies für Volumkräfte zu. Die nachfolgenden Ausführungen beschränken sich zwecks Vereinfachung der Ausführungen auf «Eigengewichtskräfte» (wie Volumkräfte im Fall, dass es sich um Erdbeschleunigung handelt, auch genannt werden), gelten aber grundsätzlich für alle Arten solcher Kräfte.


Die nächstliegende Lösung derartiger Probleme wäre die, dass man Modelle bestimmter Dichte benützt, und diese Dichte derart bemisst, dass das Gewicht des Modells sich zum Bauobjekt gleich verhält, wie die Modelloberflächenkräfte zu den wirklichen Oberflächenkräften?). Dieser Weg ist bei spannungsoptischen Versuchen nicht gangbar, da einerseits die zur Verfügung stehenden durchsichtigen Materialien von relativ geringer Dichte sind, anderseits die Modellkräfte nicht nach Belieben klein gewählt werden können, da die hierdurch verursachten Spannungen unmessbar klein würden.

Da also die Modellvolumkräfte bei spannungsoptischen Versuchen viel zu gering sind, ja in der Regel mit Recht als vernachlässigbar klein angesehen werden, scheint zunächst keine andere Lösungsmöglichkeit zu bestehen, als die, dass an jedes Volumelement eine seiner Volumkraft entsprechende Fremdkraft angebracht wird. Eine Nachahmung in diesem Sinne ist jedoch praktisch nur so denkbar, dass man an Stelle der vielen Volumelemente einige wenige Körperpartien abgrenzt und eine entsprechende Anzahl in den betreffenden Schwerpunkten wirkender Einzelkräfte anbringt3).

Die Schwierigkeit dieses Verfahrens liegt hauptsächlich in der Aufbringung der Kräfte, der Kompliziertheit der Belastungsapparatur und der eventuellen Behinderung des Strahlenganges. Immerhin sind Aufgaben denkbar, die sich auf diese Weise befriedigend lösen lassen.

Die oben erwähnten Schwierigkeiten lassen sich nun in gewissen, hierfür günstigen Fällen durch die Last-Streifenmethode überwinden. Das Prinzip derselben besteht darin, dass man die Volumkräfte als variable Oberflächenkräfte anbringt, derart, dass deren jeweilige Grösse dem auszumessenden Modellschnittbzw. -Streifen entspricht.

Bild 1 (rechts). Schematische Darstellung der Last-Streifenmethode, angewandt auf den Fall der Modelluntersuchung des Stauwehrpfeilers des Kraftwerks Rupperswil-Auenstein, s. S. 225 lfd. Bds.

Von dieser für die Lösung von Eigengewichts- und kinetischen Problemen usw. bedeutsamen Möglichkeit wurde auch in sehr eingeschränktem Masse -- erstmalig bei einer ergänzenden, den Stauwehrpfeiler des Kraftwerkes Rupperswil-Auenstein betreffenden spannungsoptischen Studie Gebrauch ge-

Vgl. die diesbezüglichen Ausführungen auf S. 226 des lfd. Bds., soy egt. die dieseezuglichen Ausfuhrungen auf is. 220 des hd. Eds., 200 wie R. V. Baud «Modellversuche an Scheiben mit stetiger Randbeanspruchung», SBZ Bd. 120, S. 239* (21. Nov. 1942). — Interessanterweise sind Kräfte, die sich auf relativ grosse Flächen nach einfachen Gesetzen verteilen, mathematisch meist noch gut erfassbar, während die Nachahmung solcher Kräfte experimentell bereits schon grosse Schwierigkeiten bereitet. Umgekehrt bedingen relativ konzentrierte Kräite bei exakter elastizitätstheo-retischer Lösung einen grossen mathematischen Aufwand, lassen sich dagegen experimentell meist genügend genau relativ einfach nachahmen.

 $^2)$ Im Beispiel Abschnitt 3 müsste beispielsweise das Gewicht des Modells oberhalb Schnitt I—I 1778 · 10 3 · 1,3854 · 10 $^{-4}=246,32\,\rm kg$ betragen.

³⁾ Eine solche Abgrenzung in Einzelteile erfolgte heispielsweise bei einer kürzlich durch den Verfasser ausgeführten spannungsoptischen Untersuchung der Befestigung von Magnetpolen am Rotor eines Genera-tors; allerdings betraf die Unterteilung auf die beschriebene Weise den Pol, während primär die Spannungen des Radkranzes, hauptsächlich die-jenigen der Polklauenöffnung zu ermitteln waren.

macht⁴). Diese Ergänzung möge deshalb sowohl als nähere Erklärung, als auch als Anwendungsbeispiel dienen.

2. Nähere Beschreibung der Methode

Das zu untersuchende Bauwerk (Bild 1) sei beispielsweise durch die Oberflächenkräfte $S \equiv$ konstant, $W \equiv$ konstant, sowie durch sein Eigengewicht E belastet. Letzteres, obwohl eine integrale Volumkraft darstellend, wird nun gemäss der in Abschnitt 1 skizzierten Methode als eine weitere, und zwar auf die Oberkante o - o' wirkende Oberflächenkraft gedacht. Um den Spannungszustand in einem beliebigen der n gelegten Schnitte, z. B. im Schnitt i-i' zu erhalten, ist als $\ddot{a}ussere$ Gewichtskraft E_i das über dem Schnitt i=i' liegende Eigengewicht des Bauwerkszu nehmen.

Beim Modellversuch verfährt man wie eben beschrieben, d. h. S_M und W_M werden konstant gehalten, $E_{i\,M}$ dagegen wird variiert. Es ist hierbei lediglich darauf zu achten, dass sich E_{iM} : E_i gleich wie z. B. S_M : S verhält. Die Ausmessung kann punktweise, Schnitt für Schnitt, geschehen.

Als eigentliche Last-Streifenmethode wäre dasjenige angenäherte, jedoch schnellere und den Bedürfnissen der Praxis besser Rechnung tragende Verfahren zu bezeichnen, bei dem man unter Anwendung der flächenhaften Methodik 5) — jeweils auf ein Mal einen ganzen Streifen ausmisst, z.B. den schraffierten Streifen in Bild 1. Dieses Verfahren bedingt allerdings eine nachträgliche Korrektur hinsichtlich des an den Uebergängen von Streifen zu Streifen gebrochenen Kurvenverlaufs. Je grösser man die Anzahl der Streifen wählt, umso geringer wird diese Korrektur, umso grösser ist also auch die Genauigkeit des Verfahrens.

3. Anwendungsbeispiel

Stauwehrpfeiler des Kraftwerkes Rupperswil-Auenstein, vgl. S. 225 lfd. Bds.

a) Aufzählung der zusätzlich nachgeahmten Kräfte. Ausser den bisher bei dieser spannungsoptischen Studie modellmässig nachgeahmten Kräften S und W wurden bei dem hier beschriebenen Ergänzungsversuch zusätzlich berücksichtigt: Das Eigengewicht des Pfeilers E, der Auftrieb A, das Gewicht der Schütze in Verschlusstellung $P_{\scriptscriptstyle 1}$, das Gewicht der Winden und des Windenhauses $P_{\scriptscriptstyle 2}$ und das Gewicht der Wehrbrücke $P_{\scriptscriptstyle 3}$. Von Seiten der Bauleitung war das Eigengewicht E in 14 Einzelgewichte g_1 bis g_{14} gemäss Bild 2 zerlegt angegeben, sodass gewissermassen 18 Einzelkräfte zusätzlich nachzuahmen waren.

b) Beschränkung der Versuchsreihe; Belastungsapparatur; Modellbelastung. Im Einklang mit den in Abschnitt 1 und 2 gemachten Ausführungen wäre eine Versuchsreihe $^{\rm g}$) mit g_1 bis $g_{14}=$ variabel entsprechend dem jeweiligen Schnitt i=i, übrige Kräfte = konstant, auszuführen gewesen. Zeithalber beschränkte man sich auf einen einzigen zusätzlichen Versuch, bei dem das Eigengewicht des Pfeilers auf ein Mal, d. h. in voller Grösse, entsprechend Schnitt n=n' (Bild 1) nachgeahmt wurde. Da infolgedessen eine Unterscheidung zwischen variabeln und konstanten Vertikalkräften nicht mehr notwendig war, wurden sie unterschiedslos zusammengefasst. Um den Versuch weder zu primitiv, noch zu kompliziert zu gestalten, fasste man die 18 Vertikalkräfte zu vier Einzellasten zusammen, vgl. Tabelle 1 und Bild 3. Beim Versuch erfolgte eine weitere Zusammenfassung zu einer einzigen Vertikallast G_M mittels des in Bild 4 dargestellten Hebelsystems. Bild 5 zeigt die Gesamtansicht der beim Versuch benützten Belastungsapparatur.

Die Kraft S_M wurde in diesem Ergänzungsversuch willkürlich zu 133 kg gewählt. Die andern Lasten, d. h. W, G bzw. G, bis G_4 waren dementsprechend ebenfalls im Verhältnis

$$\frac{S_M}{S} = \frac{133}{960\,000} = 1,3854 \times 10^{-4}$$

4) Siehe S. 225 lfd. Bds. Seither erfuhr die Last-Streifenmethode durch den Verfasser versuchsweise eine interessante Abwandlung bei einem einen Flugzeugholm betreffenden spannungsoptischen Schubversuch; bei diesem Versuch wurde die Scherkraft ihrer Grösse nach konstant gehalihrer Lage nach aber variiert und die Spannungsrichtungen Streifen für Streifen bestimmt.

für Streifen bestimmt. §) R. V. Baud: «Entwicklung und heutiger Stand der Photoelastizität und der Photoplastizität im Rahmen der Gesamtexperimentalelastizitäts, Schweizer Archiv. 4. Jahrgang, Nr. 1 und 2, Januar und Februar 1938, Bericht Nr. 118 der EMPA. — Es wird in diesem Zusammenhang speziell auf Abschnitt II c, S. 12 bis 14 bzw. S. 14 bis 16 hingewiesen. §) In diesem Falle hätte man entweder die Kräfte P_1 bis P_3 von den Eigengewichten trennen, oder aber den Belastungsmechanismus gemäss Bild 4, bzw. die Hebellängen den jeweiligen Kraftgrössen anpassen müssen

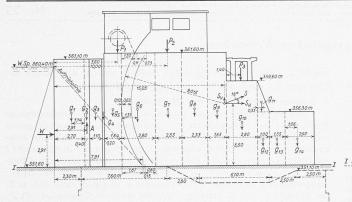


Bild 2. Zusammenstellung aller auf den Pfeiler oberhalb der Fundamentoberkante I-I wirkenden, im Versuch nachgeahmten Kräfte

Tabelle 1. Zusammenfassung der in Wirklichkeit wirkenden Eigengewichtslasten g_1 bis g_{14} , der Einzellasten P_1 bis P_3 und des Auftriebes A zu den Kräften G_1 bis G_4 . — Alle Kräfte in t

Vertika	Anteile zu den Kräften				
Bezeichnung	Grösse	G_1	G_2	G_3	G_4
$g_{_1}$	272	272			
$g_{_2}$	51	51			
$g_{_3}$	102	102			
$g_{_4}$	26	26			
g_5^*	221	221			
$g_{\scriptscriptstyle 6}$	287	130	157	1000	
g_7	181		181		
g_8	181		181		
g_{g}	128		128		
g_{10}	162			162	
g_{11}	11			5,5	5,
g_{12}	37			18,5	18,
$g_{_{13}}$	49				49
g_{14}	70				70
P_1	55	55			
$\stackrel{\scriptscriptstyle{1}}{P_{2}}$	50	25	25		
P_3	145			145	
$\stackrel{-3}{A}$	— 124	-124			
Total	1 904	758	672	331	143

Total von g_1 bis g_{14} : E = 1778 Tonnen.

zu reduzieren. Die sich so ergebenden Modellkräfte sind zusammen mit den in Wirklichkeit wirkenden Kräften in Tabelle 2 angegeben.

c) Versuchsergebnisse und Interpretation. Die Messungen beschränkten sich auf die Ermittlung der Hauptspannungsrichtungen. Diese sind in Bild 6 in Form von Hauptspannungstrajektorien wiedergegeben.

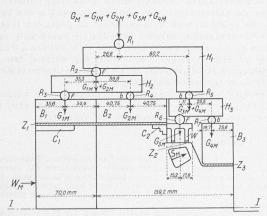


Bild 4. Zusammenfassung der vier vertikalen Einzelkräfte $G_{1\,M}$ bis $G_{4\,M}$ gemäss Bild 3 zu einer einzigen, resultierenden Vertikalkraft G_M . H_1 bis H_3 Hebel (Stahl), R_1 bis R_7 Rollen (Stahl), B_1 bis B_3 Belastungsstücke (Celluloid), C_1 , C_3 Ausfüllstück zum Ausgleich (Celluloid), Z_1 bis Z_2 Zwischenlagen (Gummi) zur bessern Lastverteilung, W Wehrbrückenmodell (Stahl), f fest, b beweglich

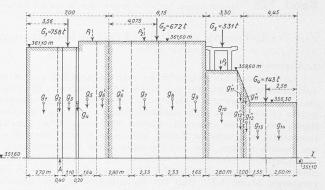


Bild 3. Zusammenfassung der 18 Vertikallasten zu vier vertikalen Einzelkräften

Tabelle 2. Zusammenstellung der in Wirklichkeit auf das Bauwerk und der auf das Modell wirkenden Kräfte. Alle Kräfte in kg

Wirklichkeit		Modell		
Bezeichnung	Grösse	Bezeichnung	Grösse	
S	960 000	S_M	133,00	
W	209 000	W_M	29,00	
G_1	758 000	G_{1M}	105,00	
G_2	672 000	G_{2M}	93,10	
G_3	331 000	G_{3M}	45,85	
G_4	143 000	$G_{4\ M}$	19,80	
$G = \Sigma G_i$	1 904 000	$G_M = \Sigma G_{iM}$	263,75	

Zieht man die früheren Ergebnisse gemäss S. 227 bis 230 des lfd. Bds. zusätzlich in Betracht, so kann man sagen, dass bei dieser Untersuchung — wenn auch in beschränktem Ausmasse — die Last-Streifenmethode zur Anwendung gelangte, nämlich für die zwei Extremfälle $G_{\rm M}=0$ und $G_{\rm M}=263,75$ kg. Der erste, früher beschriebene Versuch gilt angenähert für die ganze obere Pfeilerhälfte. Genau ist er nur für einen schmalen Streifen am obern Rand gültig (wobei allerdings die Kräfte P_1 bis P_3 nicht mitberücksichtigt sind). Der zweite, ergänzende, in der vorliegenden Studie beschriebene Versuch gilt angenähert für die ganze untere Pfeilerhälfte; genau nur für einen gleich-

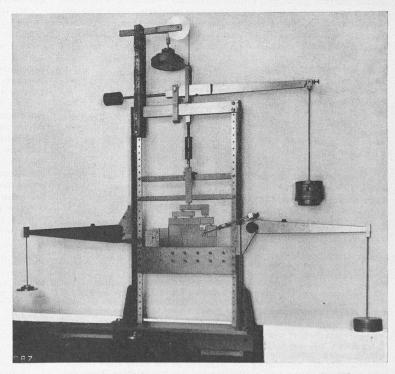
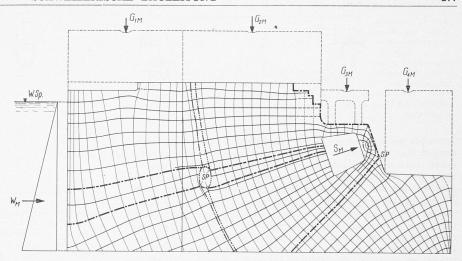



Bild 5. Versuchsanordnung. Oberer Hebel für die vertikale Druckkraft G_M Die Gewichte links oben dienen zum Gewichtsausgleich der Eigengewichte des Hebels und des Druckstempels

falls schmalen, durch den Einspannquerschnitt I — I nach unten begrenzten Streifen.

d) Verdankung. Die Ausführung der geschilderten Modelluntersuchung des Stauwehrpfeilers Rupperswil-Auenstein erfolgte unter Mithilfe von R. Kumli (Modellherstellung, Assistenz bei den Messungen), Ing. Dr. Schasly (Planstudien, Entwurf, Auswertung und zeichnerische Darstellung der Versuchsergebnisse), B. Meier und G. Trombik (Durchsicht des Manuskriptes), denen der Verfasser auch an dieser Stelle seinen Dank aussprechen möchte.

Bild 6 (rechts). Hauptspannungstrajektorien für die Belastung durch die Kräfte S_M , W_M und G_{1M} bis G_{4M} . Einzelheiten wie in Bild 13, siehe S. 228 lfd. Bds.

Neuere schweizerische Vermessungsinstrumente Von F. KOBOLD, Ing., Wabern bei Bern

Von den bekannten schweizerischen Firmen für den Bau von Vermessungsinstrumenten, Kern & Cie. A.-G. in Aarau, und Verkaufs-A.-G. für H. Wild's geodätische Instrumente in Heerbrugg, sind in den letzten Jahren neue Typen von Theodoliten und Nivellierinstrumenten in den Verkauf gebracht worden. In den folgenden Ausführungen soll versucht werden, über die neuen Konstruktionen soweit zu berichten, als es für weitere Ingenieurkreise von Interesse sein kann. Damit sind der Behandlung des Themas in zwei Richtungen Grenzen gesetzt.

Eine erste Beschränkung liegt darin, dass von den zahlreichen neuen Geräten nur die besprochen werden, die sich zur Lösung der Vermessungsaufgaben der Baupraxis eignen. Es wird sich also um Theodolite und Nivellierinstrumente handeln, die erlauben, Polygonzüge zu legen, einzelne Punkte auf Grund benachbarter einzuschneiden, Absteckungen vorzunehmen und Längen- und Flächennivellements durchzuführen. Eine zweite Beschränkung besteht darin, dass die Darstellung mit Rücksicht auf den Leserkreis, der sich nicht aus eigentlichen Fachleuten zusammensetzt, allgemein verständlich sein soll. Das hat zur Folge, dass Dinge beschrieben werden müssen, die sich an Hand von Formeln, deren Kenntnis jedoch nicht vorausgesetzt werden darf, leichter erklären liessen.

Die Aufgabe des Aufsatzes kann selbstverständlich nicht darin bestehen, alle neuen Instrumente mit ihren Einzelheiten zu beschreiben. Es kommt vielmehr darauf an, auf die wesentlichen Konstruktionsideen, den Aufbau der Instrumente und auf die daraus folgenden Verwendungsmöglichkeiten hinzuweisen. Die Einzelheiten der Geräte und die Anleitungen für die Handhabung finden sich in den von den Herstellerfirmen herausgegebenen Katalogen.

I. Allgemeine Merkmale der neuern Instrumente

Vergleicht man ältere mit neuern Vermessungsinstrumenten, so besteht der wichtigste Unterschied zweifellos darin, dass die neuern Geräte genauere Resultate liefern und trotzdem viel einfacher und leichter zu handhaben sind als die ältern. Bei diesen waren genaue Kenntnis des Aufbaues und gründliches Verstehen der Vermessungskunde notwendig, um gute oder wenigstens brauchbare Ergebnisse zu erzielen. Mit modernen Instrumenten dagegen ist auch der wenig Geübte im Stande, sofern er über die Verfahren grundsätzlich im klaren ist, Messungen mit der Genauigkeit auszuführen, die der Leistungsfähigkeit des Instrumentes entspricht.

Um den Messvorgang genau und gleichzeitig so einfach als möglich zu gestalten, ist man beim Bau der neuern Instrumente von folgenden Grundsätzen ausgegangen:

1. Man versucht nicht, eine Konstruktion zu finden, die sich zur Lösung mehrerer, verschiedenartiger Aufgaben eignet, sondern man geht darauf aus, ein Gerät zu bauen, das in erster Linie einer bestimmten Aufgabe entspricht. Dieses Bestreben hat zur Folge, dass die Anzahl der Instrumente zwar vermehrt wird, dass aber für die im Einzelfall zu lösende Aufgabe ein hierzu besonders geeignetes Instrument gewählt werden kann. Jede Konstruktionsfirma baut daher eine Reihe einfacher Theodolite und eine Reihe von Nivellierinstrumenten, wobei jedes Gerät einer bestimmten Genauigkeitsstufe entspricht. Selbstverständlich überschneiden sich die Verwendungsmöglichkeiten aufeinanderfolgender Stufen, so dass beispielsweise mit Geräten der

untersten Stufe auch Aufgaben der mittlern Stufe gelöst werden können.

- 2. Ein Instrument einer bestimmten Genauigkeitsstufe arbeitet nur dann rationell, wenn alle seine Teile dieser Genauigkeitsstufe entsprechen. Es hat beispielsweise keinen Sinn, an einem Theodoliten mit Minutenablesung Libellen anzubringen, deren Angabe einige Sekunden beträgt. Eine solche Libelle vermag die Genauigkeit der Winkelmessung nicht zu steigern; sie verzögert jedoch die Arbeit, da der Beobachter viel Zeit braucht, um die Libelle einspielen zu lassen.
- 3. Die einmal durchgeführte Justierung des Instrumentes muss möglichst lange erhalten bleiben. Wohl lassen sich die meisten Instrumentenfehler durch geeignete Anordnung der Messungen ausschalten. So fällt der Einfluss der meisten Theodolit-Fehler weg, wenn die Zielpunkte in beiden Fernrohrlagen beobachtet werden. Die Erfahrung zeigt jedoch, dass auf das Messen in beiden Lagen oft verzichtet wird, weil es zeitraubender ist als die Messung in nur einer Lage. Bei Vermessungen für Bauarbeiten ist die Elimination der Instrumentenfehler durch geeignete Anordnung der Messungen gelegentlich überhaupt nicht möglich. Man denke etwa an Nivellemente für die Montage von Bauteilen, wo das Innehalten gleicher Zielweiten ausgeschlossen ist. Es ist daher gerade bei den einfachen Instrumenten wichtig, dass sie tadellos berichtigt sind, und den Berichtigungszustand lange Zeit beibehalten. Bei den neuern Instrumenten kann damit gerechnet werden, dass die einmal durchgeführte Justierung oft wird es die Fabrikjustierung sein - während Monaten unverändert bleibt. Sie muss selbstverständlich von Zeit zu Zeit geprüft werden. Der Elimination der Instrumentenfehler durch geeignete Anordnung der Messungen kommt daher heute nicht mehr die selbe Bedeutung zu wie früher, wenn sie auch immer noch anzustreben ist.
- 4. Die Ablesemittel an den Kreisen sind leicht verständlich und ermöglichen die Ablesung auf einen Blick. Es werden komplizierte Konstruktionen im Innern des Instrumentes in Kauf genommen man scheut sich auch bei den kleinsten und einfachsten Instrumenten nicht, gebrochene Strahlengänge anzuwenden um die Ablesung selbst einfach zu gestalten. Aus diesem Grund haben beispielsweise die Nonien, die früher wegen ihrer einfachen Konstruktion allgemein üblich waren, deren Gebrauch jedoch mühsam ist, Ablesemitteln weichen müssen, die zwar optisch komplizierter, jedoch für den Benützer einfacher sind.
- 5. Endlich weisen die neuern Instrumente sehr kleine Abmessungen und kleine Gewichte auf. Diese Eigenschaften sind bei Transporten erwünscht; sie wirken sich aber namentlich dann günstig aus, wenn wenig Platz für das Aufstellen der Instrumente vorhanden ist; ein Umstand, der auf dem Bauplatz recht oft vorkommt.

Die Aufstellung dieser Grundsätze und namentlich deren konsequente Anwendung verdankt man dem Schweizer Konstrukteur Dr. h. c. Heinrich Wild. Auf seine Ideen gehen alle grundsätzlichen Neuerungen zurück, die den Instrumentenbau der letzten Jahrzehnte kennzeichnen, und die im folgenden kurz zur Darstellung gelangen.

II. Die Konstruktion einzelner Instrumententeile

1. Die Vertikalachse

Bei ältern Instrumenten besteht die Alhidadenachse aus einem Stahlkonus, der in einer konischen Büchse aus Messing läuft. Die Konstruktion hat den Nachteil, dass die Achse beim