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Zur Kritik der technischen Biegungslehre
Von Prof. Dr. HANS ZIEGLER, B. T. H.. Zürich

1. Problemstellung. Die technische Festigkeitslehre geht
bei der Bestimmung des Spannungszustandes im Stab von
willkürlichen und in Wirklichkeit unzutreffenden Annahmen aus.
Sie bedient sich beispielsweise im Falle der Biegung bei der
Ermittlung der Normalspannungen der Bernoullischen Hypothese1)
und legt das Resultat, obschon die verwendete Annahme mit
dem Auftreten von Schubspannungen unverträglich ist, auch der
Bestimmung dieser letztgenannten zugrunde. Ihre Ergebnisse
erscheinen zunächst nur dadurch gerechtfertigt, dass sie der
Erfahrung im allgemeinen hinreichend entsprechen. Sie werden
allerdings in besondern Fällen durch die Elastizitätstheorie
bestätigt8); zudem hat J.N.Goodier*) gezeigt, dass bei einfach
beanspruchten zylindrischen Stäben die in der technischen
Festigkeitslehre üblichen Methoden als Näherungsverfahren im Sinne
der Elastizitätstheorie gelten können. Es bleibt indessen die Frage
nach ihrer Uebertragbarkeit bzw. Erweiterung auf verwickeitere
Fälle, insbesondere auf Stäbe mit veränderlichem Querschnitt,
offen. Diese Frage bildet den Gegenstand der vorliegenden
Untersuchung, die auf folgenden Voraussetzungen beruht:

1. Eis wird ein
gerader, homogener Stab
(Bild 1) betrachtet,
dessen Querschnitts-
hauptaxen unter sich
parallel sind und die
Richtungen y, z haben.

2. Der Stab soll
schlank, mithin das
Verhältnis

(1) JL e

zweier Strecken, von denen die erste mit den Querschnittsabmessungen,

die zweite mit der Stablänge vergleichbar ist, klein sein.
3. Die Lasten sollen eine Kräftegruppe in der (x, s)-Ebene

bilden und nicht allzu schwach gegen die Stabaxe geneigt sein,
so dass die Schnitte auf Zug, Schub und Biegung um die zu y
parallele Hauptaxe beansprucht sind.

Ii. Der Spannungszustand wird als eben vorausgesetzt, und
dies soll vorerst durch Beschränkung auf den schmalen
Rechteckquerschnitt mit konstanter Breite b und gleichmässig über
die letztgenannte verteilten Lasten erreicht werden, während die
Höhe h(x) als schwach veränderlich zugelassen wird.

Das Verfahren besteht darin, dass der Ermittlung der
Spannungen in einem Stababschnitt, der durch zwei benachbarte
Querschnitte begrenzt wird, die elastischen Grundgleichungen
und die Randbedingungen längs der Mantelfläche zugrunde
gelegt werden, während in den begrenzenden Schnitten nur die
Aequivalenz der inneren Kräfte mit der Beanspruchung zum
Ausdruck gebracht wird. Die Tatsache, dass die in diesen
Beziehungen auftretenden Bestimmungsstücke von verschiedener
Grössenordnung sind, gestattet die Ausscheidung der
Spannungskomponenten und ihrer partiellen Ableitungen in Klassen
verschiedener Ordnung, analog derjenigen, die in der Grenzschichttheorie

für die Geschwindigkeitskomponenten üblich ist4). Durch
Entwicklung der axialen Normalspannung in eine Potenzreihe
mit abschätzbaren Gliedern ergibt sich alsdann die Möglichkeit,
das Problem unter Beschränkung auf Glieder einer bestimmten
Ordnung zu lösen.

2. Der Spannungszustand. Es ist zweckmässig, die
Koordinaten x, y, z, die Stablänge Z, die Breite b, die Höhe h(x)
und die Fläche F(x) des Querschnittes, sowie dessen Trägheitsmoment

J(x) auf die Vergleichslänge B zu beziehen. Von den
dimensionslosen Koordinaten1,2/. zy

(3) ï'

F>

l
~B~C

F
— ool, Ä-

CS.1, J'

b
~B

J
~B*

h
~B~ ool,

sind mit Ausnahme der ersten von der Ordnung 1.
Bezeichnet ferner P eine Kraft, die mit der — zunächst in

Form weniger Einzelkräfte P; angenommenen — Gesamtbelastung
vergleichbar ist, so lassen sich die Komponenten der Beanspruchung

eines beliebigen Schnittes (nämlich das Biegemoment M,
die Zugkraft Z und die Querkraft Q) vermittelst
(4) M od PL, ZcstP, Qc-nP
abschätzen, und hieraus folgt, dass im Schnitte Spannungskomponenten

der Grössenordnungen
M PL P

(5) "x^^r^-^, R?^
auftreten müssen. Macht man auch die Komponenten der
Beanspruchung sowie des Spannungszustandes durch Bezug auf PB,
P und P/B* dimensionslos, so erhält man

(6) M' M
PB

Büdl rt—i

Z'
P v P

und

(7)
B2 1

a'x —=- ax oo —P E

ß2
r'xz -p- xxz o° 1

B»
o'z — -p- az

Bild 2.

wobei sich sämtliche Grössenordnungen
mit Ausnahme derjenigen von o'x

den Beziehungen (1), (4) und (5)
entnehmen lassen. Demnach sind die
Schubspannungen im Vergleich zu
den axialen Normalspannungen van
erster Ordnung klein.

Lässt man neben Einzellasten auch
kontinuierlich verteilte Belastungen
der gleichen Grössenordnung zu, so

repräsentieren diese Oberflächenspannungen (BUd 2)
P

Qx, Qz oo LB
die mit

(8) I B2
qz oo s

B2
¦p-QxOos, 0;** —

dimensionslos gemacht und abgeschätzt werden können.
Nimmt man schliesslich an, dass auch das Eigengewicht des

Stabes von der Grössenordnung der gesamten Belastung sei, so
besteht für das spezifische Gewicht y die Beziehung

Y LB' no P ;

es ist daher
B»

y =-5- Y <*> «•(9)

Der Spannungszustand im Stab wird im Sinne der
Elastizitätstheories) durch die beiden Gleichgewichtsbedingungen

(10)
ÖGx

dx dz dx
die Verträglichkeitsbedingung

<]1> l-Ä-
aar cte2

'ox +az)

+

0

daz

dz Yz

(2) OF ss -=- cs-iB
CSI 1, Z'

e B ' B
wird dann nur die erste Innerhalb des Stabes von der Grössen
Ordnung 1/e, während die anderen von der Ordnung 1 bleiben
auch die Grössen

') Jak. Bernoulli, Mémoires de Paris 1706; Oeuvres Bd. I, Genf 1744,
S. 076.

') Vgl. A. Föppl, Vorles. über techn. Mechanik, Bd. III, Festigkeitslehre,
Berlin 1927. 8. 428.

<) J. N. Ooodier, On the Problems of the Beam and the Plate in the
Theorie of Elasticity, Trans. Roy. Soc. of Canada, Ottawa 1988, 8. Serie,
Bd. 82. Sect. Ill, S. 66.

') Vgl. W. TolPmien, Grenzschichttheorie, Hdb. d. Exp. Phys., Bd. IV,
1. Tell, Leipzig 1981, S. 244 ff.

und die Randbedingungen
(12) ax sin tp — rxz cos g> -\- qx 0, xxz sin tp — az cos tp — qz 0
bestimmt. Dabei bedeutet
(13) If Or, S

den Neigungswinkel des Stabumrisses U gegenüber der Stabaxe,

der samt seinen Ableitungen nach x als von der Grössenordnung

t vorausgesetzt wird, und die beiden Grössen
(14) Yx y sin i/i yz y cos rp

stellen unter der Annahme, dass die Axe um den Winkel u>

gegen die Horizontale H geneigt sei, die negativen Projektionen
der nach Voraussetzung 1 konstanten Raumkraft dar.

Nun handelt es sich aber nicht darum, die Beziehungen (10)
bi« (12), die mit Hilfe von (2), (7), (8), (9) und (14) auch in
der dimensionslosen Form

') Vgl. z. B. B. Timosheiiko; Theory of Elasticity, New York und London
1984, S. 20 ff.
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(15)

(16)

(17)

da'x dx'xz
+&

o

dx"l
a'x sin

o

T'.

+

dz'
o

d3o'

y' sin xp,
1

d*ox'
dx"

3

— x',

+

dx'
1

<92o'

+
do'z

1

y' cos tp,
1

dz'
l

dz'*
l

0,s cos tp -(- q
0 1

j sin œ — o'z cos g> — q'z 0

l iiangeschrieben werden können, exakt zu integrieren. Es soll ja
hier nur ein Nährungsverfahren entwickelt werden, und dazu
gehen wir von der Bemerkung aus, dass die Abschätzung (8)
unmittelbar unter den wenigen zugelassenen Einzelkräften ihre
Gültigkeit verliert. Grenzt man aber diese SteUen durch
Querschnitte ab, die etwa im Abstand B voneinander liegen, so bleibt
eine kleine Zahl von Stababschnitten zurück, deren Längen mit
L vergleichbar sind. Sie werden durch Schnitte begrenzt, in denen
die SpannungsVerteilung zwar unbekannt ist, aber den Beziehungen

JaxzdF M, foxdF Z, frxzdF= — Q
F FFgenügen muss. Für die Behandlung solcher Abschnitte kann man

den Bestimmungsgleichungen der Spannungskomponenten die —
nunmehr mit HUfe von (2), (3), (6) und (7) dimensionslos
geschriebenen — Forderungen
(18) Jo'xZ'dF' M>,

F' —1
Ja'xdF' Z\

0
Jr'xzdF'=-Q'

F' 0

beifügen, die die Unkenntnis der genauen Spannungsverteilung
in den begrenzenden Schnitten wenigstens teilweise aufwiegen,
und versuchen, die Beziehungen (15) bis (18) näherungsweise
aufzulösen. Zuvor müssen indessen die Grössenordnungen
sämtlicher darin auftretenden GHeder festgestellt werden.

3. Grössenordnungen. Zur Abkürzung sollen im folgenden

GUeder der Grössenordnungen s— ' e" (=1) s1, ea

durch beigesetzte Ordnungszahlen — 1, 0, 1, 2,
gekennzeichnet werden. Wir bemerken dann zunächst, dass nach (9)
die rechten Seiten der Differentialgleichungen (15) die
Grössenordnungen s aufweisen, und deuten dies durch die Zeiger 1 an.
Von derselben Ordnung sind gemäss (8) die letzten Glieder in
(17), in denen mit RUcksicht auf (7) und (13) übrigens auch
die mit a'x und r'xz behafteten Glieder der Reihe nach mit 0, 0

und 1 bezeichnet werden können. Schliesslich folgen aus (6) die
Grössenordnungen der rechten Seiten von (18).

Um auch die übrigen Grössen abzuschätzen, ordnet man die
Spannungskomponenten samt ihren partiellen Ableitungen in Form
dreier dreieckiger Schemata (Tabelle 1) an, wobei sich den
Spitzenelementen a'x und r'xz mit Rücksicht auf (7) sofort die
Ordnungszahlen — 1 bzw. 0 beilegen lassen.

Nun kann ein beUebiges Element aus einem der drei Schemata

nur dann im ganzen betrachteten, von Einzellasten freien
Stababschnitt, d.h. in einem »'-Intervall der Länge 1/s, von einer
bestimmten Ordnung bleiben, wenn seine partielle Ableitung nach
a? — von vereinzelten Stellen abgesehen, die etwa starken
Belastungsänderungen entsprechen können — von der nächsten
Ordnung klein ist. Die Ordnungszahl nimmt demnach beim
Fortschreiten nach links unten von Element zu Element um 1 zu.

Auf Grund dieser ersten Regel gewinnt man zunächst die

Ordnungszahlen von Qo'x/dx' und dr'xzjdx', aus (15) sodann

diejenigen der Elemente Öt'«/9«' und Qo'z/dz' und aus (17)
schUesslich die Aussage, dass a'z mindestens am Rande von
erster Ordnung klein ist. Nun kann aber a'z im «'-Intervall der
Grössenordnung 1 nicht bis zur nullten Ordnung ansteigen, wenn
da'zldz' von erster Ordnung klein ist; man hat also

(20) a'x oo s

und ist damit in der Lage, auch da'z/dx' zu klassifizieren. Aehn-
lich folgt aus dem Umstand, dass a'x in jedem Querschnitt eine
Nullstelle besitzt und bis zur Grössenordnung 1/e ansteigt, die
Ordnungszahl von da'x / ds' zu —1. Damit sind aber die beiden
ersten Zeilen des Schemas (19) und unter Berücksichtigung der
eben angegebenen Regel auch die links darunter stehenden
Elemente klassifiziert.

Leitet man die Beziehungen (15) beliebig oft nach x' und *'
ab, so erhält man rechterhand NuU. Daraus folgt als weitere
Regel, dass diejenigen Elemente, die in den Dreiecken mit den
Spitzen do'xldx' und dr'Xz/dz' an gleicher SteUe stehen, von
derselben Grössenordnung sind und dass entsprechendes für die
Dreiecke mit den Spitzen dt'xzl dm' und da'z/Qz' gilt.

Vermittelst dieser zweiten sowie der ersten Regel lassen sich
in der dritten ZeUe von (19) sämtliche Ordnungen mit Ausnahm*
derjenigen von 82<7'x/8»'2 angeben, die aber jetzt mit HUfe von
(16) bestimmt werden kann. Nach Berücksichtigung beider Regeln
bleibt sodann in der vierten ZeUe d3'ax/ds'3 unbestimmt, lässt
sich aber durch Ableiten der Verträglichkeitsbedingung nach
z' abschätzen, und schliesslich können in der gleichen Weise die
fünfte sowie weitere Zeilen behandelt werden.

Entwickelt man jetzt unter Beschränkung auf einen
bestimmten Schnitt die axiale Normalspannung in die Maclaurinsche
Reihe

~,o) +

+

{x< «') a'x (*', o)

•g, 2

TT
d3a'x
Qs,3 (*'.o) +

1! dz-
{x>,

so lassen sich die niedrigsten Ordnungen, die die Beiwerte

<21) -irr -^r1 (*'> 0) ofc (*') (fc 0,1, 2,...)
fc IjZ'k

der Potenzen von z' annehmen können, dem Schema (19)
entnehmen. Man erhält so in vereinfachter Schreibweise
(22) a'x (as', z') a0 (x1) -\- a1 («') z' + a3 (as') z'3 +

—l —l l
+ o3 (as-) s's _|_ a4 (x1) s" -\-

l 3

wobei mit Rücksicht auf die Art der Abschätzung sowie darauf,
dass (21) die partiellen Ableitungen von a'x für die bestimmte
SteUe z'=0 und im Nenner die Fakultät von fc enthält, freüich
noch damit zu rechnen ist, dass ein TeU der Beiwerte in WirkUch-
keit von höherer als der angegebenen Ordnung klein ist.

4. Die elastische Linie. Bezeichnen
u Bw BW

die Verschiebungen eines beliebigen Punktes parallel zur Be
lastungsebene und

Ba „ m E'
~~ ~P(23) E'

B»

P S, G
2 (m -\- 1J

die dimensionslosen elastischen Konstanten des Stabes, so ist
der Verzerrungszustand in der Belastungsebene6) durch

ex

yxx

du
dx

d^_
dz'

1 t a'*\ dw
dz'

1
"M7

a'x
m

+ dw
dm1

gegeben; es ist demnach
d"W 1 9r'„

G'dx' 9*'
i

1
~Gr

ïi da'x
9»'
— l

1

m
9»
9»
in

wobei die Ordnungszahlen aus dem Schema (19) folgen.
Nun stellt bei unendlich kleinen Verschiebungen — und auf

solche müssen wir uns ja schon deshalb beschränken, weil sonst
die Beanspruchungen von der Deformation abhängig wurden —

°) Vgl. etwa S. Timoshenko, a.a.O. S. 22 u. 23.

Tabelle t. Schema der Spannungskomponenten

(19)

a'x
—l

r'xz
0

a'z
i

ba'x do'x 8f« dr'xx 8«', do'z

dm' dz'
0 -1

dx' dz'
1 0

dx' 8«'
2 1

d'a'x d*0'x b'o'x
9«'a
i

8*t'„ 8«r'„
dm- ' dm18«'

2 1

d'rXz 8"«',
dm"

S

d'0'z d'à;
dz"
idon"

1
dm' 8«'

0
8»'"

0
dm'dz

2

bso'x 93

dm'
o', 8" a\ b'0'x

8*,s
i

83T'„ 8'T'« 8»T'«
dm" dm"dz' dm'dz"

8 2 1

Bf.f'é,

2

d30'x
dm"

4

8'
dx

a'z d'o',
» 8»' öm' 8*
S 2

d30'x

dx"
2

» dz' dm' oz
1 2

2 8*,s
i

8*0', d*o'x d*o'x 9

dx' • Ô*' dm' * 9*' * dm
2 8

8»"
2

~8*H
8

84r„ 84r'„ 84r'„ 8<

dx'* dm"dz' dm"9*" dm
4 8 2

T' f)*T'b X» 11 L XZ

dz" 9*'*
8 2

d*o>,
dm"

s

8*0',
dm" dt

4

84<V 8

2

d*o'z

dm"
3

v dm"d»,t dm
8

9*'4
3
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dw
dm' (x', o)

den Neigungsfaktor der elastischen Linie dar;
lose Krümmung

1 B
(24) — —

Q Q

ist mithin durch

,„. 1 d3W 1 dt'xz(25) —r g—— (x', o) -, 5~—g' dx3 G' dx'
1

||®T
do'x 1 1 do'zyy (x-, o) ii-i (x>, odz' m dz'
— 1 1

ihre dimensions-

(m-, o) +

gegeben.
5. Erste Näherung. Bei Beschränkung auf Glieder der

Grössenordnung 1/e geht (22) in den linearen Ansatz
O'x «o + ai z'

-l —l
über, während gemäss (7) und (20) gleichzeitig T'xr <r'z —0 zu
setzen ist. Ferner reduzieren sich die Bestimmungsgleichungen
(15) bis (18) für die Spannungskomponenten auf die beiden
Forderungen

fa'xz'dF' I M', Ja'xdF' 0

die zur Ermittlung der Beiwerte a„ und al ausreichen. Sie führen
nämlich auf

M' 1
(26) a„ 0

so dass man

(27) a>,
M'

um nach Umformung vermittelst (2), (3) und (6) endgültig
M 12 M

(28) ax=-j-z= bhs z, rXI 0, ax=0
erhält. Schliesslich geht (25) in dieser Näherung in

l J^_ 8i (x; 0)
Q' w dz

über und liefert unter Verwendung von (3), (6), (23), (24)
und (27)

(29) £ML
q EJ

Die klassischen Beziehungen für die axiale Normalspannung
und die Krümmung der elastischen Linie stellen sich damit als
Ergebnis eines ersten Näherungsprozesses im Sinne der exakten
Elastizitätstheorie dar, die auch für den Stab mit leicht
veränderlicher Höhe und schief gestellten Lasten gültig bleiben,
sofern die Lastrichtungen nicht allzu schwach gegen die Stabaxe

geneigt sind. Insbesondere sind in dieser Näherung die
von der Zugkraft Z herrührende axiale Normalspannung, überdies

aber auch die Spannungskomponenten rxz und az zu
vernachlässigen.

6. Zweite Näherung. Bei Hinzunahme der Glieder der
Grössenordnung 1 bleibt der Ansatz
(30) a'x — a0 + aiz'

0 —1

bestehen, wobei aber mit RUcksicht auf das Ergebnis von Ziff. 5
der Beiwert a0 höchstens von der Grössenordnung 1 sein kann;
ferner ist o'z lm Gegensatz zu z'xz nach wie vor zu vernachlässigen.

Die Forderungen (18) sind jetzt in ihrer ursprünglichen
Gestalt
(31) fa'xZ'dF'

F'
M',

(32)

Ja'xdF'

0

,dF' Q'z; /¦

zu berücksichtigen und gemäss (15) bis (17) durch die Differential'
gleichung

da', dv
dx' 8*'

sowie die für beide Ränder gültige Bedingung
(33) a'xf — T'*» 0
zu ergänzen, und für die Krümmung der elastischen Linie ergibt
sich wieder

1 _ 1 dlT'x
Q'

~'~ E' d»
Die beiden ersten Integrale (31) führen mit dem Ansatz (30)

auf die Beiwerte
Z'

(34) (x',0)

W co 1, O,
M' 1

-*"¦ —
und damit auf die axiale Normalspannung

W Z'
(35) •, -p*+ w.
Sodann erhält man aus (32) und (35) bei Beschränkung auf
Glieder der Grössenordnung 1 für die Schubspannung die
Differentialgleichung

8r«
dz'

d

dx' Nimit dem allgemeinen Integral

f d /M'\ z"
dx' \ J' z

und dieses geht — da die Bedingung (33) In der beobachteten
Näherung für beide Ränder die Gestalt

+ / im)

d IM
~~dv \J

annimmt — in

E-)
h'

¦fi¬ ltri
~~j~y <p

(36)
2 U j dx' \ J> mr

über. Ferner führt das dritte Integral (31) auf

/,.. dz' b'h"
12

d

dx' (") b'h' M'
~ji~ q;

und hieraus folgt, sofern noch die Identitäten
,¦>-,-, 1 dh' t. b'h'a <M' b'h'-toi) (D J2 to' V' 12 ' dx' ~ 2
verwendet werden, die bekannte Beziehung

dM'
(38) dx' Q'

für das Momentengleichgewicht an einem — durch zwei benachbarte

Querschnitte begrenzten — Stabelement. Schliesslich folgt
aus (34) und (35) wieder

(39) —-
M'

E'J'
Unter Verwendung von (37) und (38) lässt sich der durch

(35) und (36) gegebene Spannungszustand endgültig auf die
Gestalt

12M Z
¦ z +

(40) bh* bh

\ h3 h
M

3
i-i 4

^
2bh h3

t °z I 0,

Q +

(41)

die Krümmung der elastischen Linie auf die Form
1 12M

~çT ~~~~ÉbW
bringen, wobei vermittelst (2), (3), (6), (23) und (29) auch schon
der Uebergang zu den unbezogenen Grössen durchgeführt ist.

Die axiale Normalspannung und die Krümmung der
elastischen Linie sind demnach noch Immer durch die klassischen
Beziehungen gegeben, wobei aber im Gegensatz zur ersten
Näherung für die Ermittlung von ox der Einfluss der Zugkraft Z
mitzuberücksichtigen ist. Die andere Normalspannung ist noch
zu vernachlässigen ; die Schubspannung' endUch folgt einem
Gesetz, das — allerdings unter Verwendung einer Hilfsannahme
und in dieser Gestalt nur für die reine Biegung — erstmals von
F. Stüssi ¦) aufgesteUt worden ist. Sie weist einen parabolischen
Verlauf auf, verschwindet indessen nur dann am ganzen Rande,
wenn der Stab ohne Anzug ist ; andernfalls kann sie unter
Umständen gerade hier ihre Höchstwerte annehmen.

7. Diskussion. Die Ergebnisse von Ziff. 6 lassen sich
dahin interpretieren, dass es — im Sinne einer zweiten Näherung
und unter Ausschluss der Umgebungen von Einzelkraftangriffspunkten

— erlaubt ist,
1. den Verlauf der axialen Normalspannung linear anzunehmen

und mittels der Forderung seiner Aequivalenz mit dem
Biegemoment und der Zugkraft zu bestimmen,

8. die Schubspannung aus der Komponentenbedingung für
die axiale Richtung und der entsprechenden Randbedingung
herzuleiten und dabei den durch die Zugkraft hervorgerufenen
AnteU der Normalspannung sowie das Eigengewicht und die
Randspannungen (die ln den Komponenten M, Z und Q der
Beanspruchung schon berücksichtigt sind) zu unterdrücken,

3. die zur Stabaxe senkrechte Normalspannung zu vernachlässigen,

lt. die Krümmung der elastischen Linie als Quotienten aus
dem Biegemoment und der Biegesteifigkeit zu bestimmen.

Diese Vorschriften entsprechen zum grösseren TeU der in
der technischen Festigkeitslehre üblichen Praxis, geben indessen
zu folgenden Bemerkungen Anlass:

a) Um den Spannungsverlauf um einen Näherungsschritt
genauer als durch (28) zu beschreiben, muss neben der Zugkraft
auch die Querkraft berücksichtigt werden, deren Einfluss von
der gleichen Grössenordnung ist. Für die blosse Dimensionierung
dagegen ist dies nicht notwendig, denn ln den Vergleichsspannungen,

die nach der einen oder andern Hypothese für den Bruch
verantwortlich gemacht werden, bedeutet eine kleine Korrektur

') F. Stüssi, Baustatik, Bd. I, Basel 1946, S. 282.
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von ox eine Aenderung von gleicher, die Hinzunahme von r,r
dagegen eine solche nächst höherer Ordnung.

b) Die Krümmung der elastischen Linie hängt in dieser
Näherung weder von der Zug- noch von der Querkraft ab.

c) Der Anzug des Stabes wirkt sich auf den Spannungszustand

und die elastische Linie indirekt insofern aus, als im
Gegensatz zum prismatischen Stabe hier h von x abhängt.
Einen direkten — auch im unendlich kurzen Stabelement
wahrnehmbaren — Einfluss hat er nur auf die
Schubspannungsverteilung, und zwar wird diese gemäss (40) durch den
Winkel tp entscheidend mitbestimmt. Diese letzte Tatsache,
auf die schon H. Lorenz") hingewiesen hat, die durch photoelastische

Untersuchungen9) bestätigt wird und übrigens auch
elementar 10) folgt, wenn man bei der üblichen Herleitung der
Schubspannungsformel den Anzug mitberücksichtigt, wird in der
technischen Festigkeitslehre meist übersehen. Nur so ist z. B. die
Bemerkung von 8. Timoshenko anlässlich der Behandlung des

keilförmigen Balkens ") zu verstehen, dass die grössten
Schubspannungen am Rande auftreten und doppelt so gross seien wie
diejenigen, die von der elementaren Theorie für den Schwerpunkt

des rechteckigen Balkenquerschnittes geliefert werden.
8. Verallgemeinerung. Die in Ziff. 1 unter Voraussetzung

Ii zusammengestellten Forderungen gewährleisten in
Wirklichkeit die AusbUdung eines exakt ebenen Spannungszustandes
nicht, denn dieser stellt bekanntlich einen praktisch meist
unerreichbaren GrenzfaU dar. Umgekehrt ist aber klar, dass der
Spannungszustand auch dann noch wenigstens in guter Näherung
eben sein kann, wenn die genannten Forderungen nur näherungsweise

erfüUt sind, d. h. bei Stäben mit nur schwach vom schmalen

Rechteck abweichender Querschnittsform sowie geringem
Anzug auch im Grundriss.

Die Ergebnisse von Ziff. 6 lassen sich am einfachsten mit
den in Ziff. 7 formulierten Vorschriften auf diesen Fall
übertragen, von denen die erste, dritte und vierte ohne weiteres auf

M Z 1 M
(42) WBBBBBÈ ** 0' y w
führen. Betrachtet man, um auch die zweite auszuwerten, das
in BUd 3 schraffierte Stabelement mit der Stirnfläche F* (x, z),
deren statisches Moment bezüglich der jy-Axe mit

fzdF 8 (.x, z)
F*

bezeichnet sei, so erhält man als Resultierende der vom
Biegemoment herrührenden Normalkraftverteilung über F*

M r H M(x)
_— \zdF= / '
J J J i.m)X(x, z) 8 (x,z)

ferner für die gegenüberliegende Stirnfläche

* + dm
: dX

und als einzige weitere axiale Kraft die von der Schubkraftver-
teUung längs der unteren Begrenzung herrührende Resultierende

rxz'x, z) b (x, z) dx.
Die Komponentenbedingung für die »-Axe lautet

9X
dx

¦ dx bxxzdx -. 0

8

(43) m

und führt auf die Schubspannung
1 d (Mx" - b ~8*~ \ J

die schliesslich auch in der Form

~~ b J + b dm

angeschrieben werden kann.
Das Ergebnis dieser Gleichgewichtsbetrachtung, die sich eng

an die UbUche Herleitung der Schubspannungsverteilung an-
schliesst, aber auf die VecänderUcbkelt von J, F* und 8 mit x
RUcksicht nimmt, zerfällt gemäss (43) in den bekannten, bei

prismatischen Stäben allein auftretenden Ausdruck und ein zweites

GUed, das von gleicher Grössenordnung ist und den Einfluss
der Querschnittsänderung ausdrückt. Es ist ln etwas anderer
Form schon von H. LorenzM) für den FaU der reinen Biegung
verwendet worden.

Uebrigens lässt sich leicht nachweisen, dass die durch das
erste GUed in (43) dargestellte Schubkraftverteilung bei der

"> H. Lorenz, Lehrbuch der Techn. Physik, Bd. IV, München und Berlin

1918, S. 217 ff.
•) Vgl. etwa R. Bereuter, Experimentelle Untersuchungen der

Spannungsverteilung in freiaufliegenden Balken. Pubi, du Labor, de
photoélasticité de la Chaire de Méch. en langue française de l'E. P. P., Zürich
1946.

10) Vgl. Ziff. 8.

") B. Timoshenko, a. a. O.. S. 96.

<*) H. Lorenz, a. a. O., S. 219.

X+'&dx

Jl kg* lHHx XAtüttr^H T
M \ M*dH I

QtdO

Bild 3.

" h

Bild 4.

Reduktion auf den Schwerpunkt des Schnittes die Querkraft
ergibt, während das zweite Glied einer im Gleichgewicht befindlichen

Verteilung entspricht. Für das mit den Bezeichnungen
von Bild 3 gebildete Integral

e/> + "/^(°)fxdF fxbdz — Q / — dz + Ml ~.]dz
F SÊ

— ei — ei
kann nämlich mit Rücksicht darauf, dass S an beiden Grenzen
verschwindet, auch

JxdF >P dz M 9
dm

8 dz

gesetzt werden. Nun ist aber

J fz3dF fz. zbdz,
F -ei

und da man den zweiten Faktor im Integral als Abnahme von
8 beim Fortschreiten um dz deuten kann, erhält man durch
partielle Integration

J — fzdS — [SS]
*

+ ffadz
— ei — ei — ej

und hieraus mit Rücksicht auf das Verschwinden von 8 an beiden

Grenzen
¦I 8

dZ :
_9_
9*/ £1

dz 0.

Schliesslich gehen die Beziehungen (42) und (43), die unter
Voraussetzungen 1 bis S von Ziff. 1 sowie der erweiterten
Voraussetzung li den Spannungszustand und die Krümmung der
elastischen Linie in zweiter Näherung beschreiben, bei Beschränkung

auf Rechteckquerschnitte wieder in die Formeln (40), (41)
über, und zwar auch dann, wenn ein geringer Anzug im Grundriss

zugelassen wird.
9. Anwendung. Für den in Bild 4 wiedergegebenen

keilförmigen Balken, der die konstante Dicke b besitzt und am
freien Ende durch die Kräfte Z und Q belastet ist, ergeben die
Beziehungen (42) und (43) bzw. (40) in zweiter Näherung mit
Rücksicht auf

I
M — Q x und tp konst.

2x
den Spannungszustand

12Qxz Z
(44> ff*= bh3 + bh

12 Qz3
' Tx*~ bh» =0.

Die exakte Lösung, die In diesem Falle bekannt ist13), lässt
sich in Polarkoordinaten durch die Spannungskomponenten

Z cos 9- Q sin &
Cr

br'tp -\- br (tp — — sin 2 tp)j sin 2 tp)

# 0, Ofi 0

in rechtwinklige Koordinaten umge-beschreiben und führt
setzt — auf

x3

br*(45) ox
Zx Qz

<P

XXZ ] Ox

1 sin 2 tp

z*
x3

— -^ sin 2 <

Damit bestätigt sich zunächst, dass xxz im Vergleich zu ax von
erster, az dagegen von zweiter Ordnung klein ist. Ferner gehen
die Beziehungen (45) bei Entwicklung nach Potenzen von zjx
bzw. hi2x unter Vernachlässigung von GUedern erster und höherer

Ordnung in die Gleichungen (44) über, und damit ist an
einem einfachen Beispiel gezeigt, dass die elementaren Formeln
in dieser Näherung die wahre Spannungsverteilung richtig wiedergeben.

Dass dies auch im belasteten Ende noch der FaU ist, hängt
mit der speziellen Wahl des Beispiels zusammen; es darf hie-

'») Vgl. B. Timoshenko, a. a. O., S. 94.
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raus — wie schon eine Bemerkung gegen Ende von Ziff. 2 zeigt —

nicht allgemein auf die Uebertragbarkeit der gewonnenen
Ergebnisse auf die Umgebungen von Einzelkraftangriffspunkten
geschlossen werden. Auch in der Nähe der in Wirklichkeit stets
vorhandenen Einspann stelle verliert mit (45) auch die Näherung

(44) ihre Gültigkeit, da hier der Winkel tp nicht mehr mit
e vergleichbar ist.

Erweiterung des Dampfkraftwerkes Malmö
Südschweden wird aus drei Quellen mit elektrischer Energie

versorgt: aus nahe gelegenen Flusskraftwerken, die trotz den
vorhandenen Seen grosse Schwankungen in der Wasserführung
aufweisen; aus Wasserkraftwerken in Nordschweden, die wegen
den hohen Uebertragungskosten über rd. 1000 km Entfernung
möglichst voll belastet werden sollten, also die Grundlast zu
übernehmen haben, und aus einem Dampfkraftwerk in Malmö,
das die Lücken im Belastungsdiagramm auszufüllen hat. Das
bestehende Dampfkraftwerk wurde im Jahre 1915 errichtet
und mehrfach erweitert. Es umfasste schliesslich zwei
Kesseleinheiten und einen Ljungström-Turbogenerator von 30 000 kW.

Bei starker Wasserführung in Südschweden deckt das
Dampfkraftwerk nur die Bedarfsspitzen, soweit sie die Leistungsfähigkeit

der Wasserkraftwerke überschreiten, sodass es nur im Winter

tagsüber eingesetzt werden und dabei den grossen
Laständerungen folgen muss. Diese Betriebsweise ist trotz des
täglichen Anlassens und Abstellens der Kessel und Turbinen wesent-
Uch wirtschaftlicher als ein Betrieb, bei dem die Lastspitzen den
südschwedischen Wasserkraftwerken zur Deckung zugewiesen
würden. Die Seen erlauben einen Ausgleich der Lastschwankungen

über Tage bis zu einer Woche, sodass es bei geringer Wasserführung

im Winter zweckmässig ist, den südschwedischen Werken
diese Schwankungen zuzuteilen und das Dampfkraftwerk soweit
erforderüch, also hauptsächlich tagsüber, voll zu belasten. Aehn-
Uch wird auch bei geringerem Energiebedarf in den Ueber-
gangsmonaten gefahren, wobei aber die thermische Zentrale nur
etwa halb belastet läuft. Neben der Energielieferung fällt dem
Kraftwerk Malmö die Aufgabe einer Betriebsreserve zu, die
wegen der grossen Entfernung der Grundlastwerke in
Nordschweden besonders wichtig ist. Dieses Werk soll also einerseits
innerhalb eines grösseren Lastbereiches eine gute WirtschaftUch-
keit aufweisen, und anderseits rasch Vollast übernehmen können.
Ueberdies darf das Aufrechterhalten eines hohen Bereitschaftsgrades

nicht kostspielig sein.
Um diesen sich teUweise widersprechenden Bedingungen zu

genügen, wählte man für die Erweiterung, die in den Jahren 1940
bis 1943 durchgeführt wurde, eine Anlage mit zwei Kesselein-
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heiten von 110 t/h grösster DampfProduktion und einem
Turbogenerator von 30 000 kW Leistung. Der Kesseldruck wurde zu
52 atü und der Dampfzustand vor der Turbine zu 42 atü, 480 ° C

festgesetzt. Das Kühlwasser weist 0 bis 20 ° C auf. Das Speisewasser

wird in drei Stufen durch Mischdampf auf 160 o c
vorgewärmt. Auf Zwischenüberhitzung wird im Interesse der
Einfachheit verzichtet.

Die Kessel, Bild 1, erhielten eine Zusatz-Oelfeuerung, durch
die ihre normale Dampferzeugung von 70 t h auf maximal 110 t/h
erhöht werden kann. Diese kombinierte Feuerung mit Kohle und
Oel erlaubt, den Laständerungen rasch und ohne wesentliche
Verluste zu folgen; überdies ermögUcht sie eine Anpassung an
die jeweilen günstigsten Brennstoffpreise. Der Wasserraum der
Kessel wurde grösser als normal ausgeführt, um bei rascher
Lastübernahme über eine gewisse Wärmereserve verfügen zu
können. Wegen der dabei auftretenden stärkeren Dampfblasen-
büdung steigt der Wasserstand und es besteht die Gefahr von
Flüssigkeitsschlägen auf die Turbine. Um dem entgegenzuwirken,
hat man den Dampfdruck verhältnismässig hoch gewählt (was
kleine Dampfblasen ergibt), und die Siederohre so angeordnet,
dass die Dampfblasen rasch an die Wasseroberfläche gelangen.
Hierdurch ergab sich eine Spiegelhebung von nur 15 cm bei einer
Laststeigerung von 4 auf 70 t/h.

Der Kessel ist mit einer unteren Trommel von 1,5 m und
einer oberen von 2,0 m Q und 12 m Länge ausgerüstet. Bei
einem Stückgewicht von 45 t dürften diese Trommeln die grössten

ihrer Art sein, die je in Europa ausgeführt worden, sind.
Beide Trommeln befinden sich über der Verbrennungskammer.
In die untere Trommel münden die Siederohre und die
Speisewasserleitung. Im normalen Betrieb ist sie fast ganz mit Wasser
gefüllt; der Wasserstand schwankt dort nur sehr wenig, während
er sich in der oberen Trommel in einem grösseren Bereich
verändern kann.

Für jedes Rauchgasgebläse ist ein grosser und ein kleiner
Antriebsmotor vorhanden; der grosse Motor dient ledigUch zur
raschen Steigerung der DampfProduktion in Notfällen. Der
Antrieb der Verbrennungsluftgebläse ist analog durchgebildet. Um
den Laständerungen rasch folgen zu können, hat man die
Wärmespeicherfähigkeit des Kesselmauerwerks durch
wassergekühlte Wände und durch die Wahl leichter Steine möglichst
verringert.

Zur Energieerzeugung dient eine Ljungström-Turboeinheit
von 35 000 kVA (30 000 kW), 5000 V, 3000 U/min, die durch
Kabel mit einem rund 1 km entfernten, im Freien aufgestellten
Transformator von 5000/50 000 V verbunden ist. Dort befindet
sich auch die Schaltstation mit den Parallelschalteinrichtungen.
Entsprechend den besonderen Betriebsverhältnissen sind die
Frischdampfzufuhr- und Regelorgane aussergewöhnUch gross
gebaut, um die Abgabe der vollen Leistung auch bei auf %

verringertem Druck zu ermögUchen. Eine besondere Vorrichtung

am Geschwindigkeitsregler schaltet diesen Regler

innerTabelle 1. Hauptdaten einer Kesseleinheit

Bildl. Querschnitt durch einen Hochdruck-Kessel. Masslab 1:260

Höchster Dampfdruck im Kessel
Druckverlust im Ueberhitzer bei Vollast
Dampferzeugung bei Kohlenfeuerung
Dampferzeugung bei Oelfeuerung
Dampferzeugung bei kombinierter Feuerung
Heizflächen: Kessel

Ueberhitzer
Economiser
Luftvorwärmer

Rauminhalt der Verbrennungskammer
Rostfläche
Anzahl der Oelbrenner pro Kessel
Grösster Oeldurchsatz pro Brenner
Dampfproduktion
Lufttemperatur nach Vorwärmer
Rauchgastemperatur nach Luftvorwärmer
Speisewassertemperatur vor Economiser
Dampftemperatur nach Ueberhitzer
Rauchgasventilator: Motor

Rauchgasmenge
Rauchgastemperatur vor Ventilator
Drucksteigerung (stat.)
Motorleistung
Drehzahl

VentUator für Verbrennungsluft:
Luftmenge
Drucksteigerung (stat.)
Motorleistung SS'

Drehzahl

110
110
165
160
480

gross
4300
190
200
410
730

2500
220
225
980

52 atü
3,5 at
70 t/h
70 th
110 t/h
600 ma
883 m»
1750 m3
900 ms
267 m»

45,36 m!
7

850 kg/h
70 t/h

100 °C
145 »C
150 °C
480 °C
klein

2850 m;,/min
160 °C

90 mmW.S.
135 PS

485 U/min

1850 m'/min
150 mm W.S.

95 PS
735 U/min
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