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Nr. 15

Zur Kritik der technischen Biegungslehre
Von Prof. Dr. HANS ZIEGLER, E.T. H., Zirich

1. Problemstellung. Die technische Festigkeitslehre geht
bei der Bestimmung des Spannungszustandes im Stab von will-
kiirlichen und in Wirklichkeit unzutreffenden Annahmen aus.
Sie bedient sich beispielsweise im Falle der Biegung bei der
Ermittlung der Normalspannungen der Bernoullischen Hypothese!)
und legt das Resultat, obschon die verwendete Annahme mit
dem Auftreten von Schubspannungen unvertréglich ist, auch der
Bestimmung dieser letztgenannten zugrunde. Ihre Ergebnisse
erscheinen zunichst nur dadurch gerechtfertigt, dass sie der
Erfahrung im allgemeinen hinreichend entsprechen. Sie werden
allerdings in besondern Fillen durch die Elastizitdtstheorie be-
stdatigt?); zudem hat J. N. Goodier3) gezeigt, dass bei einfach
beanspruchten zylindrischen Stédben die in der technischen Festig-
keitslehre iiblichen Methoden als N#éherungsverfahren im Sinne
der Elastizitdtstheorie gelten konnen. Es bleibt indessen die Frage
nach ihrer Uebertragbarkeit bzw. Erweiterung auf verwickeltere
Fille, insbesondere auf Stdbe mit verdnderlichem Querschnitt,
offen. Diese Frage bildet den Gegenstand der vorliegenden Un-
tersuchung, die auf folgenden Voraussetzungen beruht:

1. Es wird ein ge-
rader,homogener Stab
(Bild 1) betrachtet,
dessen Querschnitts-
hauptaxen unter sich
parallel sind und die
Richtungen y, 2 haben.

2. Der Stab soll
schlank, mithin das
Verhiltnis

0

(1) T:s

zweier Strecken, von denen die erste mit den Querschnittsabmes-
sungen, die zweite mit der Stablédnge vergleichbar ist, klein sein.

3. Die Lasten sollen eine Kréftegruppe in der (x, 2)-Ebene
bilden und nicht allzu schwach gegen die Stabaxe geneigt sein,
so dass die Schnitte auf Zug, Schub und Biegung um die zu y
parallele Hauptaxe beansprucht sind.

4. Der Spannungszustand wird als eben vorausgesetzt, und
dies soll vorerst durch Beschrinkung auf den schmalen Recht-
eckquerschnitt mit konstanter Breite b und gleichméssig liber
die letztgenannte verteilten Lasten erreicht werden, wédhrend die
Hohe h(x) als schwach verédnderlich zugelassen wird.

Das Verfahren besteht darin, dass der Ermittlung der Span-
nungen in einem Stababschnitt, der durch zwei benachbarte
Querschnitte begrenzt wird, die elastischen Grundgleichungen
und die Randbedingungen ldngs der Mantelfliche zugrunde ge-
legt werden, wéhrend in den begrenzenden Schnitten nur die
Aequivalenz der inneren Kréifte mit der Beanspruchung zum
Ausdruck gebracht wird. Die Tatsache, dass die in diesen Be-
ziehungen auftretenden Bestimmungsstiicke von verschiedener
Grossenordnung sind, gestattet die Ausscheidung der Spannungs-
komponenten und ihrer partiellen Ableitungen in Klassen ver-
schiedener Ordnung, analog derjenigen, die in der Grenzschicht-
theorie fiir die Geschwindigkeitskomponenten {iiblich ist*). Durch
Entwicklung der axialen Normalspannung in eine Potenzreihe
mit abschétzbaren Gliedern ergibt sich alsdann die Moglichkeit,
das Problem unter Beschridnkung auf Glieder einer bestimmten
Ordnung zu losen.

2. Der Spannungszustand. Es ist zweckmissig, die
Koordinaten z, y, 2, die Stabldnge 1, die Breite b, die Hohe h(x)
und die Fldche F(x) des Querschnittes, sowie dessen Trégheits-
moment J(x) auf die Vergleichsldnge B zu beziehen. Von den
dimensionslosen Koordinaten
@2y o= ,;7 o 3_ e %,
wird dann nur die erste innerhalb des Stabes von der Grossen-
ordnung 1/¢, wihrend die anderen von der Ordnung 1 bleiben;
auch die Gréssen

4
z’:—B—ml

) Jak. Bernoulli, Mémoires de Paris 1705; Oeuvres Bd. I, Genf 1744,
S. 976.

2) Vgl. A. Foppl, Vorles. {iber techn. Mechanik, Bd. III, Festigkeits-
lehre, Berlin 1927, S, 423.

3y J. N. Goodier, On the Problems of the Beam and the Plate in the
Theorie of Elasticity, Trans. Roy. Soc. of Canada, Ottawa 1938, 3. Serie,
Bd. 32. Sect. III, 8. 65.

4) Vgl. W. Tollmien, Grenzschichttheorie, Hdb. d. Exp, Phys., Bd. 1V,
1. Teil, Leipzig 1931, S. 244 ff.

l 1 b h
= — e 1, le— oo 1,
(3) 1 7 @ = b B o h B oo
J
F’:Bzml, J’:»—BTml

sind mit Ausnahme der ersten von der Ordnung 1.

Bezeichnet ferner P eine Kraft, die mit der — zunichst in
Form weniger Einzelkrifte P; angenommenen — Gesamtbelastung
vergleichbar ist, so lassen sich die Komponenten der Beanspru-
chung eines beliebigen Schnittes (ndmlich das Biegemoment M,
die Zugkraft Z und die Querkraft @) vermittelst
(4) . M o PL, ZcinP, QP
abschitzen, und hieraus folgt, dass im Schnitte Spannungskom-
ponenten der Grossenordnungen

PL
BEme e
auftreten miissen. Macht man auch die Komponenten der Bean-
spruchung sowie des Spannungszustandes durch Bezug auf PB,
P und P/B? dimensionslos, so erhdlt man

(5) Ox

M 1 5 )
(6) M’:TEV)T, Z=7vf)1, Q —_——ITJ*l

und :

9z B2 1

ot L) mmapa e i
2

T'xz:—P—szwlv
B

alz =TU“

wobei sich simtliche Gréssenordnun-
gen mit Ausnahme derjenigen von ¢’
den Beziehungen (1), (4) und (5) ent-
nehmen lassen. Demnach sind die
Schubspannungen im Vergleich zu
den axialen Normalspannungen von
erster Ordnung klein.

Lésst man neben Einzellasten auch
kontinuierlich verteilte Belastungen
der gleichen Grossenordnung zu, SO
représentieren diese Oberflachenspannungen (Bild 2)

P
4z, 4z o LT:
die mit
B2 B2
(8) q;—=7qu6, Q’z=Tsz5

dimensionslos gemacht und abgeschéitzt werden koénnen.

Nimmt man schliesslich an, dass auch das Eigengewicht des
Stabes von der Grossenordnung der gesamten Belastung sei, so
besteht fiir das spezifische Gewicht y die Beziehung

VLB !B
es ist daher
B3
(9) Y=oy on ks

Der Spannungszustand im Stab wird im Sinne der Elastizi-
tétstheories) durch die beiden Gleichgewichtsbedingungen
dox ot ot do
10 23 xz — xz z
i e s
die Vertrédglichkeitsbedingung

an o2 92
e o) (0 o) =0

und die Randbedingungen
(12) o, sin ¢ — 7., cOS ¢+ 9 =0, 7., Singp—0, cos8p —q, =0
bestimmt. Dabei bedeutet
(13) P E
den Neigungswinkel des Stabumrisses U gegeniiber der Stab-
axe, der samt seinen Ableitungen nach x als von der Grossen-
ordnung ¢ vorausgesetzt wird, und die beiden Grossen
(14) Yz =y COS ¢
stellen unter der Annahme, dass die Axe um den Winkel v
gegen die Horizontale H geneigt sei, die negativen Projektionen
der nach Voraussetzung 1 konstanten Raumkraft dar.

Nun handelt es sich aber nicht darum, die Beziehungen (10)
bis (12), die mit Hilfe von (2), (7), (8), (9) und (14) auch in
der dimensionslosen Form

E==lay

Y. = v 8in Y,

®) Vgl. z. B. 8. Timoshenko, Theory of Elasticity, New York und Lon-
don 1934, S. 20 ff.
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00", ol ) Otz 00’ ; und ist damit in der Lage, auch §g’./dx' zu klassifizieren. Aehn-

(1) s wa o BT v Sy, ox' 5 T cos g, lich folgt aus dem Umstand, dass ofx in jedem Querschnitt eine
0 0 1 1 1 Nullstelle besitzt und bis zur Grossenordnung 1/¢ ansteigt, die

0?0y oo’ Ao’ oz i 0 Ordnungszahl von o',/ (2’ zu —1. Damit sind aber die beiden

(16) dar? ox'? itz or'2 e AP e ersten Zeilen des Schemas (19) und unter Beriicksichtigung der
1 3 1 1 eben angegebenen Regel auch die links darunter stehenden Ele-

(17) o', 8ing —7'y;co89 4+ q=0,
0 0 1

T'ez SN g — 0';CO8 9 — q'; = 0
1 1 1

angeschrieben werden konnen, exakt zu integrieren. Es soll ja
hier nur ein N#hrungsverfahren entwickelt werden, und dazu
gehen wir von der Bemerkung aus, dass die Abschétzung (8)
upnmittelbar unter den wenigen zugelassenen Einzelkréften ihre
Giiltigkeit verliert. Grenzt man aber diese Stellen durch Quer-
schnitte ab, die etwa im Abstand B voneinander liegen, so bleibt
eine kleine Zahl von Stababschnitten zuriick, deren Lingen mit
L vergleichbar sind. Sie werden durch Schnitte begrenzt, in denen
die Spannungsverteilung zwar unbekannt ist, aber den Beziehungen

[0,2dF =M, [0,dF =Z, [1.dF — —Q
F F F

geniigen muss. Fiir die Behandlung solcher Abschnitte kann man
den Bestimmungsgleichungen der Spannungskomponenten die —
nunmehr mit Hilfe von (2), (3), (6) und (7) dimensionslos ge-
schriebenen — Forderungen

(18) [o'x2'dF' = M, [0 dF = Z, [T dF' = — Q'

F’ -1 F 0 F’ 0

peifiigen, die die Unkenntnis der genauen Spannungsverteilung
in den begrenzenden Schnitten wenigstens teilweise aufwiegen,
und versuchen, die Beziehungen (15) bis (18) n#herungsweise
aufzuldsen. Zuvor miissen indessen die Grossenordnungen sdmt-
licher darin auftretenden Glieder festgestellt werden.

3. Grossenordnungen. Zur Abkiirzung sollen im folgen-
den Glieder der Grossenordnungen &1, & (=1), &', &, ...
durch beigesetzte Ordnungszahlen —1, 0,1, 2, ... gekenn-
zeichnet werden. Wir bemerken dann zunichst, dass nach (9)
die rechten Seiten der Differentialgleichungen (15) die Grossen-
ordnungen ¢ aufweisen, und deuten dies durch die Zeiger 1 an.
Von derselben Ordnung sind gemiss (8) die letzten Glieder in
(17), in denen mit Riicksicht auf (7) und (13) iibrigens auch
die mit ¢’, und 7/, behafteten Glieder der Reihe nach mit 0, 0
und 1 bezeichnet werden konnen. Schliesslich folgen aus (6) die
Grossenordnungen der rechten Seiten von (18).

Um auch die iibrigen Gréssen abzuschitzen, ordnet man die
Spannungskomponenten samt ihren partiellen Ableitungen in Form
dreier dreieckiger Schemata (Tabelle 1) an, wobei sich den Spit-
zenelementen ¢', und 7/, mit Riicksicht auf (7) sofort die Ord-
nungszahlen — 1 bzw. 0 beilegen lassen.

Nun kann ein beliebiges Element aus einem der drei Schemata
nur dann im ganzen betrachteten, von Einzellasten freien Stab-
abschnitt, d.h. in einem a'-Intervall der Lénge 1/&, von einer
bestimmten Ordnung bleiben, wenn seine partielle Ableitung nach
% — von vereinzelten Stellen abgesehen, die etwa starken Be-
lastungsinderungen entsprechen konnen — von der nédchsten
Ordnung klein ist. Die Ordnungszahl nimmt demnach beim Fort-
schreiten nach links unten von Element zu Element um 1 zu.

Auf Grund dieser ersten Regel gewinnt man zunéchst die
Ordnungszahlen von §d’,/dx’ und 0t'xz /02’ , aus (15) sodann
diejenigen der Elemente (t’x:/ 07’ und (g';/02 und aus (17)
schliesslich die Aussage, dass ¢/, mindestens am Rande von
erster Ordnung klein ist. Nun kann aber ¢’; im a'-Intervall der
Gréssenordnung 1 nicht bis zur nullten Ordnung ansteigen, wenn
do'z/ 0= von erster Ordnung klein ist; man hat also

(20)

0z w0 8

Tabelle 1. Schema der Spannungskomponenten

mente klassifiziert.

Leitet man die Beziehungen (15) beliebig oft nach z' und #
ab, so erhdlt man rechterhand Null. Daraus folgt als weitere
Regel, dass diejenigen Elemente, die in den Dreiecken mit den
Spitzen dg'./Hx’ und r'x:/Hz’ an gleicher Stelle stehen, von
derselben Grossenordnung sind und dass entsprechendes fiir die
Dreiecke mit den Spitzen (7/,;/d2’ und go¢': /92’ gilt.

Vermittelst dieser zweiten sowie der ersten Regel lassen sich
in der dritten Zeile von (19) sédmtliche Ordnungen mit Ausnahme
derjenigen von (%s'./()?'* angeben, die aber jetzt mit Hilfe von
(16) bestimmt werden kann. Nach Beriicksichtigung beider Regeln
bleibt sodann in der vierten Zeile §3'¢g./{2'3 unbestimmt, ldsst
sich aber durch Ableiten der Vertrédglichkeitsbedingung nach
z' abschitzen, und schliesslich konnen in der gleichen Weise die
flinfte sowie weitere Zeilen behandelt werden.

Entwickelt man jetzt unter Beschrédnkung auf einen be-
stimmten Schnitt die axiale Normalspannung in die Maclaurinsche
Reihe

U0

TW (', 0) -

o'z (2, 2) = g'x (2, 0) +
22 82 T ’x 3
+T87“r(x'o)+""
so lassen sich die niedrigsten Ordnungen, die die Beiwerte
1% Okol.
LN (k=0,1,2,...)
der Potenzen von 2z’ annehmen konnen, dem Schema (19) ent-
nehmen. Man erhilt so in vereinfachter Schreibweise

(22) o'x (2,2) =a, (@) + a, (&) &' 4 a, (x') 2'2 4
—1 —1 1

(21) (2',0) = a; (2')

+ a; (2) z'3+a4:3(ac')z'4+...,
1

wobei mit Riicksicht auf die Art der Abschitzung sowie darauf,
dass (21) die partiellen Ableitungen von g’, fiir die bestimmte
Stelle 22—0 und im Nenner die Fakultdt von k enthilt, freilich
noch damit zu rechnen ist, dass ein Teil der Beiwerte in Wirklich-
keit von hoherer als der angegebenen Ordnung klein ist.

4. Die elastische Linie. Bezeichnen

% — Bw', w — Bw'
die Verschiebungen eines beliebigen Punktes parallel zur Be-
lastungsebene und
B2 B? m E'

(@) p B s e
die dimensionslosen elastischen Konstanten des Stabes, so ist
der Verzerrungszustand in der Belastungsebene?) durch

gu' 1 ( a’z) ow A ( U’x)
=——|0'x — y &3 = =719z — ’

Hli—

Rl o) m 02 — B m
ou' ow'’ d; !
?’xz:-B? Jo ’:TT.\’:
gegeben; es ist demnach
0% w' 1 9t/ it ) 0'x 150010
STPIE S TR T T (’S’z/’ T it g )’
1 —1 1

wobei die Ordnungszahlen aus dem Schema (19) folgen.

Nun stellt bei unendlich kleinen Verschiebungen — und auf
solche miissen wir uns ja schon deshalb beschrénken, weil sonst
die Beanspruchungen von der Deformation abhingig wiirden —

6) Vgl. etwa 8. Timoshenko, a.a.0. S.22 u. 23.

g'x T'xz o'z
£ 0 1
00" ()0'x OT'22 Ot Ao’ do's
o= ! = ' BED ' 5=
0 = 1 0 2 it
0%a'y 02a'x 0%0'x 027y 032 7!ss 027 s 0%a'; 020, 0%0';
(19) 0@ oz’ )z’ o= ox'? dx' 9&' 0='* ox* @ )= 0z'?
1 0 1 2 1 0 3 2 1
%0y 020y 0o’y Htals 0%7 2z 08Tz 0%T'xz P T'xz 0%a'x 0%a'z 0%0'x
ox'3  Dx'i0e ' gz’ 2 0z'3 'S dx'ige’ D Hr'2 Dz's Jx's 9z 2Pz Jx' 92’2 FE
2 1k 2 1 8 2 1 2 4 3 2 1
0ta'x Olo, 0oy 01a'x 0oy Bzl Bfeiay  DAivlus s Divle diTlas | H0N0 1000 0oy O0%cy' Bio's
9wt Pu'ipr Qw'Eor Qx' 0zt gt Qx't Qa'vPe Jx'igr'? fa PR’y PRt 0zt Px'3fr Ha'2pHe’d Hx'PR'd PRl
3 2 3 2 3 4 3 2 3 2 5 4 3 2 3
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Jw’

ol
den Neigungsfaktor der elastischen Linie dar; ihre dimensions-
lose Kriimmung

(z', 0)

s
o' o
ist mithin durch
T 92w’ : Ty :
(25) '—gf = e (x', 0) = — e Y (&, 0) -
ik
1 00" ; 1ol ; A
= e [y (8100 o g (P20
o *1 1 )
gegeben.

5. Erste Ndherung. Bei Beschriankung auf Glieder der

Grossenordnung 1/e geht (22) in den linearen Ansatz
0y = G, + @, 2
-1 —1

uber, wihrend geméss (7) und (20) gleichzeitig 7., —=0¢'. =0 zu
setzen ist. Ferner reduzieren sich die Bestimmungsgleichungen
(15) bis (18) fiir die Spannungskomponenten auf die beiden
Forderungen

f{]’ledF’:M’, fa'xdF’:(),
F' F'

die zur Ermittlung der Beiwerte a, und a, ausreichen. Sie fithren
nédmlich auf

M 4
(26). a; — 0, a‘:J'/b'
so dass man
Ml
(27) 0'x = —J’_ &
um nach Umformung vermittelst (2), (3) und (6) endgiiltig
M 12M
(28) Ux:T :Wzy Ty —0, 0.—0
erhélt. Schliesslich geht (25) in dieser Ndherung in
1 b ohls .
o Y
iiber und liefert unter Verwendung von (3), (6), (23), (24)
und (27)
e L
0 EJ

Die klassischen Beziehungen fiir die axiale Normalspannung
und die Kriimmung der elastischen Linie stellen sich damit als
Ergebnis eines ersten Ndherungsprozesses im Sinne der exakten
Elastizitdtstheorie dar, die auch fiir den Stab mit leicht ver-
dnderlicher H6he und schief gestellten Lasten giltig bleiben,
sofern die Lastrichtungen nicht allzu schwach gegen die Stab-
axe geneigt sind. Insbesondere sind in dieser Ndherung die
von der Zugkraft Z herriihrende axiale Normalspannung, iiber-
dies aber auch die Spannungskomponenten r,, und ¢, zu ver-
nachlédssigen.

6. Zweite Ndherung. Bei Hinzunahme der Glieder der
Grossenordnung 1 bleibt der Ansatz
(30) o'x=a, 4 a,2

0 —1

bestehen, wobei aber mit Riicksicht auf das Ergebnis von Ziff. 5
der Beiwert @, hochstens von der Grossenordnung 1 sein kann;
ferner ist ¢’ im Gegensatz zu 7/,, nach wie vor zu vernach-
ldssigen. Die Forderungen (18) sind jetzt in ihrer urspriinglichen
Gestalt

(31) fg',,z'dF':M', f(]’xdF':Z’, f‘['xzdF':—Q’
F’ T F’

zu beriicksichtigen und geméss (15) bis (17) durch die Differential-
gleichung
(32) Ao’ ”r')r"i 1

dx! 02!
sowie die fiir beide Rénder giiltige Bedingung
(33) 0'xp — T2y =0
zu ergénzen, und fiir die Kriimmung der elastischen Linie ergibt
gsich wieder

1 3 s I
(34) T T (s 0).

Die beiden ersten Integrale (31) fithren mit dem Ansatz (30)

auf die Beiwerte

Z m 1
aQy = T AR T o (e =
und damit auf die axiale Normalspannung
; DT Z'
(35) ox:._-——J,—z +- 7

Sodann erhédlt man aus (32) und (35) bei Beschrdnkung auf
Glieder der Grossenordnung 1 fiir die Schubspannung die Dif-
ferentialgleichung

el o d m =
ool s Beian <J')

mit dem allgemeinen Integral
d M\ 22
A <*Jf) 2 T
und dieses geht — da die Bedingung (33) in der beobachteten
Néiherung fiir beide Rénder die Gestalt
d (M'\ h? M W
e
annimmt — in

1. (he2 d M’ h M
36 A Pl i L e e B oo 1)
L39) 2(4 z)dx'(J')+2 g
uber. Ferner fiihrt das dritte Integral (31) auf
h'ls

| e
b /r,;..dzf b T
% 12 dx’ 0

’ o
Taz = —

T'xz —

b:hl 9 M!
Eomaw s
— .h'/x,

und hieraus folgt, sofern noch die Identititen

1 dw b'h'3 aJ b'h 2
B0 e e o
verwendet werden, die bekannte Beziehung

aMm’ !
(38) s Q

fir das Momentengleichgewicht an einem — durch zwei benach-
barte Querschnitte begrenzten — Stabelement. Schliesslich folgt
aus (34) und (35) wieder
1 M
(39) e
Unter Verwendung von (37) und (38) ldsst sich der durch
(35) und (36) gegebene Spannungszustand endgiiltig auf die

Gestalt
12Mz+ Z - 3 L(l 422>Q+

T — - 3 e =y

(40) bh3 “ bh 2bh h?
SRl el

|+ ( 2 h2) h M] a0 08
die Kriimmung der elastischen Linie auf die Form

1 12M
B — mon

bringen, wobei vermittelst (2), (3), (6), (23) und (29) auch schon
der Uebergang zu den unbezogenen Grossen durchgefiihrt ist.

Die axiale Normalspannung und die Kriimmung der elas-
tischen Linie sind demnach noch immer durch die klassischen
Beziehungen gegeben, wobei aber im Gegensatz zur ersten
Né&herung fiir die Ermittlung von o, der Einfluss der Zugkraft Z
mitzuberiicksichtigen ist. Die andere Normalspannung ist noch
zu vernachlédssigen; die Schubspannung endlich folgt einem Ge-
setz, das — allerdings unter Verwendung einer Hilfsannahme
und in dieser Gestalt nur fiir die reine Biegung — erstmals von
F. Stiissi”) aufgestellt worden ist. Sie weist einen parabolischen
Verlauf auf, verschwindet indessen nur dann am ganzen Rande,
wenn der Stab ohne Anzug ist; andernfalls kann sie unter Um-
stdnden gerade hier ihre Hochstwerte annehmen.

7. Diskussion. Die Ergebnisse von Ziff.6 lassen sich
dahin interpretieren, dass es — im Sinne einer zweiten Ndherung
und unter Ausschluss der Umgebungen von Einzelkraftangriffs-
punkten — erlaubt ist,

1.den Verlauf der axialen Normalspannung linear anzunehmen
und mittels der Forderung seiner Aequivalenz mit dem Biege-
moment und der Zugkraft zu bestimmen,

2. die Schubspannung aus der Komponentenbedingung fiir
die axiale Richtung und der entsprechenden Randbedingung
herzuleiten und dabei den durch die Zugkraft hervorgerufenen
Anteil der Normalspannung sowie das Eigengewicht und die
Randspannungen (die in den Komponenten M, Z und @ der
Beanspruchung schon beriicksichtigt sind) zu unterdriicken,

3. die zur Stabaxe senkrechte Normalspannung zu vernach-
ldssigen,

4. die Krimmung der elastischen Linie als Quotienten aus
dem Biegemoment und der Biegesteifigkeit zu bestimmen.

Diese Vorschriften entsprechen zum grosseren Teil der in
der technischen Festigkeitslehre iiblichen Praxis, geben indessen
zu folgenden Bemerkungen Anlass:

a) Um den Spannungsverlauf um einen N&herungsschritt
genauer als durch (28) zu beschreiben, muss neben der Zugkraft
auch die Querkraft beriicksichtigt werden, deren Einfluss von
der gleichen Grossenordnung ist. Fiir die blosse Dimensionierung
dagegen ist dies nicht notwendig, denn in den Vergleichsspan-
nungen, die nach der einen oder andern Hypothese fiir den Bruch
verantwortlich gemacht werden, bedeutet eine kleine Korrektur

7y F. Stiissi, Baustatik, Bd. I, Basel 1946, S. 282.
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von ¢, eine Aenderung von gleicher, die Hinzunahme von 7z, .
dagegen eine solche nédchst hoherer Ordnung.

b) Die Kriimmung der elastischen Linie héngt in dieser
Niherung weder von der Zug- noch von der Querkraft ab.

c) Der Anzug des Stabes wirkt sich auf den Spannungs-
zustand und die elastische Linie indirekt insofern aus, als im
Gegensatz zum prismatischen Stabe hier & von x abhéngt.
Einen direkten — auch im unendlich kurzen Stabelement
wahrnehmbaren — Einfluss hat er nur auf die Schubspan-
nungsverteilung, und zwar wird diese geméss (40) durch den
Winkel ¢ entscheidend mitbestimmt. Diese letzte Tatsache,
auf die schon H. Lorenz?®) hingewiesen hat, die durch photoela-
stische Untersuchungen?) bestétigt wird und iibrigens auch ele-
mentar 1°) folgt, wenn man bei der iiblichen Herleitung der Schub-
spannungsformel den Anzug mitberiicksichtigt, wird in der tech-
nischen Festigkeitslehre meist {ibersehen. Nur so ist z. B. die
Bemerkung von 8. Timoshenko anlédsslich der Behandlung des
keilformigen Balkens !') zu verstehen, dass die grossten Schub-
spannungen am Rande auftreten und doppelt so gross seien wie
diejenigen, die von der elementaren Theorie fiir den Schwer-
punkt des rechteckigen Balkenquerschnittes geliefert werden.

8. Verallgemeinerung. Die in Ziff. 1 unter Vorausset-
zung 4 zusammengestellten Forderungen gewéhrleisten in Wirk-
lichkeit die Ausbildung eines exakt ebenen Spannungszustandes
nicht, denn dieser stellt bekanntlich einen praktisch meist uner-
reichbaren Grenzfall dar. Umgekehrt ist aber klar, dass der Span-
nungszustand auch dann noch wenigstens in guter Ndherung
eben sein kann, wenn die genannten Forderungen nur ndherungs-
weise erfiillt sind, d. h. bei Stiben mit nur schwach vom schma-
len Rechteck abweichender Querschnittsform sowie geringem
Anzug auch im Grundriss.

Die Ergebnisse von Ziff. 6 lassen sich am einfachsten mit
den in Ziff. 7 formulierten Vorschriften auf diesen Fall iiber-
tragen, von denen die erste, dritte und vierte ohne weiteres auf
M Z 0 1 M
. T o L, Wy
fithren. Betrachtet man, um auch die zweite auszuwerten, das
in Bild 3 schraffierte Stabelement mit der Stirnfldche F* (x, 2),
deren statisches Moment beziiglich der y-Axe mit

[#dF =8 (z, 2)
F*

(42 6. —

bezeichnet sei, so erhdlt man als Resultierende der vom Biege-
moment herriihrenden Normalkraftverteilung liber F*
M (x)

X(x, ) = fzdF——_a;)—S(x 2)

ferner fiir die gegenuberhegende Stirnfldche
X L —dx

und als elnmge weltere axiale Kraft die von der Schubkraftver-

teilung lings der unteren Begrenzung herrithrende Resultierende
7. (2, 2)b(x, R)d2.;

Die Komponentenbedingung fiir die x-Axe lautet

%X dx — bty dx =0
und fiihrt auf die Schubspannung
1t ) M
Tog — LT (— S)

die schliesslich auch in der Form

S M S
@ = $ 1 X2 (2)

T B L
angeschrieben werden kann.

Das Ergebnis dieser Gleichgewichtsbetrachtung, die sich eng
an die iibliche Herleitung der Schubspannungsverteilung an-
schliesst, aber auf die Verdnderlichkeit von J, F* und S mit x
Riicksicht nimmt, zerfdllt geméss (43) in den bekannten, bei
prismatischen Stdben allein auftretenden Ausdruck und ein zwei-
tes Glied, das von gleicher Grossenordnung ist und den Einfluss
der Querschnittsinderung ausdriickt. Es ist in etwas anderer
Form schon von H. Loremz'?) fiir den Fall der reinen Biegung
verwendet worden.

Uebrigens lidsst sich leicht nachweisen, dass die durch das
erste Glied in (43) dargestellte Schubkraftverteilung bei der

8y H. Lorenz, Lehrbuch der Techn. Physik, Bd. IV, Miinchen und Ber-
lin 1913, 8. 217 ff.

9) Vgl. etwa R. Bereuter, Experimentelle Untersuchungen der Span-
nungsverteilung in freiaufliegenden Balken, Publ. du Labor. de photo-
6lasticité de la Chaire de Méch. en langue francaise de I'E. P. F., Ziirich
1946.

10y Vgl. Ziff. 8.

1y 8. Timoshenko, a. a. O., S. 95.

2) H. Lorenz, a.a. O., S. 219.

q X+%dx

Q+da

Bild 4.

Bild 3.

Reduktion auf den Schwerpunkt des Schnittes die Querkraft er-
gibt, widhrend das zweite Glied einer im Gleichgewicht befind-
lichen Verteilung entspricht. Fiir das mit den Bezeichnungen
von Bild 3 gebildete Integral

ea )

S o) S
frdF_e‘ftbdz - Qdez o Mf-ﬁ (v)dz
=.L1 =ey
kann ndmlich mit Riicksicht darauf, dass S an beiden Grenzen

verschwindet, auch

frdF‘*—Qf*dz—;- _8_ —i-d

o el S oL

gesetzt werden. Nun ist aber

J—fz dF—fz zbdz,
S
und da man den zweiten Faktor im Integral als Abnahme von
S beim Fortschreiten um dz deuten kann, erhdlt man durch
partielle Integration
€o
+ [Badz

—e

T—_ (Ban-_ 0 Al
=

und hieraus mit Riicksicht auf das Verschwinden von S an bei-

den Grenzen
9 B
ij dz =0.

]
e
ik
=

-

Schliesslich gehen die Beziehungen (42) und (43), die unter
Voraussetzungen 1 bis 8 von Ziff.1 sowie der erweiterten Vor-
aussetzung 4 den Spannungszustand und die Kriimmung der
elastischen Linie in zweiter Ndherung beschreiben, bei Beschrin-
kung auf Rechteckquerschnitte wieder in die Formeln (40), (41)
iiber, und zwar auch dann, wenn ein geringer Anzug im Grund-
riss zugelassen wird.

9. Anwendung. Fiir den in Bild 4 wiedergegebenen keil-
formigen Balken, der die konstante Dicke b besitzt und am
freien Ende durch die Krifte Z und @ belastet ist, ergeben die
Beziehungen (42) und (43) bzw. (40) in zweiter Ndherung mit
Riicksicht auf

— e

sowie

h
M—— d = —— — konst.
Qx un @ o ons
den Spannungszustand
12Q x =z Z 12 @ 22
o ot e Rl =

Die exakte Lisung, die in diesem Falle bekannt ist!3), ldsst
sich in Polarkoordinaten durch die Spannungskomponenten

Zcos 9 Q@ sin &
O — — = e = L
br(<p+}2~sin2:p) br(q;—-%sian:)
Tro =0, 05 —0

beschreiben und fithrt — in rechtwinklige Koordinaten umge-
setzt — auf

x? Zx Qz
(46) 0 = o e, -,
Z ¢+§Sin2(p ¢—»2—Sin2q)
2 »2
Tez=— ——0zy Oz = Ox

z A z 3

Damit bestédtigt sich zunéchst, dass 7,. im Vergleich zu ¢, von
erster, ¢, dagegen von zweiter Ordnung klein ist. Ferner gehen
die Beziehungen (45) bei Entwicklung nach Potenzen von z/x
bzw. h/2x unter Vernachldssigung von Gliedern erster und hohe-
rer Ordnung in die Gleichungen (44) iiber, und damit ist an
einem einfachen Beispiel gezeigt, dass die elementaren Formeln
in dieser Niiherung die wahre Spannungsverteilung richtig wieder-
geben.

Dass dies auch im belasteten Ende noch der Fall ist, hiingt
m1t der speziellen Wahl des Beispiels zusammen; es darf hie-

= S. 94,

) Vgl. 8. Timoshenko, a. a. O.,
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raus — wie schon eine Bemerkung gegen Ende von Ziff. 2 zeigt —
nicht allgemein auf die Uebertragbarkeit der gewonnenen Er-
gebnisse auf die Umgebungen von Einzelkraftangriffspunkten
geschlossen werden. Auch in der Nédhe der in Wirklichkeit stets
vorhandenen Einspannstelle verliert mit (45) auch die Né&he-
rung (44) ihre Giiltigkeit, da hier der Winkel ¢ nicht mehr mit
¢ vergleichbar ist.

Erweiterung des Dampfkraftwerkes Malmo

Stidschweden wird aus drei Quellen mit elektrischer Energie
versorgt: aus nahe gelegenen Flusskraftwerken, die trotz den
vorhandenen Seen grosse Schwankungen in der Wasserfihrung
aufweisen; aus Wasserkraftwerken in Nordschweden, die wegen
den hohen Uebertragungskosten iiber rd. 1000 km Entfernung
moglichst voll belastet werden sollten, also die Grundlast zu
tibernehmen haben, und aus einem Dampfkraftwerk in Malmo,
das die Liicken im Belastungsdiagramm auszufiillen hat. Das
bestehende Dampfkraftwerk wurde im Jahre 1915 errichtet
und mehrfach erweitert. Es umfasste schliesslich zwei Kessel-
einheiten und einen Ljungstrom-Turbogenerator von 30 000 kW.

Bei starker Wasserfiihrung in Stidschweden deckt das Dampf-
kraftwerk nur die Bedarfsspitzen, soweit sie die Leistungsfédhig-
keit der Wasserkraftwerke iiberschreiten, sodass es nur im Win-
ter tagsiiber eingeselzt werden und dabei den grossen Last-
dnderungen folgen muss. Diese Betriebsweise ist trotz des tédg-
lichen Anlassens und Abstellens der Kessel und Turbinen wesent-
lich wirtschaftlicher als ein Betrieb, bei dem die Lastspitzen den
slidschwedischen Wasserkraftwerken zur Deckung zugewiesen
wiirden. Die Seen erlauben einen Ausgleich der Lastschwankun-
gen iiber Tage bis zu einer Woche, sodass es bei geringer Wasser-
fiihrung im Winter zweckméssig ist, den siidschwedischen Werken
diese Schwankungen zuzuteilen und das Dampfkraftwerk soweit
erforderlich, also hauptsédchlich tagsiiber, voll zu belasten. Aehn-
lich wird auch bei geringerem Energiebedarf in den Ueber-
gangsmonaten gefahren, wobei aber die thermische Zentrale nur
etwa halb belastet lduft. Neben der Energielieferung féllt dem
Kraftwerk Malmo die Aufgabe einer Betriebsreserve zu, die
wegen der grossen Entfernung der Grundlastwerke in Nord-
schweden besonders wichtig ist. Dieses Werk soll also einerseits
innerhalb eines grosseren Lastbereiches eine gute Wirtschaftlich-
keit aufweisen, und anderseits rasch Vollast iibernehmen konnen.
Ueberdies darf das Aufrechterhalten eines hohen Bereitschafts-
grades nicht kostspielig sein.

Um diesen sich teilweise widersprechenden Bedingungen zu
geniigen, wihlte man fiir die Erweiterung, die in den Jahren 1940
bis 1943 durchgefiihrt wurde, eine Anlage mit zwei Kesselein-

o

7,

72777

Bild 1. Querschnitt durch einen Hochdruck-Kessel. Masstab 1: 250

heiten von 110 t/h grosster Dampfproduktion und einem Turbo-
generator von 30000 kW Leistung. Der Kesseldruck wurde zu
52 atii und der Dampfzustand vor der Turbine zu 42 atii, 480 C
festgesetzt. Das Kiihlwasser weist 0 bis 20 ¢ C auf. Das Speise-
wasser wird in drei Stufen durch Mischdampf auf 160 ¢ C vor-
gewidrmt. Auf Zwischeniiberhitzung wird im Interesse der Ein-
fachheit verzichtet.

Die Kessel, Bild 1, erhielten eine Zusatz-Oelfeuerung, durch
die ihre normale Dampferzeugung von 70 t/h auf maximal 110 t/h
erhoht werden kann. Diese kombinierte Feuerung mit Kohle und
Oel erlaubt, den Lastdnderungen rasch und ohne wesentliche
Verluste zu folgen; iiberdies ermdoglicht sie eine Anpassung an
die jeweilen giinstigsten Brennstoffpreise. Der Wasserraum der
Kessel wurde grosser als normal ausgefiihrt, um bei rascher
Lastiibernahme iiber eine gewisse Wéarmereserve verfiigen zu
konnen. Wegen der dabei auftretenden stdrkeren Dampfblasen-
bildung steigt der Wasserstand und es besteht die Gefahr von
Fliissigkeitsschligen auf die Turbine. Um dem entgegenzuwirken,
hat man den Dampfdruck verhiltnisméssig hoch gewidhlt (was
kleine Dampfblasen ergibt), und die Siederohre so angeordnet,
dass die Dampfblasen rasch an die Wasseroberfliche gelangen.
Hierdurch ergab sich eine Spiegelhebung von nur 15 cm bei einer
Laststeigerung von 4 auf 70 t/h.

Der Kessel ist mit einer unteren Trommel von 1,5 m und
einer oberen von 2,0 m () und 12 m Linge ausgeriistet. Bei
einem Stiickgewicht von 45 t diirften diese Trommeln die gross-
ten ihrer Art sein, die je in Europa ausgefiihrt worden, sind.
Beide Trommeln befinden sich {iber der Verbrennungskammer.
In die untere Trommel miinden die Siederohre und die Speise-
wasserleitung. Im normalen Betrieb ist sie fast ganz mit Wasser
gefiillt; der Wasserstand schwankt dort nur sehr wenig, wéhrend
er sich in der oberen Trommel in einem grosseren Bereich ver-
dndern kann.

Fiir jedes Rauchgasgebldse ist ein grosser und ein kleiner An-
triebsmotor vorhanden; der grosse Motor dient lediglich zur
raschen Steigerung der Dampfproduktion in Notfédllen. Der An-
trieb der Verbrennungsluftgebldse ist analog durchgebildet. Um
den Lastinderungen rasch folgen zu konnen, hat man die
Wirmespeicherfihigkeit des Kesselmauerwerks durch wasser-
gekiihlte Winde und durch die Wahl leichter Steine moglichst
verringert.

Zur Energieerzeugung dient eine Ljungstrom-Turboeinheit
von 35000 kVA (30000 kW), 5000 V, 3000 U/min, die durch
Kabel mit einem rund 1 km entfernten, im Freien aufgestellten
Transformator von 5000/50 000 V verbunden ist. Dort befindet
sich auch die Schaltstation mit den Parallelschalteinrichtungen.
Entsprechend den besonderen Betriebsverhdltnissen sind die
Frischdampfzufuhr- und Regelorgane aussergewohnlich gross
gebaut, um die Abgabe der vollen Leistung auch bei auf 24
verringertem Druck zu ermdglichen. Eine besondere Vorrich-
tung am Geschwindigkeitsregler schaltet diesen Regler inner-

Tabelle 1. Hauptdaten einer Kesseleinheit

Hochster Dampfdruck im Kessel . SMpaRk f g 52 atii
Druckverlust im Ueberhitzer bei Vollast . G 3,5 at
Dampferzeugung bei Kohlenfeuerung 5 : . 70 t/h
Dampferzeugung bei Oelfeuerung ; i | 70 t/h
Dampferzeugung bei kombinierter Feuerung < 110 t/h
Heizfldchen: Kessel . . . ; 3 ; A . : 600 m?
Ueberhitzer . - S ; & ; 883 m3
Economiser 2 1750 m?
Luftvorwédrmer . . g S 900 m?
Rauminhalt der Verbrennungskammex . < § 267 m3
Rostflache 4 45,36 m?
Anzahl der Oelbrenner pro Kessel R 4 \ 3 7
Grosster Oeldurchsatz pro Brenner R . 850 kg/h
Dampfproduktion . : i 3 i 110 70 t/h
Lufttemperatur nach V01W‘umel e 110 100° C
Rauchgastemperatur nach Luftvorwarmer . 165 145°C
Speisewassertemperatur vor Economiser . 160 1500 C
Dampftemperatur nach Ueberhitzer . . 480 480° C
Rauchgasventilator: Motor . . . . . |gross klein
Rauchgasmenge X . 4300 | 2850 m* min
Rauchgastemperatur vor Ventllatol . 190 160° C
Druckstelgerung (stat.)i & m it aiie 200 (90 mmW.S.
Motorleistung o e e 410 135 PS
Drehzahl 5 . . . 3 730 485 U/min
Ventilator fiir Velbrcnnungsluft
Luftmenge . .« .+ . | 2500 {1850 m3/min
Drucksteigerung (Stdt )} SRS Ol 220 |150 mm W.S.
Motorleistung ] \ T { : i 225 95 PS
Drehzahl e e s i S i B 980 | 735 U/min
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