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Zur Festpunktberechnung durchlaufender Balken mit veränderlichem Trägheitsmoment
Von Ing. Dr. PIERRE LARDY, Zürich

Der kontinuierliche Balken mit veränderlichem Trägheits-
Moment spielt, besonders im Eisenbeton, eine wichtige Rolle.
Es soll im Folgenden eine Methode entwickelt werden, die für
beliebig veränderliche Trägheitsmomente gilt und erlaubt, unter
Umgehung der üblichen «Reduktion» der Momentenfläche M auf
MjJ allgemeine Beziehungen für die Auflagerdrehwinkel at, a2,
ßi, ß„, die Hilfslinienabstände x1, x2, x3 und die Festpunktabstände

a und b, sowie für gewisse Belastungsfälle geschlossene,
einfache Ausdrücke anzugeben, deren numerische Auswertung
einen geringeren Arbeitsaufwand erfordert. Sie dürfte geeignet
sein, die Abhängigkeit der betreffenden Grössen von der Art der
Veränderlichkeit des Trägheitsmomentes auf anschauliche Weise
abzuklären, indem die Berechnungen auf die Bestimmung der
einfachsten, geometrisch - statischen Grössen (Flächeninhalt,
Schwerpunktabstand und Trägheitsmoment) der 1/J-Fläche
(inverses Balkenträgheitsmoment) zurückgeführt und so auf eine
einheitliche Grundlage gestellt werden. Ein Vorzug liegt auch
darin, dass die Symmetrie-Eigenschaften des veränderlichen
Trägheitsmomentes voll ausgenützt werden können, während sie bei
der Reduktion wegen der Unsymmetrie des Momentenverlaufes
für Mj 1 und M2 1 verloren gehen.

Nach einer kurzen Erläuterung über eine angenäherte
Berechnung von Trägheitsmomenten und eine graphische Konstruktion,

die gleichzeitig den Flächeninhalt, den Schwerpunktabstand
und das Trägheitsmoment liefert, folgt die Berechnung

der Auflagerdrehwinkel nach der eingangs erwähnten Methode
im allgemeinen Fall unsymmetrischer, sowie für die beiden wichtigen

Sonderfälle symmetrischer und einseitiger Voûten.
Anschliessend werden die Ausdrücke für die Hilfslinien- und die
Festpunktabstände abgeleitet und einige wichtige Anwendungen
behandelt, die u. a. die Auflagerdrehwinkel infolge gleichmässig
verteilter Belastung, den Balken mit unendlich vielen, gleichen
Oeffnungen (einschliesslich Stützenmoment und maximales
Feldmoment), sowie den Einspannungsgrad betreffen. Am Schluss
wird der Zusammenhang der behandelten Methode mit der
Näherungsmethode der starren Voûten hergestellt und der Sonderfall
der gesetzmässig gegebenen Veränderlichkeit nach dem Potenz-
Gesetz in die Berechnung einbezogen.
1. Angenäherte Berechnung von Trägheitsmomenten
a) Berechnung aus dem Schwerpunktabstand

Die einleitend erwähnte Näherungsberechnung von axialen
Trägheitsmomenten bezieht sich hier nur auf «trapezförmige»
Flächen, wie sie in Abb. 1 dargestellt sind. Sie erlaubt, aus der
alleinigen Kenntnis des Schwerpunktabstandes rjs das Trägheits-
Moment bzgl. der aj-Axe aus der Beziehung

_ ~ jy= AC2%)s (1)

zu bestimmen. Die Berechnung von Trägheitsmomenten wird
damit auf die Bestimmung einer einzigen Schwerpunktskoordinate

reduziert, was eine Vereinfachung bedeutet.
Gl. (1) gilt in voller Strenge für Rechtecke, insbesondere

auch für unendlich kleine rechteckige Flächenelemente ijdx mit
dxdem Trägheitsmoment • V 3, woraus :'A

(F)

dx folgt. Gl. (1)

besagt nichts anderes, als dass diese, für das Rechteck
charakteristische Eigenschaft, mit praktisch genügender Genauigkeit
auch für ganz andere Flächen Anwendung findet. Die Begründung

erfolgt in der Weise, dass der praktische Gültigkeitsbereich
der Gl. (1), sowie der damit verbundene Genauigkeitsgrad untersucht

werden.
Ausgehend vom Trapez O Pr P2 P3 der Abb. 2 wird durch die

Punkte P1 und P2 eine Schar von Potenzkurven gelegt nach der
Gleichung :

y
mmzzmzzz?m

p'-

p,

T"
s^m^A

H

h

A 0 A\ „

*7 Ä +
H — h

Wn (2)

wo n der Parameter der Kurvenschar ist. n 1 ergibt die
Gerade P1P2, n > 1 die Kurven unterhalb (konkav nach oben),
n <7 1 diejenigen oberhalb (konvex nach oben) der Geraden Pl P2.
Die Integrale über das Intervall 0 bis B sind leicht auszuwerten
und ergeben, wenn zur Abkürzung

X ~ (0 <".<!)H
gesetzt wird:

Vf

BH*

1 frj^dx
__

H [2m2/.2 + 2nX + n + 1]
2 fTjdx ' 2 (2n + 1) (1 -f- nl)

„ dx

(n -f 1) (2m -j- 1) + 3mA[2m2A2 + 2mP. + n 1]

(3)

(4)

(5)
3 (n + 1) (2n + 1) (3m + 1)

Daraus folgt das angenäherte Trägheitsmoment J' nach
Gl. (1) zu:

J' -3-(2»/s)3
BH* [2n2A2 + 2nX -f n + 1]°

3 (2n + 1)3(1 -\- nl)'-
Zur Fehlerabschätzung dient das Verhältnis

J'
V AT

- ¦ (6)

(7)

damit wird der Fehler A in °/0:

_/»/„ 100 D
Abb. 3 vermittelt einen Ueberblick über die

(8)
Abhängigkeit

des Fehlers à von n und X. Mit zunehmendem X -^ nimmt AH
rasch ab und ist für X > 0,5 im Absolutwert bereits von der
Grössenordnung 1 °/o un<3 darunter, und zwar für alle Werte
von n. Die nach oben konvexen Kurven (n <; 1) zeigen auch
für kleinere X eine bessere Annäherung an den wahren Wert J
als die nach oben konkaven (n y 1). Falls notwendig kann, bei
kleinen X, durch eine passende Unterteilung der Fläche immer
erreicht werden, dass der Gesamtfehler beliebig klein ausfällt,
indem J' für die Teilflächen bestimmt wird.

Die Wahl von Potenzkurven bedeutet keine Einschränkung ;
jede Kurve durch P1 und P2 kann durch Potenzkurven
angenähert werden, wobei die entsprechenden Werte für tjs und
als Integrale i. A. eine bessere Approximation aufweisen als
diejenige unter den ursprünglichen Kurven selbst.

b) Graphische Konstruktion
Die Schwerpunktkoordinate ?js kann nach bekannten Methoden

analytisch oder graphisch bestimmt werden. In allen Fällen,
wo wegen der Flachheit der Kurve gegen die Bezugsaxe das

Abb. 1 Abb. 2

_% \ \
0 \
6 {

\
-p3 -

\>" A I Praktischer Gültigkeitsbereich.

2

5 -7«
•—i—

r n Az gilt Näht run Fü - alle X

1

z S^£Z&

\] V»

-2

-3

—o %m

S
-5
-7

-

0,1 0,2 0,3 0,U Ofi Oß 0/ 0,3 <)S %0

A-g *• (__

At b. i



186 SCHWEIZERISCHE BAUZEITUNG Bd. 126 Nr. 17

Seilpolygon eine gedrängte Gestalt annimmt, kann zur Erhöhung
der Genauigkeit eine graphische Konstruktion angewendet werden,

die keine Parallelverschiebung erfordert und hier kurz
erwähnt sei. Wir unterscheiden zwei Fälle:

J. Unterteilung der Fläche in Lamellen gleicher Breite
(Abbildung 4). Die Teilflächen werden durch Trapeze mit der Basis
b, den mittleren Höhen hl, h2, und den Flächen F1 b hx,
F2 b\, approximiert. Die Schwerpunkte S, können nach
Abb. 4 b bestimmt werden. Aus der Definition der Schwerpunkt-
Ordinate

gj Vt + F2 *7s + ; • ;
'?s F1+F2 +

folgt die Konstruktion nach Abb. 5 a, wo das statische Moment
2Fiiji durch eine treppenförmige Fläche dargestellt ist, die
durch sukzessive Anwendung der Hilfskonstruktion nach
Abbildung 5b1) in ein inhaltsgleiches Rechteck O AA' O' verwandelt

wird. Der Schnittpunkt T der Geraden OP(0'P Shi) und
der Rechteckseite A A' liefert r\s AT.

2. Lamellen ungleicher Breite. Man reduziert sämtliche
Lamellen auf die selbe Breite b, bestimmt nach Abb. 6 die Höhen h'
der inhaltsgleichen Rechtecke und verfährt wie unter 1. Diese
Konstruktion liefert gleichzeitig den Flächeninhalt, das statische
Moment und nach Abschnitt a) das Trägheitsmoment, ein
Umstand, der in der Folge die Auswertung der Formeln besonders
vereinfacht.

2. Berechnung der Auf lagerdrehwinkel ax, a2, ßt, ß2.
a) Darstellung der Integrale aus der Kurve y
Jm/J-

Die Berechnung der Festpunkte eines durchlaufenden
Balkens mit veränderlichem Trägheitsmoment benützt die
bekannten Integralausdrücke für die Auflagerdrehwinkel «,, k2

ß und ß2. Die in der Einleitung erwähnte Methode entspringt
aus einer speziellen, direkt auf die 1/J-Fläche hinzielenden
Interpretation des allgemeinen Integrals für einen Auflagerdrehwinkel
infolge M1 .'== 1 und M2 1 nach der Arbeitsgleichung :

MM'dx

Ai

i i
¦b—^—b

f 'Uw \m
iZ\~

7 \
k—' *
b)

Abb. 4

(14)

b) Allgemeiner Fall
Es empfiehlt sich eine Koordinatentransformation von x,

bzw. x' auf z, dessen Bezugsaxe durch den Schwerpunkt P der
i/-Fläche geht (Abb. 8), mit den Beziehungen:

x \ — z \
x' 1 — x l2 -\- z ]

Die Auflagerdrehwinkel a;, ßi berechnen sich nach bekannten

Integralformeln, wobei das Integrationsintervall für z von
Jtn

— Z2 bis + Z, reicht. Man erhält mit y —— :

l +
f oc'*dx 1 /*,, v,«i=JmnfA -PEAlJ{l° + *yydä

0 —h

wegen der Lage der Koordinatenaxe für s durch den Schwerpunkt

P der t/-Fläche ist das Integral
fyzdz=0

und es folgt:
a. VF + Y

PEJm (15)

r MM't
J —E'J

Analog erhält man :

(9)

Es ist zweckmässig, Gl. (9) mit einem passenden Festwert Jm

(meistens Jm kleinstes Balkenträgheitsmoment) zu multiplizieren,

woraus

EJma= f^A MM'dx (9-)

C xx'dx 1 /' s /, -, j9, / — I (l, — z) (l„ 4- z) y dz1 J PEJ PEJm J * * ' 2 ^ J
— I,

und hieraus

ÎA PEJ* (16)

folgt. M und M' sind hier lineare Funktionen,
eine quadratische Funktion

MM' A + Bx + Cx2 ¦

Gl. (10) in (9') eingesetzt ergibt:

EJma= fm (A + Bx + C*2) dx

ihr Produkt ist Endlich ist:

(10) / xs dx

o

„

fl77dx + B f—AxaxT- G fl^-x^dx (11)

PE
—'2

l^F 7 Y
~WejA~ (17)

Zur Abkürzung sei

y (dimensionslos) (12)

In den Gl. (15) bis (17) ist F der Flächeninhalt und Y das
Trägheitsmoment der _-Fläche, dieses auf die Schwerpunktaxe
durch P bezogen. Für konst Jm folgen die bekannten

Z Z

gesetzt und als Kurve aufgetragen. Dadurch gewinnen die
Integrale in Gl. (11) statisch-geometrische Bedeutung als Flächeninhalt,

statisches Moment und Trägheitsmoment der _-Fläche,
diese bzgl. der Lotrechten durch den linken Auflagerpunkt.
Damit ist die Berechnung der betrachteten Auflagerdrehwinkel
auf die alleinige Betrachtung der _-Fläche zurückgeführt.
Gl. (11) wird daher

EJmcc AF + BS + CY (13)
Um Unklarheiten zu vermeiden, soll in der Folge festgelegt

werden, dass sich die Grössen F (Flächeninhalt), S (statisches
Moment) und insbesondere Y
(Trägheitsmoment) ausschliesslich

auf die y-Fläche beziehen.
Damit ist eine Verwechslung mit
dem variablen Balkenträgheitsmoment

J ausgeschlossen.
Der Verlauf des

Balkenträgheitsmomentes führt neben dem
allgemeinen Fall zur Betrachtung
von zwei wichtigen Sonderfällen
der symmetrischen und einseitigen

Voûte, die kurz behandelt
werden.

Ausdrücke at ß2

gibt sich:
3EJ„

<xss ß1 6EJ„
Ferner er-

l.F
<_ + '_ IE J

l. F
+ ft IE _

(18)

') Die Gerade G G' bestimmt die
Höhe rV des inhaltsgleichen Rechteckes:

K (b + B) bh + Bflr Fläche
der beiden ursprünglichen Rechtecke.

-1
Ih,

Die Bestimmung des Schwerpunktes P sowie der Grössen
F und Y folgt aus Abschnitt 1.

c) Symmetrische Voûten
Dieser wichtige und häufige Sonderfall bedingt

Z

_ V=. T

¦h bh'
T^-y mmm.

¦•

|

i

h h i

A- i__i_
-B-A

f
/ I

Abb. 5

U. b H >*-
a) Für b>B DJ Für bt

Abb. 6
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wobei aus den Gl. (15) bis (18) folgende einfachen Ausdrücke
entstehen :

187

«1 + «2

Af + y
a— a

1 Ps: PEJm
VI F — Y

a 3
4

*—¦* PEJm
F8)8ft ' p- 2EJm

(19)

Die Bestimmung von F und Y nach Abschnitt 1 ist hier
besonders einfach.

d) Einseitige Voûte
Bei einer einzigen Voûte ist es oft einfacher, die Integrale

für die Auflagerdrehwinkel ohne Koordinatentransformation
direkt auf die Variablen x und x' zu beziehen. Das Trägheitsmoment

Y gilt dann je nachdem für die linke oder rechte
Auflagerlotrechte und sei mit T; bzw. mit Yr bezeichnet. Analoges
gilt für das statische Moment S der _-Fläche mit den Bezeichnungen

Si =\F und Sr l2 F. Man erhält somit :

; z

Ix 1KEJ
0

d. h.:

Weiter folgt :

l

PEJ„
Yr

Z2 E J,„

I x''
Ù

y dx'

(20)

-A xx' dx
PEJ l- E _ „

7-x (l — x) y dx

P E _ „ I
und hieraus die beiden Ausdrücke:

l Sl — Y, lSr-Yr
PEJ„ '¦EJn

x' (Z — x') y dx'

(21)

Weiter wird :

und daher:

l

I x2dx
PEJ P E J„

Yi

1x3 y dx

P E J„
Für die Winkelsummen folgt:

k, + a2

ß. + ft

«Sr

Z E Jm
St

IEJ„

(22)

(23)

3. Berechnung der Hilfslinien- und Festpunktabstände
a) Allgemeiner Fall

Aus der Baustatik ist bekannt, wie man zur Bestimmung
der Festpunkte a und b die Hilfslinienabstände xl, x2 und œ3

heranzieht. x1 und x2 sind nichts anderes als die Festpunkte b

und a im Falle der vollständigen Einspannung (gleich den

Drittelslinien, wenn J konst.) und sind, wenn auf die selbe Oeffnung

bezogen (Abb. 9), definiert durch:

Xi mm x2 aa_ (24)
ß, + ßn «i+«a

Die «verschränkte Drittelslinie» im Abstände ,t3 folgt aus:

x _ "V^'.-Jf,*' (25)
R, R,'

mit: ßi + ßt \ (26)
/ a' + <V /

Damit sind die B*estpunkte a' und ' aus denjenigen der

angrenzenden Felder bestimmt und können graphisch nach der be¬

kannten Konstruktion oder
analytisch gefunden werden. Für
a' in der Oeffnung Z' ist z. B. :

Am

ay (Xl 4- xs)

+ «V + a. (xs — xl)
l— a

(27)

Werden die aus dem vorigen Abschnitt für die Drehwinkel
ermittelten Werte eingesetzt, so folgen die allgemeinen
Ausdrücke für x. und x2. Zur Abkürzung wird

y^ (28)

l
gesetzt. ' ist der Trägheitsradius der j/-Fläche ; j < —,— ; das- 1/12
Gleichheitszeichen gilt nur für konstantes Trägheitsmoment.
Damit ergibt sich

Z. 1. F — Y Z,-

_-

P
h

P
l, F

U2F— Y
l2F

(29)

Für die analytische Berechnung der Festpunkte in der Oeffnung

V können direkt in den Formeln
'V 3,'V

+ <V + s,
.' VA + e2

die Werte der Auflagerdrehwinkel eingesetzt werden. Dabei ist
o „ b

-' i'2 z _ a " 2 — ' Z - 2

mit den auf die benachbarten Oeffnungen bezogenen Winkel-
grössen. Nach Einsetzen der Werte aus (15) bis (17) folgt für
den allgemeinen Fall:

Y + l1(l1—a)F Y + l, (l2 — b) F
1(1 - a)EJ„ 1(1—b) EJ„

(30)

Damit ist die Berechnung der Festpunkte a und b für jeden
Verlauf der Balkenträgheitsmomente auf einfachem Wege
gesichert. xl, x.2 und a, b sind grösser als bei konstantem
Trägheitsmoment. Somit rücken die Festpunkte gegen die Feldmitte.

b) Symmetrische Voûten
Hier wird Z, Z2 Z/2 und :

-F — Y

„ 2
Z

(31)

Für :

Z

: konst. wird x, x2 —-

c) Einseitige Voûte
Aus den entsprechenden Ausdrücken (20) bis (23) folgt:

JS, —Yj _ l Yj_
Si

JA
Sr

x, Si

lSr - Yr
Sr

Z

(32)

Ferner vermitteln Gl. (20) bis (22) die Werte:

Yi —aSi
f> ~ 1(1— a)EJm

Yr — bSr
(33)

1(1- b)EJ„
4. Anwendungen und Sonderfälle
a) Auflagerdrehwinkel für p=konst. und P in
Balkenmitte

Obschon die entwickelte Berechnungsart vor allem für die

Festpunktbestimmung geeignet ist, können bei symmetrischen
Voûten im Falle gleichmässig verteilter Belastung p, sowie bei
einer Einzellast P in Balkenmitte, einfache Ausdrücke für die

Auflagerdrehwinkel a0 ß0 angegeben werden, woraus die
Festpunktmomente

Z a3 Iß,
und die Schlusslinie bestimmt werden. Die Betrachtung der
verschiedenen Belastungsfälle soll auf diese beiden wichtigen
Sonderfälle beschränkt bleiben.

Aus Symmetriegründen ist o0 ß0, cc0 -\- ß0 2 a„ ; der
Belastungszustand ist

1 3
I

*J*

Am-

Abb. 7 Abb. 8 Abb. 9

M' — 1 und das
Moment M, auf die Koordi-
natenaxe durch Balkenmitte

gelegt (z 0),
wird

«-.(-i—*)
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Es folgt:

und

2«„ 2

2EJ

fA
A

dz
E J

also :

«0 ß
V

iEJn

z-\ y dz

F — y\

Ein Vergleich mit der 2. Formel (19) führt zu:
?Z2

Po

(34)

(35)

und für die Festpunktmomente zu den bekannten Ausdrücken:

ML — —
pal Mk pbl

4
(36)

Die Einfachheit dieser Ausdrücke ist damit für symmetrische
Voûten allgemein bewiesen und führt zu der selben einfachen
graphischen Konstruktion der Schlusslinie wie bei J konst.,
wo Gl. (34) in

pP
ao 24E.m

übergeht.
Analog folgt für eine Einzellast P in Balkenmitte :

JP-

xy dx2EJn I'
und hieraus

o

PSi'
iEJ„ (37)

wo Si ' das statische Moment der halben y-Fläche bzgl. der
linken Auflagerlotrechten bedeutet. Für / m konst. geht
Gl. (37) über in den bekannten Ausdruck

PZ2
° ¦ 16EJm

b) Balken mit unendlich vielen, gleichen
Oeffnungen

Bei freidrehbaren Stützen folgt aus Symmetriegründen
x. R, ß0 0, a öco

Gl. (27) vereinfacht sich zu

2 Ix,

folgt. Wird xl aus Gl. (31) eingesetzt, so folgt:
Z

dco — 3 (38)

Für konst. folgt der bekannte Wert
«oo Q^ 0,211 Z

Wird der Balken nach Abb. 10 belastet, so ist aus Symmetriegründen

die Schlusslinie in jeder Oeffnung horizontal. Das
Stützenmoment Ml kann nach der Dreimomentengleichung
berechnet werden:

ß0 f «„• + *_, ft 4- M2 (ßt 4- _,;') 4- M2' a2' 0 (39)
Aus Symmetriegründen ist M2 M2' M, a.' a, oy cc2,

aa' — cc0; ferner wird nach Gl. (34)

ß" TE7J^mF'Y) a°=^EAA
Es folgt für das Stützenmoment M1 :

(2g + p) (P_M, a-")

(40)

(41)

m ,.<.—

/s
Abb. 10

Horn. Fl

Das maximale Feldmoment Mn
(ff + P)

Mr, - P + M,

ist
pP
16" + + 2g)

(42)

Bei konstantem wird :

9 P P P
M, - M„ gP

24
pP

12 24 " '" 24 ' 12

Besonderes Interesse hinsichtlich der Anwendung verdient
der Balken mit unendlich vielen, gleichen Oeffnungen auf
elastisch-drehbaren Stützen. Der Winkel st in der Festpunktformel
wird aus der allgemeinen Beziehung111f«

" "
C'a AT

(&s Winkel am Stützenkopf inf. Ms =1) gewonnen
(Verallgemeinerung für obere und untere Stützenreihe leicht möglich).
In Analogie mit Obigem kann der Festpunktabstand aœ aus den
entwickelten Formeln für symmetrische Voûten bestimmt werden.

Aus der Bedingung a' a aœ folgt zunächst:

in- a2) (2es a2)
\l («j -f a2) (2e. 4. K[ 4- a2)

und hieraus mit der Abkürzung

x — JAAaa
- ~ F

nach einigen Umformungen:
4j2 + _Z2

1-4-*

(43)

(44)

Ist ss x 00 (frei-drehbare Stützen), so folgt unmittelbar
Z

Gl. (38) mit aœ — j. Für J Jm konst. ergibt sich aus

Gl. (44) mit F l und Y

Z

aœ=m

V
Ü2

l
~

~6~

1 + 3_
1 + *

Für tj x 0 (vollständige Einspannung) ist aœ -.

-P (Gl. 31).

(45)

Z

"2

Bei Annahme der selben Belastung wie in Abb. 10 können
das Stützenmoment M2 und das maximale Feldmoment Mm in
der mit (g 4- p) belasteten Oeffnung, ferner das Moment Zkfs am
Stützenkopf bestimmt werden. Aus den Elastizitätsbedingungen,
sowie aus den Symmetrie-Eigenschaften folgt nach einigen
Zwischenrechnungen :

(46)

Für J konst. gehen die Gl. (46) über in die Ausdrücke:

M AlA pp 2 + *
2 12 24 l|z

gl- pP 1 + 2*
24 + 2Ï 1 4- x

pl' 1

A( p 2 4- xaAA\i + *¦«__ 9 +

2J2 + Y PA-g y
-o— + \ 7 x

V 4
__s — 2 1 + *

__„

AT,
12 1 4- x

Die Gl. (46) können leicht auf den Fall zweiseitiger Stützen
erweitert und in geeigneter Weise zur Berechnung von
Stockwerkrahmen und Pilzdecken herangezogen werden, da der
Festpunktabstand bei elastisch-drehbarer Auflagerung sehr rasch
gegen den Wert aœ konvergiert.

c) Einspannungsgrad2)
1. Stütze mit Gelenk. Der Drehwinkel es (inf. M,

Stützenkopf ist identisch mit dem Winkel a, :

Z22F + Y

1) am

«s
PEJm

2. Stütze mit fester Einspannung. es am Stützenkopf ist
identisch mit dem Winkel a für den einseitig eingespannten
Balken. Aus den Superpositionsgleichungen folgt mit ß 0:

«V
' ßs

''\ Vgl. Prof. Dr. M. Ritter: Autographie der Vorlesung über Baustatik
II.
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Nach Einsetzen der Werte aus den Gl. (15) bis (17) wird
Y

(Z,2 + P)EJ„
(47)

Für J konst. J,n liefert (47) : ss
Z

iEJ„
3. Stütze ohne Querkraft. Dieser Fall tritt bei freiem Stüt

zenkopf mit *_" 1 auf. Hier wird, weil M M• 1 :

r dx F
EJ EJ„.

(48)

d) Ein- und zweiseitig fest eingespannter Balken
Bei einem rechts vollständig eingespannten und links frei-

drehbar gelagerten Balken ist a

l
metrische Voûten folgt b ——

gleichmässig verteilte Belastung

Mt 0 Mk

0; b

2 p
l

pP

für sym-

nach Gl. (31) und für

V ¦„

Wegen __2 Mk

_f„

Z

ist

A- pp

i + r-

(49)

(50)

Für konst. folgt der bekannte Wert M2
pP
8

Beim beidseitig vollständig eingespannten Balken sind die
Festpunktabstände a und b anhand der Gl. (29) zu ermitteln:

iLa Z, —

«.,

Für symmetrische Voûten und gleichmässig verteilte Belastung p
folgen die Einspannmomente M1 und M2 unmittelbar zu :

pZ2
__, M., + _

Das maximale Feldmoment M,
pZ2

ist

Mm __., -r-

(51)

(52)

Für J konst. folgt __„
pZ2

24

Der günstige Einfluss der Voûten als Funktion des variablen
Balkenträgheitsmomentes auf das maximale Feldmoment Mm
kommt hier deutlich zum Ausdruck. Bedeutet A in °/0 die
Reduktion von Mm gegenüber dem Feldmoment M°m bei konstantem

Trägheitsmoment, so folgt, wenn
P

P d — £)

gesetzt wird:

(M°,„. - Mm)

12

100 100 1

24

100 £

z. B. ist für t 0,1 der Wert J 10 °/0, d. h. die Reduktion von
P

Mm ist gleich derjenigen von p auf ——-. Die Erhöhung A' °/0

des Einspannmomentes ergibt dagegen nur
A' % 50?

Bei £ 0,1 ist A' °/0 5 °/0 ; der Gewinn am Feldmoment ist also
doppelt so gross wie der Verlust am Einspannmoment.

e) Die Festpunkte des eingespannten Bogens
Die vorliegenden Betrachtungen können auf die

Festpunktbestimmung eines eingespannten Bogens angewendet werden.

Die y —^--Fläche wird hier ersetzt durch die y' ——-J J cos «jp

Fläche (Js Bogenträgheitsmoment im Scheitel). Dann ergibt
sich aus der Definition der Festpunktabstände, der Gl. (29)
entsprechend :

j'2
h

a Zj —

b Z, -
bau.

3) Vergl. Prof. Dr. M. Ritter: Autographie der Vorlesung über Massiv-

wo j'2 ——- das Quadrat des Trägheitsradius der _'-Fläche be-

deutet. Für einen symmetrischen Bogen wird
1 2 j 2

a=b=m-m-
p lFür cos tp Js folgt j'2 —— und a £> —-

Beim Parabelbogen mit dem Pfeil /, der Spannweite Z und
der Gleichung 2. Grades

u' -p-(m -s")
wo w die Ordinate der Bogenaxe bzgl. der Kämpferwaagrechten
bedeutet, kann für den Abstand t des elastischen Schwerpunktes
ein einfacher Ausdruck gewonnen werden. Es ist

/«iL=limAAhm
¦ ds
EJ

t
!:

und hieraus folgt

t f[l

fy dz

p ' (53)

Für J cos 9 Js wird, wie bekannt, t ¦ f
5. Zusammenhang mit der Näherungsmethode der starren Voûten;

Potenzgesetz
a) Allgemeines

Die Näherungsmethode der starren Voûten3) führt zu
einfachen Ausdrücken und eignet sich besonders für schnelle,
überschlägige Berechnungen, wo das veränderliche Trägheitsmoment
in grossen Zügen berücksichtigt werden soll. Man denkt sich
die bestehenden Voûten ersetzt durch zwei starre Voûten der
Länge c und C an den Balkenenden und setzt dort J oo, im
übrigen J Jm konstant, c und c werden geschätzt. Die
Integration ergibt für die Auflagerdrehwinkel, Hilfslinienabstände
usw. einfache Ausdrücke. Das Integrationsintervall reicht von
c bis Z — c für Jm konstant. Der Näherungscharakter der
Methode liegt erstens darin, dass die Strecken c und C nur
geschätzt werden ; zweitens werden für jede der zu berechnenden
Grössen die selben beiden Strecken c und C benützt, während
in Wirklichkeit für jede der Grössen at, a2, a, + s1P «,,
usw. das ihr zugehörige Paar von Strecken c und C eingeführt
werden musste. Trotzdem kann diese Berechnungsart in vielen
Fällen zu einem grössenordnungsmässig genügenden Ergebnis
führen, sobald c und C einigermassen passend, d. h. wie wir
sehen werden, nicht zu gross gewählt werden. Die weiteren
Betrachtungen beschränken sich auf den symmetrischen Fall mit
c c ; zur Abkürzung wird

gesetzt. Die Integration von c bis Z — c ergibt die bekannten
Ausdrücke

«i ft o Jt Cd - A)3 - A3]

«2 ft
3i__„

Z

R,

6EJ,
Z

~2E~J

woraus der Hilfslinienabstand
ft *

(1 _6Z2 4- 4À3)

(1 - 2A)

x, -A (1 4-2A —2Â2)

(54)

(55)
ft + ft 3

folgt. Ist X gegeben, so kann die Berechnung von JS, und x1 auch
auf graphischem Wege erfolgen,
b) Vergleich mit der exakten Methode

Werden die Ausdrücke (54) und (55) mit den entsprechenden
aus den Abschnitten 2 und 3 verglichen, so ergibt jede Gleichung
einen verschiedenen Wert für X; diejenigen aus den Gleichungen
für R1 und x1 seien mit XR und Xx bezeichnet. Es folgt unmittelbar

1

lR=7T
F
2T

l -I/3-4
(56)

Die Gl. (56) zeigen den Zusammenhang mit der exakten
Methode; die Einführung der beiden Werte Xr und Xx nach (56)
in die Berechnung der Festpunkte würde zum richtigen Ergebnis
führen, wäre aber sinnlos, da ja schon die Werte F und j zum
Ziele führen. Die Berechnung mit X ist deshalb nur dann be-
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rechtigt, wenn sie rascher als die exakte Berechnung (hier die
Bestimmung von F und j) zu einem brauchbaren Ergebnis
verhilft. Deshalb beschränkt man sich auf einen einzigen Wert von
X. Eine Fehlerabschätzung für

„ jjjt Xl — °8 X2

R1 -Ir- R2

zeigt, dass man besser fährt, wenn man sich bei der Wahl von
X möglichst dem Wert Xx und nicht demjenigen Xu nähert, da
dann der Fehler in der Bestimmung der Festpunkte kleiner
ausfällt. Da Xx als Funktion des Trägheitsradius kleiner ist als Xr
wird man bestrebt sein, X in angemessen niedrigen Grenzen zu
wählen, damit die Festpunkte nicht zu günstig ausfallen. Auf
dieser Grundlage können für X aus dem Verlauf des Trägheitsmomentes

J Näherungsformeln und Konstruktionen abgeleitet
werden, worauf hier jedoch verzichtet wird,
c) Potenzgesetz1)

Im allgemeinen können für F und Y bzw. j keine analytischen

Ausdrücke angegeben werden. Schon bei einfachen Voûten-
formen, z. B. bei geraden Voûten, werden die Formeln dermassen
unhandlich, dass sie für die numerische Auswertung nicht mehr
in Betracht kommen. Dies kommt besonders im Eisenbeton zum
Ausdruck, wo ein Balken meistens als Plattenbalken auftritt.

') Vergl. Prof. Dr. M. Ritter; «Ueber die Berechnung elastisch
eingespannter und kontinuierlicher Balken mit veränderlichem Trägheitsmoment»,

SBZ Bd. 53, S. 231*, 244* (1909).

Dagegen gelingt es in vielen Fällen, durch Einführung eines den
praktischen Verhältnissen möglichst entsprechenden, analytisch
einfachen Gesetzes für die Veränderlichkeit von J Ausdrücke
abzuleiten, die für die numerische Auswertung geeignet sind.
Ein solches ist, z. B. für symmetrische Voûten, das Potenzgesetz :

y m 1 — d - w) ^
(57)J (Z/2)*

WO M _^L (JA — Trägheitsmoment am Auflager, J„Ja in
Balkenmitte) und r eine gerade, ganze Zahl ist. Daraus folgt
unmittelbar :

+ "2 r 4- nF= ydZ lAAAl.J t' + l¦ 1:2

+ lfl
Y fyz2dz
- iß

+
r 4- 3 n Z«

12

(58)

und damit
Y

A~

r 4- 3

(r 4- 1) (r 4- 3m) Z2

(r 4- 3) (r 4- m) W
Hieraus lassen sich durch Einsetzen alle bekannten

Ausdrücke für die Auflagerdrehwinkel, die Hilfslinienabstände usw.
entwickeln. Wichtig ist hier die Festsetzung von r, weil davon
die Güte der Approximation abhängt.

Ueber die Berechnung des Wärmebedarfes von
Von A. P. WEBER, Ing. bei A. Eigenmann, Ingenieur-Bureau, Zürich
1. Einleitung

Mit dem Fortschritt des Bauwesens und den erhöhten
Ansprüchen, die heute an die Raumheizung gestellt werden, hat
sich die Berechnung einer Raumheizanlage zu einer eigentlichen
Ingenieuraufgabe entwickelt. Während man in den Anfängen
der Heiztechnik den Wärmebedarf in der Regel nur nach dem
Volumen der zu heizenden Räume bestimmt hatte, sind die
massgebenden Heizfirmen längst dazu übergegangen, die
Berechnung nach der Lehre von der Wärmeübertragung und den
Forschungsergebnissen der Baustoffphysik durchzuführen. Leider
ist aber die falsche Ansicht noch weit verbreitet, die Grösse der
Heizkörper und der Kessel könnten lediglich nach dem Raum-
Volumen festgelegt werden. Dies führt zu Enttäuschungen im
Betrieb, denen man durch Ueberdimensionieren der Heizkörper
und der Kesselanlagen zu begegnen sucht. Man erhält so hohe
Anlagekosten, eine schlechte Anpassung der Wärmezuteilung an
die einzelnen Räume und hohe Betriebskosten. Nur die genaue
Berechnung ermöglicht, solche Nachteile zu vermeiden. Sie
erfordert allerdings viel Zeit. Um sie abzukürzen und dadurch
besser konkurrieren zu können, wurde sie vielerorts stark
schematisiert, gelegentlich so stark, dass sie in einfachen Fällen
ungeschulten Routiniers überlassen werden kann. Im Folgenden
wird versucht, die fachtechnisch richtige Behandlung kurz
zusammenfassend darzustellen.
2. Theoretische Grundlagen

Im Verlauf der weiteren Ausführungen werden die folgenden
Bezeichnungen verwendet :

cti =_ innere Wärmeübergangszahl kcal/m2, h, °

aa äussere Wärmeübergangszahl kcal/m2, h, °

X Wärmeleitzahl kcal/m, h, °

y ¦= spezifisches Gewicht kg/m3
5 Wandstärke m
c spezifische Wärme kcal/kg
k Wärmedurchgangszahl kcal/m2, h, °

Q Wärmemenge kcal/h
F für den Wärmedurchgang massgebende Fläche m2
tt Innentemperatur des Raumes ° C
ta Aussentemperatur des Raumes ° C
6 Wandoberflächentemperatur ° C

Die geschichtliche Entwicklung der wissenschaftlichen
Wärmebedarfsberechnung kann bis zu Isaac Newton zurück verfolgt
werden. In seiner Abhandlung über die Temperaturen, die er im
Jahre 1701 in einer Mitteilung an die Royal Society veröffentlichte,

stellte er die folgende Beziehung auf:
Q aF(ti - _,) (1)

Diese Gleichung stellt bekanntlich die Wärmeabgabe einer
Oberfläche von der Temperatur &t an die Umgebung dar, und
wird als Newtonsches Abkühlungsgesetz bezeichnet. Für die
planparallele Platte kann somit sinngemäss gesetzt werden :

Q aiF(ti - _,) da)
und Q aaF(&, - ta) (2)

Räumen

Im Jahre 1822 gab der französische Physiker J. B. Fourier
seine «Théorie analytique de la chaleur» heraus, worin das
grundlegende Gesetz für die Wärmeleitung enthalten war [1] 1). Man
bezeichnet es heute allgemein als das Fouriersche Grundgesetz
der Wärmeleitung; es lautet:

Q A-F(»y-92) (3)

oder in der Differentialform:
Q _lF-m (3a)dx

Durch Eliminieren der Wandtemperaturen 3 und Addieren der
Gleichungen 1 bis 3 erhält man :

9==_ *¦('¦-*¦.>_ (4)V 1 <$ 1
V

et;
7~ X CCa

Diese Gleichung wurde 1860 vom französischen Physiker
Péclet in seinem Werk «Traité de la chaleur» [2] erstmals
veröffentlicht und wird noch heute nach ihm benannt.

Schliesslich hat Franz Grashof, Professor für Maschinenbau
an der Technischen Hochschule in Karlsruhe und Mitbegründer
des VDI, im Jahre 1875 in seinem Lehrbuch «Theoretische
Maschinenlehre» [3] die Formel (4) in jene Fassung gebracht,
die wir heute als die Grundgleichung der Wärmebedarfsbereeh-
nung ansehen und verwenden, nämlich:

Q =kF(ti - ta) (5)
wobei für die Wärmedurchgangszahl k bekanntlich zu setzen ist :

1/fc lfa-i -f 6,1 4- l/«_ (6)
3. Grundlegende Gesichtspunkte zur Berechnung der
Wärmeverluste

Die praktische Anwendung der oben erwähnten Formeln bei
der Wärmebedarfsrechnung hat in der Folge der Altmeister der
Heizungstechnik, Hermann Rietschel 1893 in seinem klassischen
«Leitfaden» [4] ausführlich und unter Berücksichtigung des
Windeinflusses, der Himmelsrichtung und der Betriebsunterbrüche
behandelt. Bis in die neuere Zeit hinein waren die Rietschelschen
Rechenmethoden für die gesamte Heizungstechnik massgebend.

Die grosse Vielgestaltigkeit der Bauelemente, die verschiedenen

Heizsysteme und die erhöhten Ansprüche machten in den
letzten Jahren bei Wärmebedarfsberechnungen zahlreiche
Verfeinerungen und Erweiterungen erforderlich. Diese Ergänzungen
sind weitgehend in den deutschen «Regeln für die Berechnung
des Wärmebedarfs von Gebäuden» [5] niedergelegt (DIN 4701),
deren neueste Fassung im Jahre 1944 herausgegeben worden war.
Die Schweizer «Regeln» [6] sind in Anlehnung an die alten
deutschen aufgestellt worden (1926); sie sind heute, trotz einer
wertvollen Ergänzung vom Jahre 1941, revisionsbedürftig. Wie
aus diesem kurzen geschichtlichen Ueberblick hervorgeht, waren
es hervorragende Pioniere der Wissenschaft und Technik, die die
Grundlagen der Wärmebedarfsberechnung geschaffen haben.

'} Die Zahlen in den eckigen Klammern beziehen sich auf das
Literaturverzeichnis am Schluss des Aufsatzes.
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