Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 125/126 (1945)

Heft: 17

Artikel: Zur Festpunktberechnung durchlaufender Balken mit veränderlichem

Trägheitsmoment

Autor: Lardy, Pierre

DOI: https://doi.org/10.5169/seals-83741

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Nr. 17

Band 126

Der S. I. A. ist für den Inhalt des redaktionellen Tells seiner Verelnsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet

Zur Festpunktberechnung durchlaufender Balken mit veränderlichem Trägheitsmoment Von Ing. Dr. PIERRE LARDY, Zürich

Der kontinuierliche Balken mit veränderlichem Trägheits-Moment spielt, besonders im Eisenbeton, eine wichtige Rolle. Es soll im Folgenden eine Methode entwickelt werden, die für beliebig veränderliche Trägheitsmomente gilt und erlaubt, unter Umgehung der üblichen «Reduktion» der Momentenfläche M auf M/J allgemeine Beziehungen für die Auflagerdrehwinkel α_1 , α_2 , $eta_{\scriptscriptstyle 1}$, $eta_{\scriptscriptstyle 2}$, die Hilfslinienabstände $x_{\scriptscriptstyle 1}$, $x_{\scriptscriptstyle 2}$, $x_{\scriptscriptstyle 3}$ und die Festpunktabstände a und b, sowie für gewisse Belastungsfälle geschlossene, einfache Ausdrücke anzugeben, deren numerische Auswertung einen geringeren Arbeitsaufwand erfordert. Sie dürfte geeignet sein, die Abhängigkeit der betreffenden Grössen von der Art der Veränderlichkeit des Trägheitsmomentes auf anschauliche Weise abzuklären, indem die Berechnungen auf die Bestimmung der einfachsten, geometrisch-statischen Grössen (Flächeninhalt, Schwerpunktabstand und Trägheitsmoment) der 1/J-Fläche (inverses Balkenträgheitsmoment) zurückgeführt und so auf eine einheitliche Grundlage gestellt werden. Ein Vorzug liegt auch darin, dass die Symmetrie-Eigenschaften des veränderlichen Trägheitsmomentes voll ausgenützt werden können, während sie bei der Reduktion wegen der Unsymmetrie des Momentenverlaufes für $M_1 = 1$ und $M_2 = 1$ verloren gehen.

Nach einer kurzen Erläuterung über eine angenäherte Berechnung von Trägheitsmomenten und eine graphische Konstruktion, die gleichzeitig den Flächeninhalt, den Schwerpunktabstand und das Trägheitsmoment liefert, folgt die Berechnung der Auflagerdrehwinkel nach der eingangs erwähnten Methode im allgemeinen Fall unsymmetrischer, sowie für die beiden wichtigen Sonderfälle symmetrischer und einseitiger Voûten. Anschliessend werden die Ausdrücke für die Hilfslinien- und die Festpunktabstände abgeleitet und einige wichtige Anwendungen behandelt, die u. a. die Auflagerdrehwinkel infolge gleichmässig verteilter Belastung, den Balken mit unendlich vielen, gleichen Oeffnungen (einschliesslich Stützenmoment und maximales Feldmoment), sowie den Einspannungsgrad betreffen. Am Schluss wird der Zusammenhang der behandelten Methode mit der Näherungsmethode der starren Voûten hergestellt und der Sonderfall der gesetzmässig gegebenen Veränderlichkeit nach dem Potenz-Gesetz in die Berechnung einbezogen.

1. Angenäherte Berechnung von Trägheitsmomenten

a) Berechnung aus dem Schwerpunktabstand

Die einleitend erwähnte Näherungsberechnung von axialen Trägheitsmomenten bezieht sich hier nur auf «trapezförmige» Flächen, wie sie in Abb. 1 dargestellt sind. Sie erlaubt, aus der alleinigen Kenntnis des Schwerpunktabstandes η_s das Trägheits-Moment J bzgl. der x-Axe aus der Beziehung

$$J\cong J'=rac{B}{3}\;(2\,\eta_s)^3\;\ldots\;\ldots\;$$
 (1)

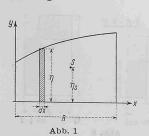
zu bestimmen. Die Berechnung von Trägheitsmomenten wird damit auf die Bestimmung einer einzigen Schwerpunktskoordinate reduziert, was eine Vereinfachung bedeutet.

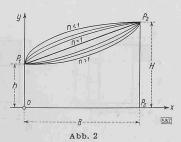
Gl. (1) gilt in voller Strenge für Rechtecke, insbesondere auch für unendlich kleine rechteckige Flächenelemente $\eta\,d\,x$ mit

dem Trägheitsmoment
$$\frac{dx}{3}$$
 η^3 , woraus $J=\int \frac{\eta^3}{3} \, dx$ folgt. Gl. (1) besagt nichts anderes, als dass diese, für das Rechteck charak-

teristische Eigenschaft, mit praktisch genügender Genauigkeit auch für ganz andere Flächen Anwendung findet. Die Begründung erfolgt in der Weise, dass der praktische Gültigkeitsbereich der Gl. (1), sowie der damit verbundene Genauigkeitsgrad untersucht werden.

Ausgehend vom Trapez OP1P2P3 der Abb. 2 wird durch die Punkte P_1 und P_2 eine Schar von Potenzkurven gelegt nach der





$$\eta = h + \frac{H - h}{Bn} x^n \dots \dots (2)$$

wo n der Parameter der Kurvenschar ist. n=1 ergibt die Gerade $P_1 P_2$, n > 1 die Kurven unterhalb (konkav nach oben), n < 1 diejenigen oberhalb (konvex nach oben) der Geraden $P_1 P_2$. Die Integrale über das Intervall 0 bis B sind leicht auszuwerten und ergeben, wenn zur Abkürzung

$$\lambda = \frac{\hbar}{H} \quad (0 \le \lambda \le 1) \ . \quad . \quad . \quad . \quad (3)$$

gesetzt wird:

$$\eta_s = rac{1}{2} rac{\int \eta^2 dx}{\int \eta \, dx} = rac{H}{2} rac{\left[2\, n^2\, \lambda^2 + 2\, n\, \lambda + n + 1
ight]}{\left(2\, n + 1
ight) \left(1 + n\, \lambda
ight)} \;\; . \eqno(4)$$

$$J = \int \eta^3 \frac{dx}{3} = \frac{BH^3}{3} \frac{(n+1)(2n+1) + 3n\lambda[2n^2\lambda^2 + 2n\lambda + n + 1]}{(n+1)(2n+1)(3n+1)}$$
(5)

Daraus folgt das angenäherte Trägheitsmoment J' nach Gl. (1) zu:

J' =
$$\frac{B}{3} (2\eta_s)^3 = \frac{BH^3}{3} \frac{[2n^2\lambda^2 + 2n\lambda + n + 1]^3}{(2n+1)^3(1+n\lambda)^3}$$
. (6)

Zur Fehlerabschätzung dient das Verhältnis

$$v = \frac{J'}{J} \quad . \quad (7)$$

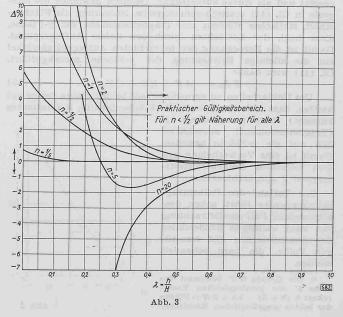
$$\Delta^{0}/_{0} = 100 (v - 1) \dots \dots (8)$$

damit wird der Fehler \varDelta in $^{0}/_{0}$: $\varDelta^{0}/_{0}=100~(v-1)~.~.~.~.~.~(8)$ Abb. 3 vermittelt einen Ueberblick über die Abhängigkeit des Fehlers \varDelta von n und λ . Mit zunehmendem $\lambda = \frac{h}{H}$ nimmt \varDelta rasch ab und ist für $\lambda>0.5$ im Absolutwert bereits von der Grössenordnung 1 $^0\!/_0$ und darunter, und zwar für alle Werte von n. Die nach oben konvexen Kurven (n < 1) zeigen auch für kleinere λ eine bessere Annäherung an den wahren Wert Jals die nach oben konkaven (n > 1). Falls notwendig kann, bei kleinen A, durch eine passende Unterteilung der Fläche immer erreicht werden, dass der Gesamtfehler beliebig klein ausfällt,

indem J' für die Teilflächen bestimmt wird. Die Wahl von Potenzkurven bedeutet keine Einschränkung; jede Kurve durch P1 und P2 kann durch Potenzkurven angenähert werden, wobei die entsprechenden Werte für η_s und Jals Integrale i. A. eine bessere Approximation aufweisen als diejenige unter den ursprünglichen Kurven selbst.

b) Graphische Konstruktion

Die Schwerpunktkoordinate η_s kann nach bekannten Methoden analytisch oder graphisch bestimmt werden. In allen Fällen, wo wegen der Flachheit der Kurve gegen die Bezugsaxe das



Seilpolygon eine gedrängte Gestalt annimmt, kann zur Erhöhung der Genauigkeit eine graphische Konstruktion angewendet werden, die keine Parallelverschiebung erfordert und hier kurz erwähnt sei. Wir unterscheiden zwei Fälle:

J. Unterteilung der Fläche in Lamellen gleicher Breite (Abbildung 4). Die Teilflächen werden durch Trapeze mit der Basis b, den mittleren Höhen h_1 , h_2 , ... und den Flächen $F_1 \equiv b \, h_1$, $F_2 \equiv b \, h_2$, ... approximiert. Die Schwerpunkte S_i können nach Abb. 4b bestimmt werden. Aus der Definition der Schwerpunkt-Ordinate

$$\eta_s = \frac{F_1 \eta_1 + F_2 \eta_2 + \dots}{F_1 + F_2 + \dots}$$

 $\eta_s=\frac{F_1\,\eta_1\,+\,F_2\,\eta_2\,+\,\dots}{F_1\,+\,F_2\,+\,\dots}$ folgt die Konstruktion nach Abb.5a, wo das statische Moment $\Sigma F_i \eta_i$ durch eine treppenförmige Fläche dargestellt ist, die durch sukzessive Anwendung der Hilfskonstruktion nach Abbildung $5\,\mathrm{b}^{\,\mathrm{1}})$ in ein inhaltsgleiches Rechteck $O\,A\,A'\,O'$ verwandelt wird. Der Schnittpunkt T der Geraden $\mathit{OP}\left(\mathit{O'P} = \Sigma \mathit{h}_{i}\right)$ und der Rechteckseite AA' liefert $\eta_s = \overline{AT}$.

2. Lamellen ungleicher Breite. Man reduziert sämtliche Lamellen auf die selbe Breite b, bestimmt nach Abb. 6 die Höhen h'der inhaltsgleichen Rechtecke und verfährt wie unter 1. Diese Konstruktion liefert gleichzeitig den Flächeninhalt, das statische Moment und nach Abschnitt a) das Trägheitsmoment, ein Umstand, der in der Folge die Auswertung der Formeln besonders

2. Berechnung der Auflagerdrehwinkel α_1 , α_2 , β_1 , β_2 . a) Darstellung der Integrale aus der Kurve y = J_m/J .

Die Berechnung der Festpunkte eines durchlaufenden Balkens mit veränderlichem Trägheitsmoment J benützt die bekannten Integralausdrücke für die Auflagerdrehwinkel α_1 , α_2 eta_1 und eta_2 . Die in der Einleitung erwähnte Methode entspringt aus einer speziellen, direkt auf die 1/J-Fläche hinzielenden Interpretation des allgemeinen Integrals für einen Auflagerdrehwinkel infolge $M_1 = 1$ und $M_2 = 1$ nach der Arbeitsgleichung:

$$\alpha = \int \frac{M \, M' \, d \, x}{E \, J} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (9)$$

Es ist zweckmässig, Gl. (9) mit einem passenden Festwert J_m (meistens $J_m =$ kleinstes Balkenträgheitsmoment) zu multiplizieren, woraus

$$E J_m \alpha = \int \frac{J_m}{J} M M' dx (9')$$

folgt. M und M' sind hier lineare Funktionen, ihr Produkt ist eine quadratische Funktion

$$M M' = A + B x + C x^2 \dots \dots \dots (10)$$

Gl. (10) in (9') eingesetzt ergibt:

$$E J_m \alpha = \int \frac{J_m}{J} (A + B x + C x^2) dx =$$

$$= A \int \frac{J_m}{J} dx + B \int \frac{J_m}{J} x dx + C \int \frac{J_m}{J} x^2 dx \quad (11)$$

$$y = \frac{J_m}{J}$$
 (dimensionslos) . . (12)

gesetzt und als Kurve aufgetragen. Dadurch gewinnen die Integrale in Gl. (11) statisch-geometrische Bedeutung als Flächeninhalt, statisches Moment und Trägheitsmoment der y-Fläche, diese bzgl. der Lotrechten durch den linken Auflagerpunkt. Damit ist die Berechnung der betrachteten Auflagerdrehwinkel auf die alleinige Betrachtung der y-Fläche zurückgeführt. Gl. (11) wird daher

$$E J_m \alpha = A F + B S + C Y \quad . \quad . \quad . \quad (13)$$

Um Unklarheiten zu vermeiden, soll in der Folge festgelegt werden, dass sich die Grössen F (Flächeninhalt), S (statisches

Moment) und insbesondere Y (Trägheitsmoment) ausschliesslich auf die y-Fläche beziehen. Damit ist eine Verwechslung mit dem variablen Balkenträgheitsmoment J ausgeschlossen.

Der Verlauf des Balkenträgheitsmomentes führt neben dem allgemeinen Fall zur Betrachtung von zwei wichtigen Sonderfällen der symmetrischen und einseitigen Voûte, die kurz behandelt werden.

¹) Die Gerade GG' bestimmt die Höhe h' des inhaltsgleichen Rechteckes: h' (b+B) = $b\,h+B\,H=$ Fläche der beiden ursprünglichen Rechtecke.

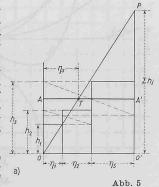
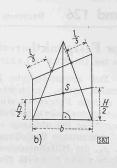


Abb. 4



b) Allgemeiner Fall

Es empfiehlt sich eine Koordinatentransformation von x, bzw. x' auf z, dessen Bezugsaxe durch den Schwerpunkt P der y-Fläche geht (Abb. 8), mit den Beziehungen:

$$\begin{cases}
x = l_1 - z \\
x' = l - x = l_2 + z
\end{cases} (14)$$

Die Auflagerdrehwinkel α_i , β_i berechnen sich nach bekannten Integralformeln, wobei das Integrationsintervall für z von

 $=l_{\scriptscriptstyle 2}$ bis + $l_{\scriptscriptstyle 1}$ reicht. Man erhält mit y=-

$$\alpha_1 = \int_0^l \frac{x'^2 dx}{l^2 E J} = \frac{1}{l^2 E J_m} \int_{-l_2}^{+l_1} (l_2 + z)^2 y dz$$

wegen der Lage der Koordinatenaxe für z durch den Schwerpunkt P der y-Fläche ist das Integral $\int y z \, dz = 0$

$$\alpha_1 = \frac{l_2^2 F + Y}{l^2 E J_m} \quad . \quad . \quad . \quad . \quad (15)$$

Analog erhält man:

$$lpha_2 = eta_1 = \int\limits_0^l rac{x \, x' \, d \, x}{l^2 \, E \, J} = rac{1}{l^2 \, E \, J_m} \int\limits_{-l_n}^{l_1} (l_1 - z) \, \left(l_2 + z
ight) y \, d \, z$$

$$\alpha_2 = \beta_1 = \frac{l_1 l_2 F - Y}{l^2 E J_m}$$
 (16)

Endlich ist:

$$eta_2 = \int\limits_0^l rac{x^2\,d\,x}{l^2\,E\,J} = rac{1}{l^2\,E\,J_m} \int\limits_0^{l_1} (l_1-z)^2\,y\,d\,z$$

$$\beta_2 = \frac{l_1^2 F + Y}{l^2 E J_m} \quad . \quad . \quad . \quad . \quad (17)$$

In den Gl. (15) bis (17) ist F der Flächeninhalt und Y das Trägheitsmoment der y-Fläche, dieses auf die Schwerpunktaxe durch P bezogen. Für J= konst $=J_m$ folgen die bekannten Ausdrücke $\alpha_1=\beta_2=\frac{l}{3\,E\,J_m}$, $\alpha_2=\beta_1=\frac{l}{6\,E\,J_m}$. Ferner ergibt sich:

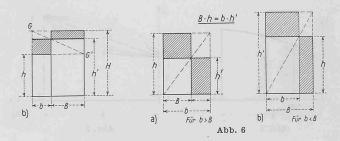
$$\begin{bmatrix} \alpha_1 + \alpha_2 = \frac{l_2 F}{l E J_m} \\ \beta_1 + \beta_2 = \frac{l_1 F}{l E J_m} \end{bmatrix} . \dots (18)$$

Die Bestimmung des Schwerpunktes P sowie der Grössen F und Y folgt aus Abschnitt 1.

c) Symmetrische Voûten

Dieser wichtige und häufige Sonderfall bedingt

$$l_1 = l_2 = \frac{l}{2}$$



wobei aus den Gl. (15) bis (18) folgende einfachen Ausdrücke

$$\alpha_{1} = \beta_{2} = \frac{\frac{l^{2}}{4} F + Y}{l^{2} E J_{m}}$$

$$\alpha_{2} = \beta_{1} = \frac{\frac{l^{2}}{4} F - Y}{l^{2} E J_{m}}$$

$$\alpha_{1} + \alpha_{2} = \beta_{1} + \beta_{2} = \frac{F}{2 E J_{m}}$$
(19)

Die Bestimmung von F und Y nach Abschnitt 1 ist hier besonders einfach.

d) Einseitige Voûte

Bei einer einzigen Voûte ist es oft einfacher, die Integrale für die Auflagerdrehwinkel ohne Koordinatentransformation direkt auf die Variablen x und x' zu beziehen. Das Trägheitsmoment Y gilt dann je nachdem für die linke oder rechte Auflagerlotrechte und sei mit Y_l bzw. mit Y_r bezeichnet. Analoges gilt für das statische Moment S der y-Fläche mit den Bezeichnungen $S_l=l_1\,F$ und $S_r=l_2\,F.$ Man erhält somit:

$$\alpha_{1} = \int_{0}^{l} \frac{x'^{2} dx}{l^{2} E J} = \frac{1}{l^{2} E J_{m}} \int_{0}^{l} x'^{2} y dx'$$

$$\alpha_{1} = \frac{Y_{r}}{l^{2} E J_{m}} \cdot \cdot \cdot \cdot \cdot \cdot (20)$$

Weiter folgt:

d. h.:

$$lpha_2 = eta_1 = \int\limits_0^l rac{x \, x' \, d \, x}{l^2 \, E \, J} = rac{1}{l^2 \, E \, J_m} \int\limits_0^l x \, \left(l - x\right) \, y \, d \, x = \\ = rac{1}{l^2 \, E \, J_m} \int\limits_0^l x' \, \left(l - x'\right) \, y \, d \, x'$$

und hieraus die beiden Ausdrücke:

$$\alpha_2 = \beta_1 = \frac{l \, S_l - Y_l}{l^2 \, E \, J_m} = \frac{l \, S_r - Y_r}{l^2 \, E \, J_m} \quad . \tag{21}$$

Weiter wird:

und daher:

Für die Winkelsummen folgt:
$$\alpha_1 + \alpha_2 = \frac{S_r}{l \, E \, J_m}$$

$$\beta_1 + \beta_2 = \frac{S_l}{l \, E \, J_m}$$
 (23)

3. Berechnung der Hilfslinien- und Festpunktabstände

a) Allgemeiner Fall

Aus der Baustatik ist bekannt, wie man zur Bestimmung der Festpunkte a und b die Hilfslinienabstände $x_{\scriptscriptstyle 1}$, $x_{\scriptscriptstyle 2}$ und $x_{\scriptscriptstyle 3}$ heranzieht. x_1 und x_2 sind nichts anderes als die Festpunkte b und a im Falle der vollständigen Einspannung (gleich den Drittelslinien, wenn $J \equiv$ konst.) und sind, wenn auf die selbe Oeffnung bezogen (Abb. 9), definiert durch:

nung bezogen (Abb. 9), definiert durch:
$$x_1 = \frac{\beta_1 \, l}{\beta_1 + \beta_2} \qquad x_2 = \frac{\alpha_2 \, l}{\alpha_1 + \alpha_2} \quad . \quad . \quad (24)$$
 Die «verschränkte Drittelslinie» im Abstande x_3 folgt aus:

mit:

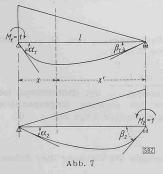
$$R_1 = \beta_1 + \beta_2$$

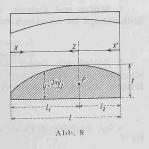
$$R_1 = \alpha_1' + \alpha_2'$$

$$\ldots \qquad (26)$$

 $x_3 = \frac{x_2 - x_2 - x_1 - x_1}{R_1 + R_2'} \quad . \quad . \quad . \quad (25)$ $\vdots \qquad \qquad R_1 = \beta_1 + \beta_2 \quad \\ R_2' = \alpha_1' + \alpha_2' \quad \\ Damit sind die Festpunkte <math>\alpha'$ und α' aus denjenigen der ansachen Felden Festpunkte α' und α' aus denjenigen der ansachen Felden Festpunkte α' und α' aus denjenigen der ansachen Felden Festpunkte α' und α' aus denjenigen der ansachen Felden Festpunkte α' und α' aus denjenigen der ansachen Felden Festpunkte α' und α' aus denjenigen der ansachen Felden Festpunkte α' aus denjenigen der ansachen Felden Festpunkte α' aus denjenigen der ansachen Felden Festpunkte α' aus denjenigen der ansachen Felden Felden Felden Felden Festpunkte α' aus denjenigen der ansachen Felden F grenzenden Felder bestimmt und können graphisch nach der bekannten Konstruktion oder ana-

lytisch gefunden werden. Für a' in der Oeffnung l' ist z. B.:





$$a' = \frac{x_2' (x_1 + x_3)}{x_1 + x_2' + \frac{x_1 (x_3 - x_2')}{x_2' + x_3' (x_3 - x_2')}} \quad . \quad . \quad . \quad (27)$$

Werden die aus dem vorigen Abschnitt für die Drehwinkel ermittelten Werte eingesetzt, so folgen die allgemeinen Ausdrücke für x_1 und x_2 . Zur Abkürzung wird

$$\sqrt{\frac{Y}{F}} = j \qquad \dots \qquad (28)$$

gesetzt. j ist der Trägheitsradius der y-Fläche; $j \leq \frac{\iota}{\sqrt{12}}$; das Gleichheitszeichen gilt nur für konstantes Trägheitsmoment. Damit ergibt sich

$$\begin{bmatrix} x_1 = \frac{l_1 l_2 F - Y}{l_1 F} = l_2 - \frac{j^2}{l_1} \\ x_2 = \frac{l_1 l_2 F - Y}{l_2 F} = l_1 - \frac{j^2}{l_2} \end{bmatrix} . \quad (29)$$

Für die analytische Berechnung der Festpunkte in der Oeffnung ν können direkt in den Formeln

$$\underline{a' = \frac{\alpha_{2'} \, l'}{\alpha_{1'} + \alpha_{2'} + \varepsilon_{1}}} \qquad b' = \frac{\beta_{1'} \, l'}{\beta_{1'} + \beta_{2'} + \varepsilon_{2}}$$
 die Werte der Auflagerdrehwinkel eingesetzt werden. Dabei ist

$$arepsilon_1 = eta_2 - rac{a}{l-a} \, eta_1 \qquad arepsilon_2 = lpha_1 - rac{b}{l-b} \, lpha_2$$

mit den auf die benachbarten Oeffnungen bezogenen Winkelgrössen. Nach Einsetzen der Werte aus (15) bis (17) folgt für den allgemeinen Fall:

$$\varepsilon_{1} = \frac{Y + l_{1} (l_{1} - a) F}{l (l - a) E J_{m}} \qquad \varepsilon_{2} = \frac{Y + l_{2} (l_{2} - b) F}{l (l - b) E J_{m}}$$
(30)

Damit ist die Berechnung der Festpunkte a und b für jeden Verlauf der Balkenträgheitsmomente auf einfachem Wege gesichert. x_1 , x_2 und a, b sind grösser als bei konstantem Trägheitsmoment. Somit rücken die Festpunkte gegen die Feldmitte.

Symmetrische Voûten

c) Einseitige Voûte

Aus den entsprechenden Ausdrücken (20) bis (23) folgt:

$$x_{1} = \frac{lS_{l} - Y_{l}}{S_{l}} = l - \frac{Y_{l}}{S_{l}}$$

$$x_{2} = \frac{lS_{r} - Y_{r}}{S_{r}} = l - \frac{Y_{r}}{S_{r}}$$
(32)

Ferner vermitteln Gl. (20) bis (22) die Werte:

in Gi. (20) bis (22) die Werte:
$$\varepsilon_1 = \frac{Y_l - aS_l}{l(l-a)EJ_m}$$

$$\varepsilon_2 = \frac{Y_r - bS_r}{l(l-b)EJ_m}$$
 (33)

4. Anwendungen und Sonderfälle

a) Auflagerdrehwinkel für p = konst. und P in Balkenmitte

Obschon die entwickelte Berechnungsart vor allem für die Festpunktbestimmung geeignet ist, können bei symmetrischen Voûten im Falle gleichmässig verteilter Belastung p, sowie bei einer Einzellast P in Balkenmitte, einfache Ausdrücke für die Auflagerdrehwinkel $lpha_0=eta_0$ angegeben werden, woraus die Festpunktmomente

$$M_i = -rac{a}{l}rac{lpha_0}{lpha_2} \qquad M_k = -rac{b}{l}rac{eta_0}{eta_1}$$

und die Schlusslinie bestimmt werden. Die Betrachtung der verschiedenen Belastungsfälle soll auf diese beiden wichtigen Sonderfälle beschränkt bleiben.

Aus Symmetriegründen ist $\alpha_0 = \beta_0$, $\alpha_0 + \beta_0 = 2\alpha_0$; der Belastungszustand M'=1 und das Moment M, auf die Koordinatenaxe durch Balkenmitte gelegt (z=0), wird $M=rac{p}{2}\left(rac{l^2}{4}-z^2
ight)$

$$M=rac{p}{2}\left(rac{l^2}{4}-z^2
ight)$$

Es folgt:

$$2\,lpha_{\scriptscriptstyle 0} = 2\int rac{p}{2} \left(rac{l^2}{4} - z^2
ight) rac{d\,z}{E\,J}$$

und

$$lpha_{_0} = rac{p}{2\,E\,J_m}\int\limits_0^{l/2}\!\!\left(rac{l^2}{4}\,-\,z^2
ight)y\,d\,z$$

also:

$$\alpha_0 = \beta_0 = \frac{p}{4 E J_m} \left(\frac{l^2}{4} F - Y \right) \quad . \quad . \quad . \quad (34)$$

Ein Vergleich mit der 2. Formel (19) führt zu:

$$\alpha_0 = \beta_0 = \frac{p \, l^2}{4} \, \alpha_2 \quad . \quad . \quad . \quad (35)$$

Die Einfachheit dieser Ausdrücke ist damit für symmetrische Voûten allgemein bewiesen und führt zu der selben einfachen graphischen Konstruktion der Schlusslinie wie bei J = konst., wo Gl. (34) in

$$lpha_0=rac{p\,l^3}{24\,\mathrm{E}\,J_m}$$

übergeht.

Analog folgt für eine Einzellast P in Balkenmitte:

$$\alpha_0 = \frac{P}{2EJ_m} \int_0^{l/2} x \, y \, dx$$

und hieraus

wo $S_{l'}$ das statische Moment der halben y-Fläche bzgl. der linken Auflagerlotrechten bedeutet. Für $J=J_m=$ konst. geht Gl. (37) über in den bekannten Ausdruck

$$lpha_0=rac{P\,l^2}{16\,E\,J_m}$$

b) Balken mit unendlich vielen, gleichen Oeffnungen

Bei freidrehbaren Stützen folgt aus Symmetriegründen

$$x_{\scriptscriptstyle 1} = x_{\scriptscriptstyle 2}{}'$$
 , $R_{\scriptscriptstyle 1} \equiv R_{\scriptscriptstyle 2}{}'$, $x_{\scriptscriptstyle 3} \equiv 0$, $a \equiv b \equiv a_{\scriptscriptstyle \infty}$

Gl. (27) vereinfacht sich zu

$$a_{\infty} = rac{x_{ ext{ iny 1}}}{2 - rac{x_{ ext{ iny 1}}}{l - a_{\infty}}}$$

woraus

$$a_{\infty}=rac{l-\sqrt{l^2-2\,l\,x_{_1}}}{2}$$

Für J = konst. folgt der bekannte Wert

$$a_{\infty} \cong$$
 0,211 l

Wird der Balken nach Abb. 10 belastet, so ist aus Symmetriegründen die Schlusslinie in jeder Oeffnung horizontal. Das Stützenmoment M, kann nach der Dreimomentengleichung berechnet werden:

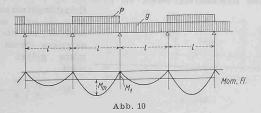
$$\beta_0 + \alpha_0' + M_1 \beta_1 + M_2 (\beta_4 + \alpha_1') + M_2' \alpha_2' = 0$$
 (39)

Aus Symmetriegründen ist $M_2=M_{2^{'}}=M_1$, $\alpha_{1^{'}}=\alpha_1$, $\alpha_{2^{'}}=\alpha_2$, $\alpha_{0^{'}}=\alpha_0$; ferner wird nach Gl. (34)

$$\beta_0 = \frac{g}{4 E J_m} \left(\frac{l^2}{4} F - Y \right) \qquad a_0' = \frac{(g+p)}{4 E J_m} \left(\frac{l^2}{4} F - Y \right)$$
 (40)

Es folgt für das Stützenmoment M_1

$$M_1 = -\frac{(2g+p)}{4} \left(\frac{l^2}{4} - j^2\right) \dots \dots (41)$$



Das maximale Feldmoment M_m ist

$$M_m = \frac{(g+p)}{8} l^2 + M_1 = \frac{p l^2}{16} + \frac{(p+2g)}{4} j^2$$
 (42)

$$M_{\scriptscriptstyle 1} = - \, rac{g \, l^{\scriptscriptstyle 2}}{12} - rac{p \, l^{\scriptscriptstyle 2}}{24} \qquad M_{\scriptscriptstyle m} = rac{g \, l^{\scriptscriptstyle 2}}{24} + rac{p \, l^{\scriptscriptstyle 2}}{12}$$

Bei konstantem J wird: $M_1 = -\frac{g\,l^2}{12} - \frac{p\,l^2}{24} \qquad M_m = \frac{g\,l^2}{24} + \frac{p\,l^2}{12}$ Besonderes Interesse hinsichtlich der Anwendung verdient der Balken mit unendlich vielen, gleichen Oeffnungen auf elastisch-drehbaren Stützen. Der Winkel ε_1 in der Festpunktformel wird aus der allgemeinen Beziehung

$$\frac{1}{\epsilon_1} = \frac{1}{\epsilon_a} + \frac{1}{\epsilon_s}$$

 $(\varepsilon_s=$ Winkel am Stützenkopf inf. $M_s=1)$ gewonnen (Verallgemeinerung für obere und untere Stützenreihe leicht möglich). In Analogie mit Obigem kann der Festpunktabstand a_{∞} aus den entwickelten Formeln für symmetrische Voûten bestimmt werden. Aus der Bedingung $a' = a = a_{\infty}$ folgt zunächst:

$$a_{\infty} = \frac{l}{2} \left[1 - \sqrt{\frac{\left(\alpha_{1} - \alpha_{2}\right)\left(2\,\varepsilon_{s} + \alpha_{1} - \alpha_{2}\right)}{\left(\alpha_{1} + \alpha_{2}\right)\left(2\,\varepsilon_{s} + \alpha_{1} + \alpha_{2}\right)}} \right]$$

 $a_{\infty} = \frac{l}{2} - \frac{j}{l} \sqrt{\frac{4 \, j^2 + z \, l^2}{1 + z}} \, . \qquad (44)$ Ist $\varepsilon_s = z = \infty$ (frei-drehbare Stützen), so folgt unmittelbar Gl. (38) mit $a_{\infty} = \frac{l}{2} - j$. Für $J = J_m =$ konst. ergibt sich aus

Gl. (44) mit
$$F\equiv l$$
 und $Y\equiv \frac{l^3}{12}$:

 $\frac{2}{1}$ j^2 (Gl. 31).

Bei Annahme der selben Belastung wie in Abb. 10 können das Stützenmoment M_2 und das maximale Feldmoment M_m in der mit (g + p) belasteten Oeffnung, ferner das Moment M_s am Stützenkopf bestimmt werden. Aus den Elastizitätsbedingungen, sowie aus den Symmetrie-Eigenschaften folgt nach einigen Zwischenrechnungen:

$$M_{2} = -\frac{1}{2} \left(\frac{l^{2}}{4} - j^{2} \right) \left(g + \frac{p}{2} \frac{2 + \varkappa}{1 + \varkappa} \right)$$

$$M_{m} = \frac{g \, j^{2}}{2} + \frac{p}{4} \frac{2 \, j^{2} + \left(\frac{l^{2}}{4} + j^{2} \right) \varkappa}{1 + \varkappa}$$

$$M_{s} = \pm \frac{p}{2} \frac{\frac{l^{2}}{4} - j^{2}}{1 + \varkappa}$$

$$(46)$$

Für J = konst. gehen die Gl. (46) über in die Ausdrücke:

$$egin{aligned} \mathit{M}_2 &= -rac{g\,l^2}{12} - rac{p\,l^2}{24} rac{2+z}{1+z} \ & \ \mathit{M}_m &= rac{g\,l^2}{24} + rac{p\,l^2}{24} rac{1+2z}{1+z} \ & \ \mathit{M}_s &= \pm rac{p\,l^2}{12} rac{1}{1+z} \end{aligned}$$

Die Gl. (46) können leicht auf den Fall zweiseitiger Stützen erweitert und in geeigneter Weise zur Berechnung von Stockwerkrahmen und Pilzdecken herangezogen werden, da der Festpunktabstand bei elastisch-drehbarer Auflagerung sehr rasch gegen den Wert a_{∞} konvergiert.

c) Einspannungsgrad2)

I. Stütze mit Gelenk. Der Drehwinkel ε_s (inf. $M_1 = 1$) am Stützenkopf ist identisch mit dem Winkel α_1 :

$$arepsilon_s = lpha_1 = rac{l_2{}^2F + Y}{l^2EJ_m}$$

2. Stütze mit fester Einspannung. ε_s am Stützenkopf ist identisch mit dem Winkel α für den einseitig eingespannten Balken. Aus den Superpositionsgleichungen folgt mit $\beta=0$:

$$e_s = \alpha_1 - \frac{\alpha_2}{\beta_s}$$

2) Vgl. Prof. Dr. M. Ritter: Autographie der Vorlesung über Bausta-

Nach Einsetzen der Werte aus den Gl. (15) bis (17) wird

$$\varepsilon_s = \frac{Y}{(l_1^2 + j^2) E J_m} \quad . \quad . \quad . \quad (47)$$

Für $J=\mathrm{konst.}=J_m$ liefert (47): $\varepsilon_s=rac{\iota}{4\,E\,J_m}$

3. Stütze ohne Querkraft. Dieser Fall tritt bei freiem Stützenkopf mit $M_1=1$ auf. Hier wird, weil M=M'=1:

$$\varepsilon_s = \int \frac{dx}{EJ} = \frac{F}{EJ_m} \quad . \quad . \quad . \quad (48)$$

d) Ein- und zweiseitig fest eingespannter Balken Bei einem rechts vollständig eingespannten und links freidrehbar gelagerten Balken ist a=0; $b=rac{eta_1\,l}{eta_1+eta_2}$; für symmetrische Voûten folgt $b = \frac{l}{2} - \frac{2j^2}{l}$ nach Gl. (31) und für gleichmässig verteilte Belastung

$$M_i=0$$
 $M_k=-rac{p\,l^2}{8}+rac{p}{2}\,j^2$ (49) Wegen $M_2=M_krac{l}{l-b}$ ist

$$M_2 = -\frac{\beta_0}{\beta_2} = -\frac{p l^2}{4} \frac{\frac{l^2}{4} - j^2}{\frac{l^2}{4} + j^2} \dots$$
 (50)

Für J = konst. folgt der bekannte Wert $\mathit{M_2} = -\frac{\mathit{p}\,\mathit{l}^2}{\mathit{p}}$

Beim beidseitig vollständig eingespannten Balken sind die Festpunktabstände a und b anhand der Gl. (29) zu ermitteln:

$$a=l_1-rac{j^2}{l_2}$$
 $b=l_2-rac{j^2}{l_1}$

Für symmetrische Voûten und gleichmässig verteilte Belastung p folgen die Einspannmomente M_1 und M_2 unmittelbar zu:

$$M_1 = M_2 = -\frac{pl^2}{8} + \frac{p}{2}j^2 \dots \dots$$
 (51)

Das maximale Feldmoment M_m ist

Das maximale Feldmoment
$$M_m$$
 ist
$$\underline{M_m = \frac{p \, l^2}{8} + M_2 = \frac{p}{2} \, j^2}. \quad . \quad . \quad . \quad . \quad (52)$$
 Für $J = \text{konst. folgt } M_m = \frac{p \, l^2}{24}$

Für
$$J=$$
 konst. folgt $M_m=rac{p\,l^2}{24}$

Der günstige Einfluss der Voûten als Funktion des variablen Balkenträgheitsmomentes auf das maximale Feldmoment M_m kommt hier deutlich zum Ausdruck. Bedeutet 1 in %, die Reduktion von M_m gegenüber dem Feldmoment $M^{\scriptscriptstyle 0}{}_m$ bei konstantem Trägheitsmoment, so folgt, wenn

$$j^2 = (1 - \varepsilon) \frac{l^2}{12}$$

$$\Delta^{o_{I_0}} = \frac{(M^{o_m} - M_m)}{M^{o_m}} \, 100 = 100 \left(1 - \frac{\frac{p}{2} \, j^2}{\frac{p \, l^2}{2a}}\right) = 100 \, \epsilon$$

z. B. ist für $\epsilon=$ 0,1 der Wert J= 10 $^{o}/_{o}$, d. h. die Reduktion von M_{m} ist gleich derjenigen von j^{2} auf $\frac{l^{2}}{12}$. Die Erhöhung \varDelta' $^{o}/_{o}$ des Einspannmomentes ergibt dagegen nur

$$\Delta'$$
 $^{0}/_{0} = 50 \, \varepsilon$

Bei $\varepsilon=0.1$ ist \varDelta^{\prime} $^0/_0=5$ $^0/_0$; der Gewinn am Feldmoment ist also doppelt so gross wie der Verlust am Einspannmoment.

e) Die Festpunkte des eingespannten Bogens

Die vorliegenden Betrachtungen können auf die Festpunktbestimmung eines eingespannten Bogens angewendet werden. $rac{J_m}{J}$ - Fläche wird hier ersetzt durch die $y'=rac{J_s}{J\cosarphi}$ Fläche ($J_s = \text{Bogenträgheitsmoment im Scheitel}$). Dann ergibt sich aus der Definition der Festpunktabstände, der Gl. (29) ent-

$$a \equiv l_1 - rac{j'^2}{l_2}$$
 $b \equiv l_2 - rac{j'^2}{l_2}$

wo $j^{,2}=rac{Y'}{F'}$ das Quadrat des Trägheitsradius der y-Fläche bedeutet. Für einen symmetrischen Bogen wird

$$a = b = \frac{l}{2} - \frac{2j^2}{l}$$

 $\frac{a=b=\frac{l}{2}-\frac{2\,j^{\,2}}{l}}{\operatorname{Für}\,J\cos\varphi=J_{s}\,\operatorname{folgt}\,j^{\prime2}=\frac{l^{2}}{12}\,\operatorname{und}\,a=b=\frac{l}{3}}$ Beim Parabelbogen mit dem Pfeil f, der Spannweite l und

der Gleichung 2. Grades

$$u = rac{4 f}{l^2} \left(rac{l^2}{4} - z^2
ight)$$

 $u'=\frac{4\,f}{l^2}\left(\frac{l^2}{4}\,-\,z^2\right)$ wo u' die Ordinate der Bogenaxe bzgl. der Kämpferwaagrechten bedeutet, kann für den Abstand t des elastischen Schwerpunktes

ein einfacher Ausdruck gewonnen werden. Es ist
$$t = \frac{\int w' \frac{ds}{EJ}}{\int \frac{ds}{EJ}} = \frac{\int f\left(1 - \frac{4z^2}{l^2}\right)y' \, dz}{\int y' \, dz}$$
 und hieraus folgt

$$\frac{t=f\left(1-\frac{4\,j^{\,2}}{l^{\,2}}\right)}{l^{\,2}}\,\cdot\,\,\cdot\,\,\cdot\,\,\cdot\,\,\cdot\,\,\cdot\,\,(53)$$
 Für $J\cos\varphi=J_s$ wird, wie bekannt, $t=\frac{2}{3}\,f$

5. Zusammenhang mit der Näherungsmethode der starren Voûten; Potenzgesetz

a) Allgemeines

Die Näherungsmethode der starren Voûten3) führt zu einfachen Ausdrücken und eignet sich besonders für schnelle, überschlägige Berechnungen, wo das veränderliche Trägheitsmoment in grossen Zügen berücksichtigt werden soll. Man denkt sich die bestehenden Voûten ersetzt durch zwei starre Voûten der Länge c und c' an den Balkenenden und setzt dort $J=\infty$, im übrigen $J = J_m =$ konstant. c und c' werden geschätzt. Die Integration ergibt für die Auflagerdrehwinkel, Hilfslinienabstände usw. einfache Ausdrücke. Das Integrationsintervall reicht von c bis l=c' für J_m konstant. Der Näherungscharakter der Methode liegt erstens darin, dass die Strecken c und c' nur geschätzt werden; zweitens werden für jede der zu berechnenden Grössen die selben beiden Strecken c und c' benützt, während in Wirklichkeit für jede der Grössen α_1 , α_2 , $\alpha_1 + \alpha_2$, x_1 , usw. das ihr zugehörige Paar von Strecken c und c' eingeführt werden müsste. Trotzdem kann diese Berechnungsart in vielen Fällen zu einem grössenordnungsmässig genügenden Ergebnis führen, sobald c und c' einigermassen passend, d. h. wie wir sehen werden, nicht zu gross gewählt werden. Die weiteren Betrachtungen beschränken sich auf den symmetrischen Fall mit $c=c^{\prime}$; zur Abkürzung wird

$$\frac{c}{l} = \lambda$$

gesetzt. Die Integration von c bis l-c ergibt die bekannten Ausdrücke

$$\begin{array}{c} \alpha_1 = \beta_2 = \frac{l}{3 \, E \, J_m} \, [\, (1 - \lambda)^3 - \lambda^3] \\ \\ \alpha_2 = \beta_1 = \frac{l}{6 \, E \, J_m} \, (1 - 6 \, \lambda^2 + 4 \, \lambda^3) \\ \\ R_1 = \alpha_1 + \alpha_2 = \frac{l}{2 \, E \, J_m} \, (1 - 2 \, \lambda) \end{array} \right\} \; . \quad (54)$$

woraus der Hilfslinienabstand

$$x_1=\frac{\beta_1\,l}{\beta_1+\beta_2}=\frac{l}{3}\,\left(1+2\,\lambda-2\,\lambda^2\right)\quad.\quad.\quad(55)$$
 folgt. Ist λ gegeben, so kann die Berechnung von R_1 und x_1 auch

auf graphischem Wege erfolgen.

b) Vergleich mit der exakten Methode

Werden die Ausdrücke (54) und (55) mit den entsprechenden aus den Abschnitten 2 und 3 verglichen, so ergibt jede Gleichung einen verschiedenen Wert für λ ; diejenigen aus den Gleichungen für R_i und x_i seien mit λ_R und λ_x bezeichnet. Es folgt unmittelbar

$$\lambda_R = \frac{1}{2} - \frac{F}{2l}$$

$$\lambda_x = \frac{1}{2} - \sqrt{3} \frac{j}{l}$$

$$(56)$$

Die Gl. (56) zeigen den Zusammenhang mit der exakten Methode; die Einführung der beiden Werte λ_R und λ_x nach (56) in die Berechnung der Festpunkte würde zum richtigen Ergebnis führen, wäre aber sinnlos, da ja schon die Werte F und j zum Ziele führen. Die Berechnung mit λ ist deshalb nur dann be-

³) Vergl. Prof. Dr. M. Ritter: Autographie der Vorlesung über Massiv-

rechtigt, wenn sie rascher als die exakte Berechnung (hier die Bestimmung von F und j) zu einem brauchbaren Ergebnis verhilft. Deshalb beschränkt man sich auf einen einzigen Wert von λ. Eine Fehlerabschätzung für

$$x_3 = \frac{R_1 x_1 - R_2 x_2}{R_1 + R_2}$$

 $x_3 = \frac{R_1\,x_1\,-\,R_2\,x_2}{R_1\,+\,R_2}$ zeigt, dass man besser fährt, wenn man sich bei der Wahl von λ möglichst dem Wert λ_x und nicht demjenigen λ_R nähert, da dann der Fehler in der Bestimmung der Festpunkte kleiner ausfällt. Da λ_x als Funktion des Trägheitsradius kleiner ist als λ_R , wird man bestrebt sein, λ in angemessen niedrigen Grenzen zu wählen, damit die Festpunkte nicht zu günstig ausfallen. Auf dieser Grundlage können für \(\lambda \) aus dem Verlauf des Trägheitsmomentes J Näherungsformeln und Konstruktionen abgeleitet werden, worauf hier jedoch verzichtet wird.

c) Potenzgesetz4)

Im allgemeinen können für F und Y bzw. j keine analytischen Ausdrücke angegeben werden. Schon bei einfachen Voûtenformen, z.B. bei geraden Voûten, werden die Formeln dermassen unhandlich, dass sie für die numerische Auswertung nicht mehr in Betracht kommen. Dies kommt besonders im Eisenbeton zum Ausdruck, wo ein Balken meistens als Plattenbalken auftritt.

4) Vergl. Prof. Dr. M. Ritter; «Ueber die Berechnung elastisch eingespannter und kontinuierlicher Balken mit veränderlichem Trägheitsmoment», SBZ Bd. 53, S. 231*, 244* (1909). Dagegen gelingt es in vielen Fällen, durch Einführung eines den praktischen Verhältnissen möglichst entsprechenden, analytisch einfachen Gesetzes für die Veränderlichkeit von J Ausdrücke abzuleiten, die für die numerische Auswertung geeignet sind. Ein solches ist, z. B. für symmetrische Voûten, das Potenzgesetz:

$$y = \frac{J_m}{J} = 1 - (1 - n) \frac{z^r}{(l/2)^r} \dots$$
 (57)

wo $n=rac{J_m}{J_A}$ ($J_A= ext{Tr\"{a}gheits}$ moment am Auflager, J_m in Balkenmitte) und r eine gerade, ganze Zahl ist. Daraus folgt unmittelbar:

$$F = \int_{-l/2}^{+l/2} y \, dz = \frac{r+n}{r+1} \, l$$

$$Y = \int_{-l/2}^{+l/2} y \, z^2 \, dz = \frac{r+3n}{r+3} \, \frac{l^3}{12}$$

$$(58)$$

und damit

$$j^{2} = \frac{Y}{F} = \frac{(r+1)(r+3n)}{(r+3)(r+n)} \frac{l^{2}}{12}$$

Hieraus lassen sich durch Einsetzen alle bekannten Ausdrücke für die Auflagerdrehwinkel, die Hilfslinienabstände usw. entwickeln. Wichtig ist hier die Festsetzung von r, weil davon die Güte der Approximation abhängt.

Ueber die Berechnung des Wärmebedarfes von Räumen

Von A. P. WEBER, Ing. bei A. Eigenmann, Ingenieur-Bureau, Zürich

1. Einleitung

Mit dem Fortschritt des Bauwesens und den erhöhten Ansprüchen, die heute an die Raumheizung gestellt werden, hat sich die Berechnung einer Raumheizanlage zu einer eigentlichen Ingenieuraufgabe entwickelt. Während man in den Anfängen der Heiztechnik den Wärmebedarf in der Regel nur nach dem Volumen der zu heizenden Räume bestimmt hatte, sind die massgebenden Heizfirmen längst dazu übergegangen, die Berechnung nach der Lehre von der Wärmeübertragung und den Forschungsergebnissen der Baustoffphysik durchzuführen. Leider ist aber die falsche Ansicht noch weit verbreitet, die Grösse der Heizkörper und der Kessel könnten lediglich nach dem Raum-Volumen festgelegt werden. Dies führt zu Enttäuschungen im Betrieb, denen man durch Ueberdimensionieren der Heizkörper und der Kesselanlagen zu begegnen sucht. Man erhält so hohe Anlagekosten, eine schlechte Anpassung der Wärmezuteilung an die einzelnen Räume und hohe Betriebskosten. Nur die genaue Berechnung ermöglicht, solche Nachteile zu vermeiden. Sie erfordert allerdings viel Zeit. Um sie abzukürzen und dadurch besser konkurrieren zu können, wurde sie vielerorts stark schematisiert, gelegentlich so stark, dass sie in einfachen Fällen ungeschulten Routiniers überlassen werden kann. Im Folgenden wird versucht, die fachtechnisch richtige Behandlung kurz zusammenfassend darzustellen.

2. Theoretische Grundlagen

Im Verlauf der weiteren Ausführungen werden die folgenden Bezeichnungen verwendet:

 $a_i =$ innere Wärmeübergangszahl kcal/m², h, 0

 $lpha_a=$ äussere Wärmeübergangszahl kcal/m², h, _0

λ = Wärmeleitzahl kcal/m, h, °

 $\gamma = \text{spezifisches Gewicht kg/m}^3$

 $\delta = Wandstärke m$

c = spezifische Wärme kcal/kg

 $k = \text{Wärmedurchgangszahl kcal/m}^2$, h, °

Q = W"armemenge kcal/h

 $F \mathrel{\footnote{f \equiv}} ext{f\"{u}r}$ den Wärmedurchgang massgebende Fläche m 2

 $t_i =$ Innentemperatur des Raumes $^{\circ}$ C

 $t_a = {
m Aussentemperatur\ des\ Raumes\ ^0\ C}$

= Wandoberflächentemperatur ° C

Die geschichtliche Entwicklung der wissenschaftlichen Wärmebedarfsberechnung kann bis zu Isaac Newton zurück verfolgt werden. In seiner Abhandlung über die Temperaturen, die er im Jahre 1701 in einer Mitteilung an die Royal Society veröffentlichte, stellte er die folgende Beziehung auf:

Diese Gleichung stellt bekanntlich die Wärmeabgabe einer Oberfläche von der Temperatur ϑ_{1} an die Umgebung dar, und wird als Newtonsches Abkühlungsgesetz bezeichnet. Für die planparallele Platte kann somit sinngemäss gesetzt werden:

$$Q=lpha_i F\left(t_i- heta_1
ight).$$
 (1a) und $Q=lpha_a F\left(heta_2-t_a
ight)$ (2)

Im Jahre 1822 gab der französische Physiker J. B. Fourier seine «Théorie analytique de la chaleur» heraus, worin das grundlegende Gesetz für die Wärmeleitung enthalten war [1]1). Man bezeichnet es heute allgemein als das Fouriersche Grundgesetz der Wärmeleitung; es lautet:

$$Q = -\lambda F \frac{d\vartheta}{dx} \quad . \quad . \quad . \quad . \quad . \quad (3a)$$

Durch Eliminieren der Wandtemperaturen ϑ und Addieren der Gleichungen 1 bis 3 erhält man:

Péclet in seinem Werk «Traité de la chaleur» [2] erstmals veröffentlicht und wird noch heute nach ihm benannt.

Schliesslich hat Franz Grashof, Professor für Maschinenbau an der Technischen Hochschule in Karlsruhe und Mitbegründer des VDI, im Jahre 1875 in seinem Lehrbuch «Theoretische Maschinenlehre» [3] die Formel (4) in jene Fassung gebracht, die wir heute als die Grundgleichung der Wärmebedarfsberechnung ansehen und verwenden, nämlich:

wobei für die Wärmedurchgangszahl $k\,$ bekanntlich zu setzen ist:

3. Grundlegende Gesichtspunkte zur Berechnung der Wärmeverluste

Die praktische Anwendung der oben erwähnten Formeln bei der Wärmebedarfsrechnung hat in der Folge der Altmeister der Heizungstechnik, Hermann Rietschel 1893 in seinem klassischen «Leitfaden» [4] ausführlich und unter Berücksichtigung des Windeinflusses, der Himmelsrichtung und der Betriebsunterbrüche behandelt. Bis in die neuere Zeit hinein waren die Rietschelschen Rechenmethoden für die gesamte Heizungstechnik massgebend.

Die grosse Vielgestaltigkeit der Bauelemente, die verschiedenen Heizsysteme und die erhöhten Ansprüche machten in den letzten Jahren bei Wärmebedarfsberechnungen zahlreiche Verfeinerungen und Erweiterungen erforderlich. Diese Ergänzungen sind weitgehend in den deutschen «Regeln für die Berechnung des Wärmebedarfs von Gebäuden» [5] niedergelegt (DIN 4701), deren neueste Fassung im Jahre 1944 herausgegeben worden war. Die Schweizer «Regeln» [6] sind in Anlehnung an die alten deutschen aufgestellt worden (1926); sie sind heute, trotz einer wertvollen Ergänzung vom Jahre 1941, revisionsbedürftig. Wie aus diesem kurzen geschichtlichen Ueberblick hervorgeht, waren es hervorragende Pioniere der Wissenschaft und Technik, die die Grundlagen der Wärmebedarfsberechnung geschaffen haben.

¹) Die Zahlen in den eckigen Klammern beziehen sich auf das Lite-raturverzeichnis am Schluss des Aufsatzes.