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Zur Festpunktberechnung durchlaufender Balken mit verinderlichem Trigheitsmoment

Von Ing. Dr. PIERRE LARDY, Ziirich

Der kontinuierliche Balken mit wverdnderlichem Tréigheits-
Moment spielt, besonders im Eisenbeton, eine wichtige Rolle.
Es soll im Folgenden eine Methode entwickelt werden, die fiir
beliebig verdnderliche Trigheitsmomente gilt und erlaubt, unter
Umgehung der iiblichen «Reduktion» der Momentenfldche M auf
M|J allgemeine Beziehungen fiir die Auflagerdrehwinkel ¢, «,,
B1» Bs, die Hilfslinienabstédnde ,, x,, #, und die Festpunktab-
stdnde @ und b, sowie fiir gewisse Belastungsfille geschlossene,
einfache Ausdriicke anzugeben, deren numerische Auswertung
einen geringeren Arbeitsaufwand erfordert. Sie diirfte geeignet
sein, die Abhéngigkeit der betreffenden Grossen von der Art der
Verédnderlichkeit des Tragheitsmomentes auf anschauliche Weise
abzukldren, indém die Berechnungen auf die Bestimmung der
einfachsten, geometrisch-statischen Grossen (Flédcheninhalt,
Schwerpunktabstand und Trégheitsmoment) der 1/J-Flidche (in-
verses Balkentrdgheitsmoment) zuriickgefiihrt und so auf eine
einheitliche Grundlage gestellt werden. Ein Vorzug liegt auch
darin, dass die Symmetrie-Eigenschaften des verénderlichen Trig-
heitsmomentes voll ausgeniitzt werden konnen, wihrend sie bei
der Reduktion wegen der Unsymmetrie des Momentenverlaufes
fiir M, — 1 und M, — 1 verloren gehen.

Nach einer kurzen Erlduterung {iiber eine angeniherte Be-
rechnung von Trégheitsmomenten und eine graphische Konstruk-
tion, die gleichzeitig den Fldcheninhalt, den Schwerpunktab-
stand und das Trédgheitsmoment liefert, folgt die Berechnung
der Auflagerdrehwinkel nach der eingangs erwidhnten Methode
im allgemeinen Fall unsymmetrischer, sowie fiir die beiden wich-
tigen Sonderfélle symmetrischer und einseitiger Vofiten. An-
schliessend werden die Ausdriicke fiir die Hilfslinien- und die
Festpunktabstdnde abgeleitet und einige wichtige Anwendungen
behandelt, die u. a. die Auflagerdrehwinkel infolge gleichméissig
verteilter Belastung, den Balken mit unendlich vielen, gleichen
Oeffnungen (einschliesslich Stiitzenmoment und maximales Feld-
moment), sowie den Einspannungsgrad betreffen. Am Schluss
wird der Zusammenhang der behandelten Methode mit der Nihe-
rungsmethode der starren Votten hergestellt und der Sonderfall
der gesetzméssig gegebenen Verdnderlichkeit nach dem Potenz-
Gesetz in die Berechnung einbezogen.

1. Angenidherte Berechnung von Trigheitsmomenten
a) Berechnung aus dem Schwerpunktabstand

Die einleitend erwihnte N&herungsberechnung von axialen
Trégheitsmomenten bezieht sich hier nur auf «trapezférmige»
Fliachen, wie sie in Abb. 1 dargestellt sind. Sie erlaubt, aus der
alleinigen Kenntnis des Schwerpunktabstandes 5, das Trigheits-
Moment J bzgl. der z-Axe aus der Beziehung

JgJ’=—§_(2n5)3. RN (611

zu bestimmen. Die Berechnung von Trigheitsmomenten wird
damit auf die Bestimmung einer einzigen Schwerpunktskoordi-
nate reduziert, was eine Vereinfachung bedeutet.

Gl. (1) gilt in voller Strenge fiir Rechtecke, insbesondere
auch fiur unendlich kleine rechteckige Flichenelemente 7 dx mit

d
dem Trigheitsmoment &

73, woraus J :‘/‘%3 dx folgt. Gl. (1)
(F)

besagt nichts anderes, als dass diese, fiir das Rechteck charak-
teristische Eigenschaft, mit praktisch geniigender Genauigkeit
auch fiir ganz andere Flichen Anwendung findet. Die Begriin-
dung erfolgt in der Weise, dass der praktische Giiltigkeitsbereich
der Gl. (1), sowie der damit verbundene Genauigkeitsgrad unter-
sucht werden.

Ausgehend vom Trapez O P, P, P, der Abb. 2 wird durch die
Punkte P, und P, eine Schar von Potenzkurven gelegt nach der
Gleichung :

R el

. R
><

77—}L+H_hx" (2)
e SRS SIAERAE

wo n der Parameter der Kurvenschar ist. n — 1 ergibt die Ge-

rade P, P,, n > 1 die Kurven unterhalb (konkav nach oben),

n < 1 diejenigen oberhalb (konvex nach oben) der Geraden P, P,.

Die Integrale iiber das Intervall 0 bis B sind leicht auszuwerten

und ergeben, wenn zur Abkiirzung

12?’” (ORI SRR (3)

gesetzt wird:
1 [n2de H [2n222 4+ 2n2 4+ mn 1]

T2 T maw T 2 @t LA +nd) D)
J=f773%=
reil BH?® (n 4 1) 2n 4 1) - 3ni[2n222 204 + n + 1] (%)
g (n +1) (2n + 1) (3n + 1)

Daraus folgt das angen#dherte Trigheitsmoment J’ nach
Gl (1) zu:
B BH3 [2n222 4 2nd 4+ n | 1]3
J' = (27,)% = o
3 (27s) 3 @n L 1)1 Fna)s (6)
Zur Fehlerabschitzung dient das Verhéltnis
Tl
v:T.........(7)
damit wird der Fehler 4 in 9/ :
297 =100 SRS et SR (9)
Abb. 3 vermittelt einen Ueberblick iiber die Abhingigkeit

des Fehlers 4 von n und A. Mit zunehmendem 1 — % nimmt 4

rasch ab und ist fiir 2 > 0,5 im Absolutwert bereits von der
Grossenordnung 19, und darunter, und zwar fiir alle Werte
von n. Die nach oben konvexen Kurven (n < 1) zeigen auch
fiir kleinere A eine bessere Anndherung an den wahren Wert J
als die nach oben konkaven (n > 1). Falls notwendig kann, bei
kleinen 4, durch eine passende Unterteilung der Fliche immer
erreicht werden, dass der Gesamtfehler beliebig klein ausfillt,
indem J' fiir die Teilflichen bestimmt wird.

Die Wahl von Potenzkurven bedeutet keine Einschrinkung ;
jede Kurve durch P, und P, kann durch Potenzkurven ange-
néhert werden, wobei die entsprechenden Werte fiir 5, und J
als Integrale i. A. eine bessere Approximation aufweisen als
diejenige unter den urspriinglichen Kurven selbst.

b) Graphische Konstruktion

Die Schwerpunktkoordinate 7, kann nach bekannten Metho-
den analytisch oder graphisch bestimmt werden. In allen Fillen,
wo wegen der Flachheit der Kurve gegen die Bezugsaxe das
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Seilpolygon eine gedridngte Gestalt annimmt, kann zur Erhéhung
der Genauigkeit eine graphische Konstruktion angewendet wer-
den, die keine Parallelverschiebung erfordert und hier kurz er-
wéahnt sei. Wir unterscheiden zwei Félle:

J. Unterteilung der Flidche in Lameéllen gleicher Breite (Ab-
bildung 4). Die Teilflachen werden durch Trapeze mit der Basis
b, den mittleren H6hen h,, h,, ... und den Flidchen F, —bh,,
F,—"0bh,, ... approximiert. Die Schwerpunkte S; konnen nach
Abb. 4b bestimmt werden. Aus der Definition der Schwerpunkt-
Ordinate
Fom + Fymy + -+«

S AP
folgt die Konstruktion nach Abb. 5a, wo das statische Moment
2F;7n; durch eine treppenférmige Fldche dargestellt ist, die
durch sukzessive Anwendung der Hilfskonstruktion nach Ab-
bildung 5b1!) in ein inhaltsgleiches Rechteck O A A’ O’ verwan-
delt wird. Der Schnittpunkt 7' der Geraden O P (O'P — X'h;) und

der Rechteckseite 4 A’ liefert 5, — A T.

2. Lamellen ungleicher Breite. Man reduziert sédmtliche La-
mellen auf die selbe Breite b, bestimmt nach Abb. 6 die Hohen 7’
der inhaltsgleichen Rechtecke und verfihrt wie unter 1. Diese
Konstruktion liefert gleichzeitig den Fldcheninhalt, das statische
Moment und nach Abschnitt a) das Tragheitsmoment, ein Um-
stand, der in der Folge die Auswertung der Formeln besonders
vereinfacht.

Ns —

2. Berechnung der Auflagerdrehwinkel «,, o, 8, f,-
a) Darstellung der Integrale aus der Kurve y —
Im/J -

Die Berechnung der Festpunkte eines durchlaufenden Bal-
kens mit verdnderlichem Trégheitsmoment J beniitzt die be-
kannten Integralausdriicke fiir die Auflagerdrehwinkel ¢, &, —
B, und B,. Die in der Einleitung erwdhnte Methode entspringt
aus einer speziellen, direkt auf die 1/J-Fléche hinzielenden Inter-
pretation des allgemeinen Integrals fiir einen Auflagerdrehwinkel
infolge M, — 1 und M, = 1 nach der Arbeitsgleichung:

MM dx

= = 9
S 9)
Es ist zweckmassig, Gl. (9) mit einem passenden Festwert J,,

(meistens J,, — kleinstes Balkentrdgheitsmoment) zu multipli-
zieren, woraus

J,
EJmoc:f .'I" VIV A PSR SN (1O

folgt. M und M' sind hier lineare Funktionen, ihr Produkt ist
eine quadratische Funktion

MM/ —A 4 Bx 4 Cx?2. . . . . . (10)
Gl. (10) in (9') eingesetzt ergibt:

Jm 2
EJmoc:fT(A+ Bx | Cx®)dx =

J"l Jm Jm 2
:Af 7 dx+Bf—.I_xdx+0/Txdx (11)

Zur Abkiirzung sei

J
szm (dimensionslos) S (2)

gesetzt und als Kurve aufgetragen. Dadurch gewinnen die Inte-
grale in Gl. (11) statisch-geometrische Bedeutung als Fléchen-
inhalt, statisches Moment und Trigheitsmoment der y-Fliche,
diese bzgl. der Lotrechten durch den linken Auflagerpunkt.
Damit ist die Berechnung der betrachteten Auflagerdrehwinkel
auf die alleinige Betrachtung der y-Fldche zuriickgefiihrt.
Gl. (11) wird daher

EJ,c—AF 4+ BS{+CY . . . . . (13)

Um Unklarheiten zu vermeiden, soll in der Folge festgelegt
werden, dass sich die Grossen F (Fldcheninhalt), S8 (statisches
Moment) und insbesondere Y
(Tragheitsmoment) ausschliess- B
lich auf die y-Fldche beziehen.
Damit ist eine Verwechslung mit
dem variablen Balkentrdgheits-
moment J ausgeschlossen.

Der Verlauf des Balkentrig-
heitsmomentes fiihrt neben dem
allgemeinen Fall zur Betrachtung
von zwei wichtigen Sonderfidllen
der symmetrischen und einseiti-
gen Volte, die kurz behandelt
werden.

1) Die Gerade GG' bestimmt die
Hohe h' des inhaltsgleichen Recht-
eckes: h' (b + B) = bh + B H — Fliche
der beiden urspriinglichen Rechtecke. Abb. 5

0 ]
S

5
LRy
5
WA
5 A\ A
K :r ”
hl >
Zy SO
(Dt b--—--- =
b) &7

Abb. 4

b) Alligemeiner Fall

Es empfiehlt sich eine Koordinatentransformation von =z,
bzw. x' auf z, dessen Bezugsaxe durch den Schwerpunkt P der
y-Fldache geht (Abb. 8), mit den Beziehungen:

L= l"—=
x':l_x:lz_]_z} (1)
Die Auflagerdrehwinkel ¢;, 3; berechnen sich nach bekann-
ten Integralformeln, wobei das Integrationsintervall fiir 2 von
J
— 1, bis I, reicht. Man erhdlt mit y = Tm:
+ 0

l
x'2dx 1
N S o selt i L l 2
o fl‘-’EJ e f(2+z) yaz
0 — 1y
wegen der Lage der Koordinatenaxe fiir 2 durch den Schwer-
punkt P der y-Fliche ist das Integral

Jyzdz =0
und es folgt:
12F | ¥
o — 2
1 S (15)
Analog erhdlt man:
d 1
zx'dx 3
aZZﬁlzf B~ BT _/(zl_n) (I, +2)yde
0 =7
und hieraus
Ul =%
i e 5
Endlich ist:
1 o : L
x2dx
= e = ——— l, —2)2yd
b waJ BEJ, f(l AR
0 — 1,
woraus:
LRV
e s B B 1
Ba RPEJ, 7

In den Gl (15) bis (17) ist F der Flicheninhalt und Y das
Trigheitsmoment der y-Fliche, dieses auf die Schwerpunktaxe
durch P bezogen. Fiir J — konst — J,, folgen die bekannten

l l

Ausdriicke o, = 8, = SET, oI — BT, Ferner er-
gibt sich:
LF
ay + €y = SR 8
LF
By + By = TET,

Die Bestimmung des Schwerpunktes P sowie der Grossen
F und Y folgt aus Abschnitt 1.
c) Symmetrische Votuten

Dieser wichtige und h#ufige Sonderfall bedingt

b
S

3) Fir 6>8 b) Fir b<B
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wobei aus den Gl. (15) bis (18) folgende einfachen Ausdriicke
entstehen:

LAl R
4
a,:ﬂﬂ:W
2
A TFAY (L))
B R
- F
5‘1+“2—“91+ﬂ2——2E—Jm

Die Bestimmung von F und Y nach Abschnitt 1 ist hier
besonders einfach.

d) Einseitige Votute

Bei einer einzigen Vofite ist es oft einfacher, die Integrale
fiir die Auflagerdrehwinkel ohne Koordinatentransformation
direkt auf die Variablen x und x’ zu beziehen. Das Trégheits-
moment ¥ gilt dann je nachdem fiir die linke oder rechte Auf-
lagerlotrechte und sei mit ¥; bzw. mit ¥, bezeichnet. Analoges
gilt fiir das statische Moment S der y-Flédche mit den Bezeich-
nungen 8; — I, F und 8, — 1, F. Man erhélt somit:

A 1
x'2dx 1
= - 20 dot
& [ EEJ TEJT, /_“ g
0 0
d. h.: ¥,
.| IS [ ==t ()
&= R, (=R

Weiter folgt:
1

wixrdax 1 p

Yy — (3, = —_—_— = 1 — dr —

=l flﬁ'EJ BEJ, /x( »)yadw
0

0
1

1
:m‘[x @ —=a)Yydz
(V]

und hieraus die beiden Ausdriicke:
18 —% S re—yer

— = = SR 21
LR BEJ, REJ, &
Weiter wird :
l l
x2dx it
—- = 2yd
ﬂf—fmw EEJ, fx U
0 v
und daher: Y,
= S (4
Bs REJ, (22)
Fiir die Winkelsummen folgt:
4 o ]
O —
' Bl Sl @)

/- Sl
81+ B2 = PR

3. Berechnung der Hilfslinien- und Festpunktabstinde
a) Allgemeiner Fall

Aus der Baustatik ist bekannt, wie man zur Bestimmung
der Festpunkte ¢ und b die Hilfslinienabstédnde x,, x, und
heranzieht. %, und x, sind nichts anderes als die Festpunkte b
und @ im Falle der vollstindigen Einspannung (gleich den Drit-
telslinien, wenn J — konst.) und sind, wenn auf die selbe Oeff-
nung bezogen (Abb. 9), definiert durch:

1 )
x,:iJ— e L B (24)
By + B2 L
Die «verschrinkte Drittelslinie» im Abstande x, folgt aus:
z,' R, — %, B, 25
Ly — ,Rx-l"Rz'—_ AN (25))
mit: R, = + B } L (26)
Ry =o' -+ oy’

Damit sind die Festpunkte o’ und b' aus denjenigen der an-

grenzenden Felder bestimmt und koénnen graphisch nach der be-
kannten Konstruktion oder ana-

lytisch gefunden werden. Fur
a' in der Oeffnung I’ ist z. B.:

X 7! i
¥
2 !

e e

e ] mmommmmemmenS -

Abh. 8

2, (2, + %)
$1 + xz’ + & (?5__0'&‘24) ’ ' ' ’ (27)
Werden die aus dem vorigen Abschnitt fiir die Drehwinkel
ermittelten Werte eingesetzt, so folgen die allgemeinen Aus-
driicke fir z, und x,. Zur Abkiirzung wird

YR W
VT:]"""‘(%)

- S . l
gesetzt. j ist der Tréagheitsradius der y-Fldche; j = f; das

al'—=

Gleichheitszeichen gilt nur fiir konstantes Trigheitsmoment.
Damit ergibt sich

= 72
o i S RS
L F 2 Z -
_ZIZQF_Y_Z_ R (
R LF ! 1,

Fiir die analytische Berechnung der Festpunkte in der Oeff-
pung I konnen direkt in den Formeln

aredinn anli B sui s R L
o A &' 4 & B’ + By + &
die Werte der Auflagerdrehwinkel eingesetzt werden. Dabei ist
a b
51:52—*117191 G= 0 — o

mit den auf die benachbarten Oeffnungen bezogenen Winkel-
grossen. Nach Einsetzen der Werte aus (15) bis (17) folgt fir
den allgemeinen Fall:
Y4 L({—a)F Y | 1,5 — bR
B S ¢ A & =0 oEd,

Damit ist die Berechnung der Festpunkte @ und b fiir jeden
Verlauf der Balkentrigheitsmomente auf einfachem Wege ge-
sichert. x,, #, und @, b sind grdsser als bei konstantem Triag-
heitsmoment. Somit riicken die Festpunkte gegen die Feldmitte.

b) Symmetrische Votiten
Hier wird I, =1, — 1/2 und:

2
F_Y

l 2

4*2*_211 s E

@) = Ly—

2w
2
Fiir J — konst. wird 2, = %, = -

c) Einseitige Votute
Aus den entsprechenden Ausdriicken (20) bis (23) folgt:

g s YE g Y l

1= S _ Sy (32)

L s SRR ¢ [

2 S, S,

Ferner vermitteln Gl. (20) bis (22) die Werte:
i Y — a8
fTIU—wET, S 23
Y, — bS,

&= T0—5) B

4, Anwendungen und Sonderfille
a) Auflagerdrehwinkel fiir p —=konst. und P in Bal-
kenmitte

Obschon die entwickelte Berechnungsart vor allem fiir die
Festpunktbestimmung geeignet ist, konnen bei symmetrischen
Votiten im Falle gleichméssig verteilter Belastung p, sowie bei
einer Hinzellast P in Balkenmitte, einfache Ausdriicke fiir die
Auflagerdrehwinkel ¢, — 3, angegeben werden, woraus die Fest-
punktmomente

a o
e eI s AT
und die Schlusslinie bestimmt werden. Die Betrachtung der ver-
schiedenen Belastungsfille soll auf diese beiden wichtigen Son-
derfille beschrankt bleiben.

Aus Symmetriegriinden ist o, =y, ¢ + fo=20,; der
Belastungszustand ist
M — 1 und das Mo-
ment M, auf die Koordi-
natenaxe durch Balken-
mitte gelegt (2=0),

wird

nE
M#T(T_2>
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Es folgt: Das maximale Feldmoment I, ist
12 ;
(g + ) pl (p+29) .
p (1 az M, — LM, = Ll ol o (42)
20— 2= == = 558 m i g
% f 2 ( 1 z) BJ 8 16 4
nd 0 Bei konstantem J wird:
12 g pl2 gl pl2
G ﬂﬁ_wpm M= S S Mn=—r+1
2EJd, )\ 4 Besonderes Interesse hinsichtlich der Anwendung verdient
iton der Balken mit unendlich vielen, gleichen Oeffnungen auf ela-
’ i stisch-drehbaren Stitzen. Der Winkel ¢ in der Festpunktformel
g = = ; (T- F_ y) . . . . (34) wird aus der allgemeinen Beziehung
LB gz X 1
Ein Vergleich mit der 2. Formel (19) fiihrt zu: & €a &s

nl2
= g = p4 @ . . . . . . (35)
und fiir die Festpunktmomente zu den bekannten Ausdriicken:
pal bl
i =— 2 ,Mk:%pT o N

Die Einfachheit dieser Ausdriicke ist damit fiir symmetrische
Voiiten allgemein bewiesen und fithrt zu der selben einfachen
graphischen Konstruktion der Schlusslinie wie bei J — konst.,
wo Gl (34) in

pl?
%= HBJ,
iibergeht.
Analog folgt fiir eine Einzellast P in Balkenmitte:
2}
% 12
W — 2ET, f vy dx
0
und hieraus
PS8,
4EJ,,
wo S;’ das statische Moment der halben y-Fldche bzgl. der lin-

ken Auflagerlotrechten bedeutet. Fiir J — J,, — konst. geht
GI. (37) iber in den bekannten Ausdruck

g — (37)

Pl
%= 1687,
b) Balken mit unendlich vielen, gleichen Oeff-

nungen
Bei freidrehbaren Stiitzen folgt aus Symmetriegriinden
r,=x,, B, =R, ; = 0, & = b = ay
Gl. (27) vereinfacht sich zu

wl
Qo —
=
woraus
— Y= z.
ooy L= VP =215
2
folgt. Wird x, aus GI. (31) eingesetzt, so folgt:
1
oot g e (3R

2

Fir J — konst. folgt der bekannte Wert
Qoo =2 0,211 17
Wird der Balken nach Abb. 10 belastet, so ist aus Symmetrie-
griinden die Schlusslinie in jeder Oeffnung horizontal. Das
Stiitzenmoment I, kann nach der Dreimomentengleichung be-
rechnet werden:

Bo + &' + M By + M, (8, + &) + My oy =0 . (39)
Aus Symmetriegriinden ist M, — M, = M, , «,' = &, oty' = @z,
®%,! = ¢, ; ferner wird nach GI. (34)

_ 9 r ,_ (g +p (2
fo=gmr (¥7-Y) =g (

I —
4 H I 4 Y) (50)

Hs folgt fur das Stiitzenmoment M, :

S ClOJST DDA el e -
Mlg_?(r—]). L e (i)
P
T ] A i
I Il (AL [ [
! === . [ reese—0 [ >
T/ Mom, £l

Abb. 10

(¢, = Winkel am Stiitzenkopf inf. M, — 1) gewonnen (Verall-
gemeinerung filir obere und untere Stiitzenreihe leicht moglich).
In Analogie mit Obigem kann der Festpunktabstand as, aus den
entwickelten Formeln fiir symmetrische Voiiten bestimmt wer-
den. Aus der Bedingung @' — @& — @, folgt zunichst:

l l:l— l/ (e, — @) (28, + o0, — &)

?‘x + ) (26 + o + “2A)~
und hieraus mit der Abkirzung

S

i 418 J,, &
z;—-F A b LI T (A 3Y)
nach einigen Umformungen:
1 i1/ AE F i
aw_?‘Tl/ i )

Ist & — % — oo (frei-drehbare Stiitzen), so folgt unmittelbar

U
Gl. (88) mit apy —= - — j. Fur J = J,, — konst. ergibt sich aus

2
3
Gl (44) mit F =1 und ¥ —= 1272:
l l S CE
So= o =Selllsr @z
1/

Fir & — » = 0 (vollstédndige Einspannung) ist aq — ot
2
—-i* (Gl 31).

Bei Annahme der selben Belastung wie in Abb. 10 kénnen
das Stiitzenmoment M, und das maximale Feldmoment M,, in
der mit (g - p) belasteten Oeffnung, ferner das Moment M, am
Stiitzenkopf bestimmt werden. Aus den Elastizitdtsbedingungen,
sowie aus den Symmetrie-Eigenschaften folgt nach einigen Zwi-
schenrechnungen:

- 1 el o D 21 x

%—*7&Z—W@+7T¢ﬂ
. 14 .
: 232 + (o + i7)=

_ 9 p 4

Moi=os e e i e
2] ;

P A pamcin

Y= iy

Fiir J — konst. gehen die Gl. (46) iiber in die Ausdriicke:

12 22
Mgz_fgi_ % e
12 24 11 =x
u gl? pAANIS D
™ od F2A
pl: al
M, — e
- = T2 I

Die GIl. (46) konnen leicht auf den Fall zweiseitiger Stiitzen
erweitert und in geeigneter Weise zur Berechnung von Stock-
werkrahmen und Pilzdecken herangezogen werden, da der Fest-
punktabstand bei elastisch-drehbarer Auflagerung sehr rasch
gegen den Wert ay, konvergiert.

c) Einspannungsgrad?)

1. Stiitze mit Gelenk. Der Drehwinkel ¢ (inf. M, — 1) am
Stiitzenkopf ist identisch mit dem Winkel ¢, :

I2F + Y
2EJ,

2. Stiitze mit fester Einspannung. &, am Stiitzenkopf ist
identisch mit dem Winkel ¢ fiir den einseitig eingespannten
Balken. Aus den Superpositionsgleichungen folgt mit g — 0:

(75
&=t
2

iy = (=

2) Vgl. Prof. Dr. M. Ritter: Autographie der Vorlesung liber Bausta-
tik II.
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Nach Einsetzen der Werte aus den GI. (15) bis (17) wird

Y

KAESOR S it

§y =

l
4EJ,,
3. Stiitze ohne Querkraft. Dieser Fall tritt bei freiem Stiit-
zenkopf mit M, — 1 auf. Hier wird, weil ¥ — M’ = 1:
dx il

=lgr==m - (48)

Fiir J — konst. = J,, liefert (47): & =

&

d) Ein- und zweiseitig fest eingespannter Balken
Bei einem rechts vollstdndig eingespannten und links frei-

Al

drehbar gelagerten Balken ist ¢ —=0; b = ; flir sym-
| : o B+ Be
metrische Vouten folgt b = S0 % nach GI. (31) und fiir
gleichmissig verteilte Belastung
pl i)
I, — — i — M
M; =0 M, g T3/ (49)
l
Wegen M, = M), EET ist
p o —
M, — — ’;° I | p4';‘_,_ (50)
4 o =72
12
Fir J — konst. folgt der bekannte Wert M, — — p8

Beim beidseitig vollstdndig eingespannten Balken sind die
Festpunktabstinde ¢ und b anhand der Gl. (29) zu ermitteln:

j?

P
1 lZ
D e

Fiir symmetrische Vouten und gleichméissig verteilte Belastung p
folgen die Einspannmomente M, und M, unmittelbar zu:

pl D
M, =M,=— o + o5 (51)
Das maximale Feldmoment M,, ist
ple 100
M, — M, = — j2.
m ] + M, 5 ] (52)
= pl2
Fiir J — konst. folgt M,, — =

Der giinstige Einfluss der Vouten als Funktion des variablen
Balkentragheitsmomentes auf das maximale Feldmoment M,
kommt hier deutlich zum Ausdruck. Bedeutet 4 in ?/, die Re-
duktion von M, gegeniiber dem Feldmoment M¢, bei konstan-
tem Trigheitsmoment, so folgt, wenn

12
(=P
J ( €) D

gesetzt wird:
D oy

M,,) 2

M, — 2’
(i 2100 = 100 (1——T):1008

A=
(i '1
4 Oln‘

DL
24
z. B. ist fiir ¢ = 0,1 der Wert .4 = 10 ?/,, d. h. die Reduktion von
12
M,, ist gleich derjenigen von j? auf o Die Erhdhung 4'°/,

des Einspannmomentes ergibt dagegen nur

o —150ie
Bei ¢ — 0,1 ist 4’ 9, = 5 9/,; der Gewinn am Feldmoment ist also
doppelt so gross wie der Verlust am Einspannmoment.

e) Die Festpunkte des eingespannten Bogens

Die vorliegenden Betrachtungen konnen auf die Festpunkt-
bestimmung eines eingespannten Bogens angewendet werden.
Die y — i- Fldche wird hier ersetzt durch die y’' — _JS -

J J cos ¢
Fléche (J; — Bogentrigheitsmoment im Scheitel). Dann ergibt
sich aus der Definition der Festpunktabsténde, der Gl. (29) ent-

sprechend :
1 j:2
=k — T
e A

3) Vergl. Prof. Dr. M. Ritter: Autographie der Vorlesung iiber Massiv-
bau.

Y
wo j'2 = - das Quadrat des Trégheitsradius der y'-Fldche be-

deutet. Fiir einen symmetrischen Bogen wird
1 242
—b = —
i 2 l
Fir J cos ¢ = J; folgt j'2 = 2 und a = b L
fE=RPiton flss Bieri s
Beim Parabelbogen mit dem Pfeil f, der Spannweite I und

der Gleichung 2. Grades
4f (12 22
T (T - )

wo ' die Ordinate der Bogenaxe bzgl. der Kdmpferwaagrechten
bedeutet, kann fiir den Abstand ¢ des elastischen Schwerpunktes
ein einfacher Ausdruck gewonnen werden. Es ist

Jrwr P
_[es

S fy'dz

w =

und hieraus folgt

442
t:f(l_l;]z>. (53)
. . . 2
Fir J cos ¢ = J, wird, wie bekannt, ¢ = _B—f

5. Zusammenhang mit der Niherungsmethode der starren Vou-
ten; Potenzgesetz
a) Allgemeines

Die Ndherungsmethode der starren Vouten3) fiihrt zu ein-
fachen Ausdriicken und eignet sich besonders fiir schnelle, tiber-
schldgige Berechnungen, wo das verdnderliche Trédgheitsmoment
in grossen Ziigen beriicksichtigt werden soll. Man denkt sich
die bestehenden Voiiten ersetzt durch zwei starre Volten der
Linge ¢ und ¢’ an den Balkenenden und setzt dort J — co, im
iibrigen J — J,, — konstant. ¢ und ¢’ werden geschitzt. Die In-
tegration ergibt fiir die Auflagerdrehwinkel, Hilfslinienabstédnde
usw. einfache Ausdriicke. Das Integrationsintervall reicht von
¢ bis | — ¢’ fiir J,, konstant. Der Ndherungscharakter der Me-
thode liegt erstens darin, dass die Strecken ¢ und c¢' nur ge-
schitzt werden; zweitens werden fiir jede der zu berechnenden
Grossen die selben beiden Strecken ¢ und c¢' beniitzt, wihrend
in Wirklichkeit fiir jede der Grossen o,, «,, & - ¢, %y, ..,
usw. das ihr zugehorige Paar von Strecken ¢ und c¢' eingefiihrt
werden miisste. Trotzdem kann diese Berechnungsart in vielen
Fillen zu einem gréssenordnungsmissig geniigenden Ergebnis
filhren, sobald ¢ und c¢' einigermassen passend, d.h. wie wir
sehen werden, nicht zu gross gewéhlt werden. Die weiteren Be-
trachtungen beschrinken sich auf den symmetrischen Fall mit
¢ — ¢'; zur Abkilirzung wird

T A

gesetzt. Die Integration von ¢ bis I — ¢ ergibt die bekannten
Ausdriicke

ZA— [(L — ) — 23]

%S =mEE
w0y, =B, = ’ﬁlJm (1 — 622+ 423) (54)
R, — oy | o, =ﬁl‘]7 1—22)
woraus der Hilfslinienabstand
w‘:*ﬁlil,@z :% (1 4 24 — 242 (55)

folgt. Ist A gegeben, so kann die Berechnung von B, und z, auch
auf graphischem Wege erfolgen.
b) Vergleich mit der exakten Methode

Werden die Ausdriicke (54) und (55) mit den entsprechenden
aus den Abschnitten 2 und 3 verglichen, so ergibt jede Gleichung
einen verschiedenen Wert fiir A; diejenigen aus den Gleichungen
fiir B, und @, seien mit Ag und 2, bezeichnet. Es folgt unmittelbar

F

l
— J
_]/5_1

Die Gl (56) zeigen den Zusammenhang mit der exakten
Methode; die Binfiihrung der beiden Werte ir und 2, nach (56)
in die Berechnung der Festpunkte wiirde zum richtigen Ergebnis
fithren, wére aber ginnlos, da ja schon die Werte F' und j zum
Ziele fithren. Die Berechnung mit A ist deshalb nur dann be-

(56)

N]H Nl)—l
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rechtigt, wenn sie rascher als die exakte Berechnung (hier die
Bestimmung von F und j) zu einem brauchbaren Ergebnis ver-
hilft. Deshalb beschrinkt man sich auf einen einzigen Wert von
/. Bine Fehlerabschitzung fiir
R x — R,x,
e O
B + R,

zeigt, dass man besser fihrt, wenn man sich bei der Wahl von
A moglichst dem Wert A, und nicht demjenigen iz nihert, da
dann der Fehler in der Bestimmung der Festpunkte kleiner aus-
fallt. Da A, als Funktion des Trigheitsradius kleiner ist als AR,
wird man bestrebt sein, . in angemessen niedrigen Grenzen zu
wéhlen, damit die Festpunkte nicht zu giinstig ausfallen. Auf
dieser Grundlage konnen fiir 2 aus dem Verlauf des Trigheits-
momentes J Néherungsformeln und Konstruktionen abgeleitet
werden, worauf hier jedoch verzichtet wird.

c) Potenzgesetz?)

Im allgemeinen kénnen fiir F und ¥ bzw. j keine analyti-
schen Ausdriicke angegeben werden. Schon bei einfachen Vouten-
formen, z. B. bei geraden Vofiten, werden die Formeln dermassen
unhandlich, dass sie fiir die numerische Auswertung nicht mehr
in Betracht kommen. Dies kommt besonders im Eisenbeton zum
Ausdruck, wo ein Balken meistens als Plattenbalken auftritt.

‘) Vergl. Prof. Dr. M. Ritter: «Ueber die Berechnung elastisch einge-

spannter und kontinuierlicher Balken mit verdnderlichem Tréagheitsmo-
ment», SBZ Bd. 53, S. 231%, 244* (1909).

Dagegen gelingt es in vielen Féllen, durch Einfiihrung eines den
praktischen Verhéltnissen moglichst entsprechenden, analytisch
einfachen Gesetzes fiir die Veridnderlichkeit von J Ausdriicke
abzuleiten, die fiir die numerische Auswertung geeignet sind.
Ein solches ist, z. B. fiir symmetrische Votten, das Potenzgesetz:

J 2"
e | N e e (57)
J,
WO n — *J"L (J4 = Trégheitsmoment am Auflager, J, in Bal-
A

kenmitte) ﬁnd r eine gerade, ganze Zahl ist. Daraus folgt un-
mittelbar:

L T+ n
:]ydz:‘_ —
— 2 F i
+ 12 4 S B (58)
T - n
g = 2y —
Jyzas T+ 3 12

und damit
s Y  (r41)(r438n) 22
! T FE T () 12

Hieraus lassen sich durch Einsetzen alle bekannten Aus-
driicke fiir die Auflagerdrehwinkel, die Hilfslinienabstinde usw.
entwickeln. Wichtig ist hier die Festsetzung von r, weil davon
die Giite der Approximation abhingt.

Ueber die Berechnung des Wirmebedarfes von Ridumen

Von A.P. WEBER, Ing. bei A. Eigenmann, Ingenieur-Bureau, Ziirich
1. Einleitung

Mit dem Fortschritt des Bauwesens und den erhohten An-
spriichen, die heute an die Raumheizung gestellt werden, hat
sich die Berechnung einer Raumheizanlage zu einer eigentlichen
Ingenieuraufgabe entwickelt. Wihrend man in den Anfingen
der Heiztechnik den Warmebedarf in der Regel nur nach dem
Volumen der zu heizenden Riume bestimmt hatte, sind die
massgebenden Heizfirmen ldngst dazu iibergegangen, die Be-
rechnung nach der Lehre von der Wéirmeiibertragung und den
Forschungsergebnissen der Baustoffphysik durchzufiihren. Leider
ist aber die falsche Ansicht noch weit verbreitet, die Grosse der
Heizkorper und der Kessel konnten lediglich nach dem Raum-
Volumen festgelegt werden. Dies fithrt zu Enttduschungen im
Betrieb, denen man durch Ueberdimensionieren der Heizkorper
und der Kesselanlagen zu begegnen sucht. Man erhilt so hohe
Anlagekosten, eine schlechte Anpassung der Wirmezuteilung an
die einzelnen Rdume und hohe Betriebskosten. Nur die genaue
Berechnung ermoglicht, solche Nachteile zu vermeiden. Sie er-
fordert allerdings viel Zeit. Um sie abzukiirzen und dadurch
besser konkurrieren zu kénnen, wurde sie vielerorts stark sche-
matisiert, gelegentlich so stark, dass sie in einfachen Fillen
ungeschulten Routiniers iiberlassen werden kann. Im Folgenden
wird versucht, die fachtechnisch richtige Behandlung kurz zu-
sammenfassend darzustellen.

2. Theoretische Grundlagen
Im Verlauf der weiteren Ausfiihrungen werden die folgenden
Bezeichnungen verwendet:
«; — innere Wirmeiibergangszahl kcal/m?, h, ©
&, — dussere Wérmelibergangszahl kcal/m?, h, ©
A — Warmeleitzahl keal/m, h, ©
y = Spezifisches Gewicht kg/m?
J = Wandstédrke m
¢ — spezifische Wirme kcal/kg
Kk — Warmedurchgangszahl kcal/m?, h, ©
@ = Wéirmemenge kcal/h
F — fiir den Warmedurchgang massgebende Fliche m?
t; — Innentemperatur des Raumes ° C
— Aussentemperatur des Raumes ° C
4 = Wandoberfldchentemperatur © C
Diegeschichtliche Entwicklung der wissenschaftlichen Wirme-
bedarfsberechnung kann bis zu Isaac Newton zuriick verfolgt
werden. In seiner Abhandlung iiber die Temperaturen, die er im
Jahre 1701 in einer Mitteilung an die Royal Society veroffent-
lichte, stellte er die folgende Beziehung auf:
Q—twH (l; — ) . - .. - (@b
Diese Gleichung stellt bekanntlich die Warmeabgabe einer
Oberfldche von der Temperatur 9y an die Umgebung dar, und
wird als Newtonsches Abkiihlungsgesetz bezeichnet. Fiir die
planparallele Platte kann somit sinngeméss gesetzt werden:
Q= F(t; — %) (1a)

und QE N (e I, L e (2)

Im Jahre 1822 gab der franzodsische Physiker J. B. Fourier
seine «Théorie analytique de la chaleur» heraus, worin das grund-
legende Gesetz fiir die Warmeleitung enthalten war [1]!). Man
bezeichnet es heute allgemein als das Fouriersche Grundgesetz
der Warmeleitung ; es lautet:

Q:%F({}x—%). B )

oder in der Differentialform:
ad
Q@ =—AF —7=
Durch Eliminieren der Wandtemperaturen 9 und Addieren der

Gleichungen 1 bis 3 erhélt man:
Bt —
Q:—l( “)7,_',..,(4)
ey + =k

Diese Gleichung wurde 1860 vom franzﬁsischen Physiker
Péclet in seinem Werk «Traité de la chaleur» [2] erstmals ver-
offentlicht und wird noch heute nach ihm benannt.

Schliesslich hat Franz Grashof, Professor fiir Maschinenbau
an der Technischen Hochschule in Karlsruhe und Mitbegriinder
des VDI, im Jahre 1875 in seinem Lehrbuch <«Theoretische
Maschinenlehre» [3] die Formel (4) in jene Fassung gebracht,
die wir heute als die Grundgleichung der Wéarmebedarfsberech-
nung ansehen und verwenden, ndmlich:

(3a)

QF— I FA((L =) R . (8)
wobei fiir die Warmedurchgangszahl k¥ bekanntlich zu setzen ist:
1k = 1)e; + 6,4 +1jeeg « . - . . . (6)

3. Grundlegende Gesichtspunkte zur Berechnung der Wdrme-
verluste

Die praktische Anwendung der oben erwdhnten Formeln bei
der Warmebedarfsrechnung hat in der Folge der Altmeister der
Heizungstechnik, Hermann Rietschel 1893 in seinem klassischen
«Leitfaden» [4] ausfiihrlich und unter Beriicksichtigung des Wind-
einflusses, der Himmelsrichtung und der Betriebsunterbriiche
behandelt. Bis in die neuere Zeit hinein waren die Rietschelschen
Rechenmethoden fiir die gesamte Heizungstechnik massgebend.

Die grosse Vielgestaltigkeit der Bauelemente, die verschie-
denen Heizsysteme und die erhéhten Anspriiche machten in den
letzten Jahren bei Warmebedarfsberechnungen zahlreiche Ver-
feinerungen und Erweiterungen erforderlich. Diese Ergédnzungen
sind weitgehend in den deutschen «Regeln fiir die Berechnung
des Warmebedarfs von Gebduden» [5] niedergelegt (DIN 4701),
deren neueste Fassung im Jahre 1944 herausgegeben worden war.
Die Schweizer «Regeln» [6] sind in Anlehnung an die alten
deutschen aufgestellt worden (1926); sie sind heute, trotz einer
wertvollen Ergédnzung vom Jahre 1941, revisionsbediirftig. Wie
aus diesem kurzen geschichtlichen Ueberblick hervorgeht, waren
es hervorragende Pioniere der Wissenschaft und Technik, die die
Grundlagen der Wirmebedarfsberechnung geschaffen haben.

1) Die Zahlen in den eckigen Klammern beziehen sich auf das Lite-
raturverzeichnis am Schluss des Aufsatzes.
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