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Blattes Amsteg, der das vom Maderanertal abzweigende «Etzli»-
Tal darstellt, macht eine weitere Diskussion iiber die Sprach-
und Schreibfrage iiberfliissig, denn es verwirklicht eben, was
die Ziircher Flurnamenkommission mit ihrem Vorstoss erstrebte.
Ein Blick auf das kleine Namengut des Urner Tales und ein
Vergleich mit dem Topogr. Atlass (TA.) (Tafel 2, Karte rechts
oben) und den oben besprochenen neuen Blédttern ldsst leicht die
neue Einstellung erkennen. Kartenredaktor Cueni schreibt unbe-
schwert schweizerisch Spillaui (TA. Spiel-). Er wird also auf
den kommenden Blédttern konsequenterweise auch Wis, Risi,
Nider, Frid usw. schreiben und im Gomser Namen Hahnenspil
nicht nur das Dehnungs-e sondern auch das Dehnungs-h iiber-
fliissig finden. Schweizerdeutsch sind Witenalp (TA. Weiten-),
Chli, Spicher (Speicher), Schijen (Schien), Uf den Béchen (Auf),
Uf em Steinbach, Sunnig Wichel (Sonnig), Selegg (Seel-). Das i,
das in der Urner, wie in der Gomser Mundart zu i wird, bewahrt
Cueni in den landldufigen Wortern: Chriizli (TA. Kriizli), Chriiz-
steinriiti (Kreuzstein-), Riiteli, Porthiisli (Porthiislen); das mund-
artliche Miller erscheint als Miiller, Lick(en) als Liicke (ohne
das iibliche -n der weiblichen Worter). Ebenso sind die mund-
artlichen Extremformen Steckli, Bertli, Biel(en) (TA. Biihl) ge-
meinschweizerisch als Stockli, Bortli, Biiel(en) gefasst. Das ver-
dunkelte Wort Bristen, das die reine Mundartform von Briisten,
Mehrzahl zu Brust (Ableitung zu bresten, bersten), Erdbruch,
darstellt, blieb naturgemé&ss unberiihrt. Da auch der Name Chliser
dunkel ist, hdtte er wohl nicht zu Chliiser, das nicht mehr sagt,

gedndert werden miissen (TA. Kliiser). Das extrem mundartliche
Léucher- des TA. ist zu Laucher normalisiert. Ebenso sind die
die Kiirzung des langen ii andeutenden Riitti, Riitteli des TA.
zu Riiti, Riiteli ausgeglichen. Das alte verderbte Culma ist zu
Gulmen verbessert, ebenso das ungeschickte Fellmer zu Felmis
(aus Feld-mos, also eigentlich F#lmis, weil verdunkelt). Dass
das Urner Wort Fire(n) fiir Gletscher als Firn gefasst ist, wie
Hore(n) als Horn, wird jedermann begreifen. Eine unnétige Un-
gleichheit besteht zwischen Porthiisli und Boértliliicke, denn es
handelt sich wohl um ein und das selbe Bestimmungswort (Bort,
Bord, schmaler Abhang). Anstatt der vom Kartographen ge-
bildeten alten Talbezeichnung Etzli-Thal setzt der neue Karten-
redaktor die rein volkstiimliche Etzli.

Wenn dieses fiir die Landeskarte 1:50 000 ausgew#hlte Namen-
gut auch nicht gross ist, so zeugt es doch fiir eine von bestimmten
Grundsétzen gestiitzte, wohliiberlegte, schweizerische Haltung.
Neben diesem endgiiltigen Namenbild bietet Cueni auf einem
weitern Kértchen das selbe Tal im Masstab 1:25000 mit viel mehr
Flurnamen in rein mundartlicher Schreibung (Tafel 2, Karte
links). Das beweist, dass man sich heute des bodenstindigen
Sprachgutes mit liebevoller Sorgfalt annimmt, dass es mit der
oberflédchlichen Schriftdeutschelei vorbei ist. Wenn die Landes-
Topographie bei ihren kiinftigen Aufnahmen fortfihrt, dermas-
sen sprachreinigend zu wirken, so schafft sie ein Kartenwerk,
das vor dem Volk wie vor der Wissenschaft als wiirdiges Denk-
mal schweizerdeutscher Sprachpflege bestehen wird.

Ein Schwingungsproblem aus dem Flugzeugbau: Ruderfrequenz und Flatterfrequenz

Von K. H. GROSSMANN und E. BADER, Dornier-Werke A.-G., Altenrhein

Einleitung

So speziell die im Titel angedeutete Frage erscheint, so hdufig
stellt sie sich in anderer Verkleidung, nédmlich dann, wenn ein
schwingungsfihiges System -— es braucht nicht gerade ein Flug-
zeug zu sein — zur praktischen Behandlung als ein solches von
weniger Freiheitsgraden aufgefasst wird, als es tatséchlich hat.
Die sogenannten Konstanten des so schematisierten Systems
(hier die «Eigenfrequenz» des Ruders) hingen dann in Wirk-
lichkeit von der Frequenz ¢ der betrachteten Schwingung (hier
der Flatterfrequenz) ab?!). Einer ersten Schitzung o = w, ent-
spricht ein erster Satz von «Konstanten», der, in die Schwin-
gungsgleichungen eingesetzt, eine Frequenz @, liefert. Dieser
entspricht ein zweiter Konstantensatz, diesem eine dritte Fre-
quenz usw. Die Rechnung wird solange wiederholt, bis zwischen
angenommener und gefolgerter Frequenz hinreichende Ueberein-
stimmung erzielt ist.

Das «Flatterny von Flugzeugen ist eine gefiirchtete Begleit-
erscheinung der heute, namentlich im Sturzflug, erreichten hohen
Fluggeschwindigkeiten. Bei Ueberschreitung einer gewissen kri-
tischen Geschwindigkeit schldgt die Arbeit der durch eine spon-
tane Schwingung von Flugzeugteilen geweckten Luftkriafte un-
versehens aus einer vorher ddmpfenden in eine heftig anfachende
um: so heftig, dass schon manchem Piloten die Zeit gefehlt hat,
das immer wilder flatternde Flugzeug vor der Zerstdrung und
sich vor dem Tod zu bewahren. Die kritische Geschwindigkeit
durch bauliche Vorkehren iiber die vorgesehene Hochstgeschwin-
digkeit zu heben, ist darum zu einer Hauptsorge der Flugzeug-
bauer geworden. Zu den zum Flattern neigenden Flugzeugteilen
gehoren die Ruder: Quer-, Seiten-, Hohenruder. Die Eigen-
frequenz eines Ruders (Ruderfrequenz) kann die kritische Ge-
schwindigkeit entscheidend beeinflussen.

Die Ruderfrequenz? Wir werden zeigen, dass hierunter ver-
schiedene Frequenzen verstanden werden konnen. Sie ausein-
anderzuhalten und jene, ©* 2zu bestimmen, die in die Flatter-
rechnung eingeht, ist zur Vermeidung gefdhrlicher Konfusionen
wichtig und das Ziel der
nachfolgenden Untersu-
chung.

1) Wir sagen «Frequenz» und

meinen die <«Kreisfrequenzy:
Schwingungszahl in 2z sec.

Das Seitensteuer

Wir beschrédnken uns auf das in Abb. 1 skizzierte Beispiel
des Seitenruders, es dem Leser iiberlassend, unsere Betrachtung
auf Hohen- und Querruder auszudehnen.

Pilotenbeine figurieren unter den gebrduchlichen Maschinen-
Elementen nicht, doch sind wir gendtigt, sie als solche auszu-
geben, am einfachsten, indem wir die Masse der auf das Pedal
gesetzten Fiisse durch einen Zuschlag zu dessen Trégheitsmoment
beriicksichtigen und den Widerstand der Beinmuskeln durch ein
«federndesy, d. h. dem Pedalausschlag proportionales Riickkehr-
moment schematisieren.

Jedes der beiden vorgespannten Steuerseile habe den Quer-
schnitt F, die Lénge L und den Elastizitdtsmodul E, also die
Steifigkeit

CF=UEERYLL o % o R G i ()

Diese Steife erteilen wir den beiden Federn, als die wir die
Seile, ihre Massen vernachldssigend, zunidchst auffassen. Im
letzten Abschnitt {iberpriifen wir die Zulédssigkeit dieser Stili-
sierung durch Vergleich mit dem KErgebnis einer Analyse der
zugrundeliegenden Léngsschwingung der Seile.

Der vorerst betrachtete vereinfachte Schwingverband besteht
also aus zwei durch zwei Federn der Steife ¢ (Kraft/Lédnge)
verbundene Schwungmassen von den Trigheitsmomenten I
(Ruder) und I' (Pedal mit Fiissen), diese zudem einer Riick-
stellfeder der Steife k (Moment/radians) ausgesetzt, jene einem
dusseren Moment M (der Luftkrédfte und allfidlliger, etwa durch
eine Rumpfschwingung hervorgerufener Trigheitskréfte).

Die Bewegungsgleichungen
Bei Wahl der (im selben Sinne positiv gerechneten) Dreh-
Winkel ¢, ¢ der beiden Schwungmassen als Lagekoordinaten ist
TR
i S e ol
die kinetische Energie unseres Verbandes. Bei festem ¢’ ent-
spricht der Variation d¢ die Arbeit @, d¢; @, setzt sich offenbar
aus dem Husseren Moment M um die Ruderdrehachse und dem
durch die «Seilfedern» ausgelibten Kréaftepaar — 2hc¢ (hgp—h'¢')
zusammen. Einer Variation ¢’ entspricht die Arbeit @,d¢’', wo
@, ausser dem Seilmoment — 2h'c (W ¢' — h¢) das <Einspann-
momenty — k ¢’ umfasst. Die beiden Lagrange’schen Bewegungs-
Gleichungen lauten daher?):

Ig——2ch?¢ +2¢hh'¢p' + M
I'g = — (2¢h? k) ¢ + 2¢chh' g
Uns interessieren harmonische Schwingungen:
@:Aeiwt q;':A'ei"” M:Mle"‘”‘

Deren komplexe Amplituden 4, 4A’, M, sind mithin durch
folgende Bedingungen verkniipft:

2) Natiirlich fiihrt der Drallsatz, auf die beiden Schwungmassen an-
gewendet, zu den selben Gleichungen.
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Bd. 126 Nr.4

Elementare Schwingungsverbénde

Abb. 3a. Bigenfrequenz o =|p

(—Ip 4 2¢h?) A — 2¢chh' A

—2chh'A + (—I'p 4+ 2ch? 4 k) A’ =0
p bezeichnet das Frequenzquadrat:
P = w?
Es folgt:
binl A—wm, . (3)

—I'p 4+ 2ch? 4k
Hierin ist D (p) die Determinante des Gleichungssystems (2):

—Ip + 2¢h?,..— 2¢hl o
D(p)_l—ZChh' ; _1'p+2chr2+k|‘
—(—I'p42ch? L k) (—Ip+C). . . . (4
mit
2ch’?
—y 2 oy liieema-lu o S0 o L
Cc—2¢ch (1 —I'p+2ch’2+k> (5)

Mit Riicksicht auf (4) kann man (3) in folgender Form
schreiben:
—IpA + CA =M, oder Ig+Cop=M (6)
Es sieht also aus, als ob das Ruder ausser M einer Riick-
stellfeder von der Steifigkeit ¢ (Moment/radians) ausgesetzt
wire. In der Tat pflegt man bei Flatterrechnungen den wirk-
lichen Schwingverband (Abb. 1) einfach durch ein so gefedertes
Ruder (Abb. 2, unten) zu ersetzen. Dessen Eigenfrequenz ist
o* =1p* pE—=0ff . )
Dreierlei ist zu beachten: Erstens ist C kein Festwert, son-
dern die durch (5) gegebene Funktion von p. Zweitens wird C
fiir einen gewissen p-Bereich negativ. Die einer «Feder» von
negativer Steife ausgesetzte Schwungmasse ist aber offenbar
keiner harmonischen Eigenschwingung fihig; die durch (7)
definierte (imaginére) «Ruderfrequenz» verliert mit dem Vor-
zeichenwechsel ihren physikalischen Sinn. Drittens ist die Am-
plitude M, des dusseren Momentes, immer unter Voraussetzung
einer harmonischen, das Seitensteuer miterfassenden Flatter-
Schwingung, keine Konstante, sondern, wie hier nicht zu begriin-
den, proportional zu A4:
M, =f(p, V)4
Bei gegebener Flughthe hingt der komplexe Proportionalitéts-
Faktor f, wie angedeutet, ausser von p, von der Fluggeschwin-
digkeit V ab. Nach (6) folgt somit aus A + 0 die komplexe
Bestimmungsgleichung

v L 1/v_
Abb. 3b. Eigenfrequenzw =|| p

Abb. 3d. Eigen-

Abb. 3¢c. Eigenfrequenz w,= |n, T sk

Betrachten wir zun#chst statt des unsrigen die vier in
Abb. 3 skizzierten einfacheren Verbdnde a bis d. Die Frage

e
nach den beziiglichen Eigenfrequenzen w, w, w,, o' filhrt beim
ersten Schwingverband auf die Gleichung

D, (p) =0
mit
—Ip - 2ch?, —2chi
Di®)=|_gchw , —Ip4 2¢che
=II'p? —2c¢(I'h2 +Ih?)p. (10)
Fiir den ersten Verband gilt demnach:
= — 2ch? 2ch? —
P—=0? = ——— + — o (D =10) (11)
I I
Fiir den zweiten Verband gilt:
v vq k
p=a)=T. R (2
Fiir den dritten offenbar:
g 2¢ch?
Py = 0 = — i e mer LTRSS (71/31)
Fir den vierten:
2ch?
P = = T (14)
Offenbar ist
D(p) =D, (p) +k(—Ip -+ 2ch?) =
=II'[p*— (p + )P + P, P]. (15)
Die beiden Ldsungen von (9) sind somit:
Fpep 1 T
?I,Z=¥i7 -]/(p+p)9—4pop (16)

Das Ersatzruder

Man pflegt, wie gesagt, bei Flatterrechnungen das Seiten-
ruder nach Abb. 2 als eine durch eine elastische Feder der Stei-
figkeit C (Moment/radians) zuriickgehaltene Schwungmasse zu
schematisieren. Das schadet solange nicht, als man die «Eigen-
Frequenz» o* des Idealruders nicht mit den tatsichlichen Eigen-
Frequenzen o, = |/p,, w, = |/p, verwechselt. Diese sind zwei
durch die mechanischen Parameter geméss (16) gegebene Fest-

—Ip+C® =Ff(p, V) . (8) werte; jene hidngt gemiss (7) und (4) oder (5) vom Frequenz-
filr das Wertepaar p, V.
\ 3
Die Eigen- iy \ oY \ A y
\ P
schwingungen des /o A\ Laf ! o
< A\ N\
Schwingverbandes 2 "N e 2 ; S0 2
x \\
Bei Eigenschwingun- S ! S
gen, die sich spontan, pip T 1%p pp
fiir M, — 0 einstellen, s } i —_— -
muss die Determinante |
D (p) des Gleichungs- }
systems (2 hwin- ] ; s
d)én' (2 mygenchmn 0 "p%) 4 p/P % 4 /p/g 2 30
& i 1 3 "Dy M 7 2 N ElA {
D) =0 . (9 " h N 1 [ [ ’
) A ‘ =0
\ Po=p \ i Po=P Po=Pp
-1 \ -1 | =1
. | v ; .
¢ \\ p=0 \ p=05p p=e0
; AP = | 3 i -
Selfenruder s \ ! |
~ , | |
Abb. 2. Ersatz- ! I =
Seitensteuer Abb. 4a. Abb. 4b. Abb. 4c.
Ruderfrequenz Zusammenhang zwischen Flatter- und Ruderfrequenz bei verschiedenen Einspannungsgraden des Pedals.

w* =|p% Gestrichelte Kurven :

Verlauf nach der genaueren Theorie
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Quadrat p — o? des (beim Grenz-
iibergang zur Eigenschwingung ver-

schwindenden) &usseren Momentes
ab:
o}
=
Pr=7
D (p)
P+ I(—I'p +2ch?® 4+ k)
= Py (1 =— (p—d‘,)
—p+Dp +P
Abb. 5. Elementarer p* 1 1 an
Schwingverband, Eigen- D v
v 1+ p—P
frequenz Vp + D’ P
Diskussion

Bei der Untersuchung eines bestimmten Flatterfalles, an
dem ausser dem Seitensteuer sich etwa noch der Flugzeugrumpf
mit einer Biege- oder Drehschwingung beteiligt, ist neben der
kritischen Geschwindigkeit V, die diese gemeinsame Flatter-
Schwingung ermoglicht, deren Frequenzquadrat p die zweite
Unbekannte; p ist auch das Frequenzquadrat des oben einge-
fithrten #usseren Momentes M. Eine komplexe (zwei reellen
squivalente) Bestimmungsgleichung wie (8) fiir V und die Flat-
terfrequenz o :Vz? ergibt sich aus der Berechnung sémtlicher
mitwirkender aerodynamischen, elastischen und Tragheitskréfte;
in dieser Berechnung bildet der hier erdrterte Zusammenhang

zwischen ¢ und der sogenannten Ruderfrequenz o* = ]/p—* ein
wesentliches Glied. Diesen durch (17) gelieferten Zusammen-
hang veranschaulicht Abb. 4a fir p = 0 (freies Pedal), Abb.4b

fiir ;7 — 0,5p', Abb. 4c fur 1; — oo (festes Pedal).

Vergleichen wir, um diese Hyperbeln besser zu verstehen,
die komplexen Schwingungsamplituden h A und A’ A' der Enden
eines Seils! Nach (2), (12) und (14) ist

hA D 4D—D p—»
- =fF1° = —14——" 18
S = e (18)
Demnach sind drei p-Bereiche zu unterscheiden: Es ist
hA = ¥
AT 0 fir p +p < »
hA v v
05l < L firp<p<p+p
h' A
hA 4. b
1<WAT fir 0 < P D
Im Bereich
Dl S DI ke okt ) oo (8
schwingen Ruder und Pedal in entgegengesetzter, im Bereich
v
DEGD<E DD« o e s w ol (D)
in gleicher Phase. Im Bereich (a), wie auch im Teilbereich
0lp<p (b,)

des Bereiches (b) trifft die Schematisierung der Abb. 2 zu: Die

/%o '[%70

2

/

Seile wirken hemmend, dem Ruderausschlag entgegen, auf das
Ruder. Anders fiir

ppPpLP+ P (b,)
In diesem zweiten Teilbereich von (b) versagt die durch Abb. 2
angedeutete Vorstellung: Die Seile wirken antreibend, im Sinne
seines Ausschlags, auf das Ruder; C und damit p* ist negativ.
Bei fest eingespanntem Pedal ist, unabhéngig von der Flat-
terfrequenz, p* — p,. Auch bei federnder, ja bei fehlender Ein-
spannung kommt p* diesem Grenzwert beliebig nahe, sofern die
Flatterfrequenz nur hoch genug ist: Ein geniigend hoch fre-
quentes Seilmoment vermag an dem Pedal nicht mehr merklich
zu riitteln. In der Tat ist nach (18)
. hrA
lim A
p—> @

Denkt man sich die Flatterschwingung dagegen immer mehr
verlangsamt, so ziigelt das in entgegengesetzter Phase schwin-
gende Pedal mittels der Seile das Ruder immer stdrker, bis zum

Stillstand bei Ann#herung von V; an die Resonanzfrequenz

=0

/v
]/p -+ p' des in Abb. 5 skizzierten Schwingverbandes:
hA

=)

S V'L

p—>p+p
Es ist, als ob die Ersatzfeder der Abb.2 sich grenzenlos ver-

steife. In p — p - p’ schldgt ihre «Steifigkeit> C ins negativ
Unendliche um, steigt alsdann, bei weiter abnehmendem p, er-

v
neut an, von p — p an wiederum positiv, bei verschwindendem

p dem Grenzwert p, / (1 4 P7) zustrebend.

P
Wie aus (4) und (7) hervorgeht, ist p dann und nur dann
eine Wurzel eines Polynoms D (p), wenn p — p*: Genau dann,
wenn die Flatter- mit einer Eigenfrequenz des wirklichen Schwing-
verbandes (Abb, 1) zusammenfillt, besteht auch Resonanz mit
dem fiktiven Schwinger (Abb. 2). Dieser Umstand ist in Abb. 4

* (unter der Annahme p' — p,) zur graphischen Bestimmung der

Bigenfrequenzquadrate p, und p, benutzt. Ersichtlich nehmen,
im Einklang mit (16), mit stdrkerer Pedal-Einspannung (gros-

v
serem p) beide Eigenfrequenzen zu: p, wéchst von 0 (freies

Pedal) bis p, (festes Pedal), p, wéchst von p — P, + »' nach o«

Die Eigenfrequenzen sind experimentell leicht zu ermitteln.
Ignoriert man bei freiem Pedal (Abb.4a) die Higenfrequenz
o, =0, bei festem Pedal die Eigenfrequenz w, = co, so wird
man iiberrascht feststellen, dass «die» Eigenfrequenz bei unend-
lich starker Pedaleinspannung kleiner ist als bei fehlender Ein-
spannung! Es ist eben

(0= Py frei <) D fest < Dy frei (< Dy fest = %))

Zur bequemeren Einsicht in die Abh#ngigkeit der Ruder-

Frequenz vom «Einspannungsgrad» des Pedals diene Abb. 6, die

p*[p, fiir verschiedene Werte von p/p’ in Funktion von va/p' dar-
stellt. Diese Hyperbeln zeigen, dass bei gegebener Flatterfre-
quenz die Ruderfrequenz mit stdrkerer Einspannung ansteigt.
Allerdings springt, sofern p > p', sofern also die Flatter- die
Eigenfrequenz des Schwingverbandes der Abb. 3d libertrifft, die

Ruderfrequenz bei Ueberschreiten der Stelle zv) — P — p, also
bei Resonanz zwischen

. der Flatterschwingung

'%o und der Eigenschwingung

des Verbandes der Abb. 5,

o von -} co auf — oo liber,

v
sodass fiir p > p—p' die
Ruderfrequenz durch-
weg kleiner ist als fiir

p<p—0p.
i/

Anhang: Vergleich mit

%r=q5 %1:1

L

Abb. 6. Abhingigkeit der Ruderfrequenz vom Einspannungsgrad des Pedals bei verschiedenen Flatterfrequenzen

WA

einer genaueren Theorie
Die bisherige Auffas-

sung der Seile als Federn

| beriicksichtigt einzig ihre

I Elastizitdt. Will man die

t Bewegung der Seilenden

: genauer bestimmen, so

|

I

|

e

-1 e ==

o

; hat man die harmonische
Léngs-Schwingung  zu
untersuchen, deren das
Seil als nicht bloss ela-

\ B
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stisches, sondern auch massebehaftetes Gebilde féhig ist. Be-
trachten wir etwa das obere Seil, Abb. 1. Die Léngsverschie-
bung w eines im Abstand # vom Pedalende des Seiles gelegenen
Seilpunktes ist bei einer solchen Schwingung eine harmonische
Funktion der Zeit mit einer von =z abhéngigen (komplexen)

Amplitude:
it

w(x,t) =U(x)e

Da w der partiellen Differentialgleichung
E §w 92w
i o

< o<<L

¢ Qa?
gehorcht (E — Elastizitdtsmodul, ¢ = Dichte des Seils), U (x)
also der Differentialgleichung

= — 2w

U 2=,

ist U (x) gleichfalls harmonisch:

2 x 0
U = i — m— == Eg
() Psm([g’ L)—;-Qcos(ﬁ L) ﬂﬁVELU (19)
Driicken wir P und @ durch die Schwingungsamplituden der
Winkel ¢ und ¢, Abb. 1, aus! Da

(0t

ia
w(0,t) = heg =hA4e
ist

it
und w(L, {) =hep="nAde, (20)

U) =nA4A und U(L)—=hA
somit
hA
sin
Die nédmliche Ueberlegung gilt offenbar auch fiir das untere
Seil, wenn man auf ihm die Verschiebung im entgegengesetzten
Sinn positiv rechnet wie auf dem oberen Seil: ihre Amplitude
ist gleichfalls von der Form (19), mit den selben, durch (21)
gegebenen Konstanten P und Q. Jeder Punkt des unteren Seils
bewegt sich also entgegengesetzt gleich wie der ihm auf dem
oberen Seil gegeniiberliegende Punkt.

Der Ueberschuss K der in einem Seil libertragenen Kraft

Q=m4a und P— — h'A’ cot 8 (21)

liber die Vorspannung ist bei geeigneter Vorzeichenkonvention

dw

ox
(F — Seilquerschnitt). Daher sind die von den beiden Seilen auf
das Pedal und auf das Ruder ausgeiibten Kriftepaare (im Uhr-
zeigersinn positiv gerechnet) beziehentlich
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Der Drallsatz ergibt:
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—I'pA'  KA'=—2KWEFU (0), —IpA — M, —2hEFU (L)
also, mit Riicksicht auf (19), (21) und (1):
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Man kann sich die Steifigkeit ¢ und die Masse gL F eines
Seils getrennt in einer Feder und einem materiellen Punkt ver-
korpert denken, die zusammen einen Schwinger von der Eigen-
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ausmachen. Nach (19) und (1) ist
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also umso kleiner, je grosser w, d. h je steifer und leichter das
Seil ist. Strebt B nach 0, so gehen die Gl (22) in die Gl (2)
iiber.

Die Determinante des Gleichungssystems (22) ist wegen p —
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und
N(3)=—pp2+ppacotg+op (27)
Fir eine Eigenschwingung ist
D(p)=0

d. h., mit Riicksicht auf die Definitionen (IL); (18); (14) ¢
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Jeder dieser Gleichung geniigende Wert B liefert geméss
(24) eine Eigenfrequenz .

Aus (22) folgt mit der Abkiirzung (27):

oder, wegen (25):

(—Ip +C)A =N,
Wie oben kann man als «Ruderfrequenzs definieren :
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Die Gleichungen (30) und (24) bestimmen, wie’; von p ab-

héngt. Wiederum sind, wegen (29) und (25), genau jene p-Werte,
fiir welche

) : P=p

ist, Eigenfrequenzquadrate.

In der Abb. 4 bezeichnen neben den durchgezogenen Kurven
fur p*/p, die gestrichelten Kurven die genaueren Werte ?/po in

Funktion von p/p/, dies bei der Annahme 1?/;7' —30. In dem be-
trachteten p/p'-Bereich ist unsere Auffassung der vorgespannten
Steuerseile als elastischer Federn ersichtlich legitim.

MITTEILUNGEN

Topographische Arbeiten im Dienste des europiischen Wieder-
aufbaues. Eine der wichtigsten Grundlagen fiir die Planung des
Wiederaufbaues sind zuverldssige Karten und Pldne; man braucht
sie in den Masstédben 1:500 bis 1:5000; Photopléne in solchen
von 1:2000 bis 1:10000. Dieses Material muss méglichst bald in
ausreichender Zahl und zu méssigen Kosten zur Verfiigung ste-
hen. Die klassischen topographischen Aufnahmeverfahren taugen
hierfiir nicht; ausser Zeit und Geldmitteln wiirde es namentlich
fiir ihre Anwendung an den nétigen Vermessungsfachleuten feh-
len. Dagegen ist die Stereophotogrammetrie das fiir diese Ver-
héltnisse am besten geeignete Verfahren?).

Bei solchen Arbeiten ist vieles vorzusehen, denn es gibt
Zonen, in denen durch die Kriegsereignisse alles zerstort ist:
Katasterarchive, Eigentums- und Steuerregister, Pline, Karten,
Fixpunkte usw. In andern Zonen werden einzelne Elemente noch
erhalten sein. In beiden Fillen gestattet die Photogrammetrie
eine rasche Kartierung der interessierenden Gebiete. Fiir Gebiete,
in denen wenig oder gar keine Fixpunkte bestehen, erlaubt die
Lufttriangulation eine schnelle Kartierung. Als Auswertegerite
diirften u. a. die Autographen «Wild», Modell A5 und A 6 in Be-
tracht kommen; A5 ist ein Universalgerét von hoher Prézision,
A6 eignet sich besonders fiir die Kartierung in kleineren Mass-
stdben. Bis 1939 zihlte man in Europa ausser 31 staatlichen
Stellen 29 Privatbureaux, die sich mit photogrammetrischen Arbei-
ten befassten, und zwar gab es in Frankreich sechs, in Oesterreich
fiinf, in Deutschland, Italien und der Schweiz je vier, (in der
Schweiz heute fiinf), in Norwegen und Portugal je zwei und in
Polen ein solches Privatbureau.

Die Photogrammetrie ist an vielen Orten noch wenig be-
kannt, und es werden sich ihrer Einfithrung Widerstinde ent-
gegensetzen. Vor allem witd man ihr ungeniigende Genauigkeit
vorwerfen. Durch Vorzeigen ausgefiihrter Arbeiten unter Angabe
des Aufwandes an Zeit, Kosten und Arbeitskréften diirfte es nicht
schwer fallen, die Einwendungen zu entkriften. Dabei wird man
auch auf die beachtenswert hohe Leistungsfihigkeit des Wild-
schen Auswertegerites A5 hinweisen: Bei 16-stiindiger mittlerer

') Vgl. SBZ Bd. 123, S. 80* und S. 253 (1944).
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