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Blattes Amsteg, der das vom Maderanertal abzweigende «Etzli»-
Tal darstellt, macht eine weitere Diskussion über die Sprach-
und Schreibfrage überflüssig, denn es verwirklicht eben, was
die Zürcher Flurnamenkommission mit ihrem Vorstoss erstrebte.
Ein Blick auf das kleine Namengut des Urner Tales und ein
Vergleich mit dem Topogr. Atlass (TA.) (Tafel 2, Karte rechts
oben) und den oben besprochenen neuen Blättern lässt leicht die
neue Einstellung erkennen. Kartenredaktor Cueni schreibt
unbeschwert schweizerisch Spillaui (TA. Spiel-). Er wird also auf
den kommenden Blättern konsequenterweise auch Wis, Risi,
Nider, Frid usw. schreiben und im Gomser Namen Hahnenspil
nicht nur das Dehnungs-e sondern auch das Dehnungs-h
überflüssig finden. Schweizerdeutsch sind Witenalp (TA. Weiten-),
Chli, Spicher (Speicher), Schijen (Schien), Uf den Bächen (Auf),
Uf em Steinbach, Sunnig Wichel (Sonnig), Seiegg (Seel-). Das ü,
das in der Urner, wie in der Gomser Mundart zu i wird, bewahrt
Cueni in den landläufigen Wörtern: Chrüzli (TA. Krüzli), Chrüz-
steinrüti (Kreuzstein-), Rüteli, Porthüsli (Porthüslen); das
mundartliche Miller erscheint als Müller, Lick (en) als Lücke (ohne
das übliche -n der weiblichen Wörter). Ebenso sind die
mundartlichen Extremformen Steckli, Bertli, Biel(en) (TA. Bühl)
gemeinschweizerisch als Stöckli, Börtli, Büel (en) gefasst. Das
verdunkelte Wort Bristen, das die reine Mundartform von Brüsten,
Mehrzahl zu Brust (Ableitung zu bresten, bersten), Erdbruch,
darstellt, blieb naturgemäss unberührt. Da auch der Name Chliser
dunkel ist, hätte er wohl nicht zu Chlüser, das nicht mehr sagt,

geändert werden müssen (TA. Klüser). Das extrem mundartliche
Läucher- des TA. ist zu Laucher normalisiert. Ebenso sind die
die Kürzung des langen ü andeutenden Rütti, Rütteli des TA.
zu Rüti, Rüteli ausgeglichen. Das alte verderbte Culma ist zu
Gulmen verbessert, ebenso das ungeschickte Fellmer zu Felmis
(aus Feld-mos, also eigentlich Fälmis, weil verdunkelt). Dass
das Urner Wort Fire(n) für Gletscher als Firn gefasst ist, wie
Hore(n) als Horn, wird jedermann begreifen. Eine unnötige
Ungleichheit besteht zwischen Porthüsli und Börtlilücke, denn es
handelt sich wohl um ein und das selbe Bestimmungswort (Bort,
Bord, schmaler Abhang). Anstatt der vom Kartographen
gebildeten alten Talbezeichnung Etzli-Thal setzt der neue
Kartenredaktor die rein volkstümliche Etzli.

Wenn dieses für die Landeskarte 1:50 000 ausgewählte Namengut
auch nicht gross ist, so zeugt es doch für eine von bestimmten

Grundsätzen gestützte, wohlüberlegte, schweizerische Haltung.
Neben diesem endgültigen Namenbild bietet Cueni auf einem
weitern Kärtchen das selbe Tal im Masstab 1:25 000 mit viel mehr
Flurnamen in rein mundartlicher Schreibung (Tafel 2, Karte
links). Das beweist, dass man sich heute des bodenständigen
Sprachgutes mit liebevoller Sorgfalt annimmt, dass es mit der
oberflächlichen Schriftdeutschelei vorbei ist. Wenn die Landes-
Topographie bei ihren künftigen Aufnahmen fortfährt, dermas-
sen sprachreinigend zu wirken, so schafft sie ein Kartenwerk,
das vor dem Volk wie vor der Wissenschaft als würdiges Denkmal

schweizerdeutscher Sprachpflege bestehen wird.

Ein Schwingungsproblem aus dem Flugzeugbau: Ruderfrequenz und Flatterfrequenz
Von K. H. GROSSMANN und B. BADER, Dornier-Werke A.-G., Altenrhein

Einleitung
So speziell die im Titel angedeutete Frage erscheint, so häufig

stellt sie sich in anderer Verkleidung, nämlich dann, wenn ein
schwingungsfähiges System — es braucht nicht gerade ein Flugzeug

zu sein — zur praktischen Behandlung als ein solches von
weniger Freiheitsgraden aufgefasst wird, als es tatsächlich hat.
Die sogenannten Konstanten des so schematisierten Systems
(hier die «Eigenfrequenz» des Ruders) hängen dann in
Wirklichkeit von der Frequenz a der betrachteten Schwingung (hier
der Flatterfrequenz) ab1)- Einer ersten Schätzung a> o;,
entspricht ein erster Satz von «Konstanten», der, in die
Schwingungsgleichungen eingesetzt, eine Frequenz b2 liefert. Dieser
entspricht ein zweiter Konstantensatz, diesem eine dritte
Frequenz usw. Die Rechnung wird solange wiederholt, bis zwischen
angenommener und gefolgerter Frequenz hinreichende Ueberein-
stimmung erzielt ist.

Das «Flattern» von Flugzeugen ist eine gefürchtete
Begleiterscheinung der heute, namentlich im Sturzflug, erreichten hohen
Fluggeschwindigkeiten. Bei Ueberschreitung einer gewissen
kritischen Geschwindigkeit schlägt die Arbeit der durch eine spontane

Schwingung von Flugzeugteilen geweckten Luftkräfte
unversehens aus einer vorher dämpfenden in eine heftig anfachende
um : so heftig, dass schon manchem Piloten die Zeit gefehlt hat,
das immer wilder flatternde Flugzeug vor der Zerstörung und
sich vor dem Tod zu bewahren. Die kritische Geschwindigkeit
durch bauliche Vorkehren über die vorgesehene Höchstgeschwindigkeit

zu heben, ist darum zu einer Hauptsorge der Flugzeugbauer

geworden. Zu den zum Flattern neigenden Flugzeugteilen
gehören die Ruder: Quer-, Seiten-, Höhenruder. Die
Eigenfrequenz eines Ruders (Ruderfrequenz) kann die kritische
Geschwindigkeit entscheidend beeinflussen.

Die Ruderfrequenz? Wir werden zeigen, dass hierunter
verschiedene Frequenzen verstanden werden können. Sie
auseinanderzuhalten und jene, a*, zu bestimmen, die in die
Flatterrechnung eingeht, ist zur Vermeidung gefährlicher Konfusionen

wichtig und das Ziel der
nachfolgenden Untersuchung.

') Wir sagen «Frequenz» und
meinen die «Kreisfrequenz»:
Schwingungszahl in 2 n sec.

Querschnillr
Pedal

A

Seilenruder y Abb. 1.

a
-^ Schema des

Seitensteuers

Das Seitensteuer
Wir beschränken uns auf das in Abb. 1 skizzierte Beispiel

des Seitenruders, es dem Leser überlassend, unsere Betrachtung
auf Höhen- und Querruder auszudehnen.

Pilotenbeine figurieren unter den gebräuchlichen Maschinen-
Elementen nicht, doch sind wir genötigt, sie als solche auszugeben,

am einfachsten, indem wir die Masse der auf das Pedal
gesetzten Füsse durch einen Zuschlag zu dessen Trägheitsmoment
berücksichtigen und den Widerstand der Beinmuskeln durch ein
«federndes», d. h. dem Pedalausschlag proportionales Rückkehrmoment

schematisieren.
Jedes der beiden vorgespannten Steuerseile habe den

Querschnitt F, die Länge L und den Elastizitätsmodul E, also die
Steifigkeit

c EFjL (1)
Diese Steife erteilen wir den beiden Federn, als die wir die

Seile, ihre Massen vernachlässigend, zunächst auffassen. Im
letzten Abschnitt überprüfen wir die Zulässigkeit dieser
Stilisierung durch Vergleich mit dem Ergebnis einer Analyse der
zugrundeliegenden Längsschwingung der Seile.

Der vorerst betrachtete vereinfachte Schwingverband besteht
also aus zwei durch zwei Federn der Steife c (Kraft/Länge)
verbundene Schwungmassen von den Trägheitsmomenten I
(Ruder) und I' (Pedal mit Füssen), diese zudem einer
Rückstellfeder der Steife k (Moment/radians) ausgesetzt, jene einem
äusseren Moment M (der Luftkräfte und allfälliger, etwa durch
eine RumpfSchwingung hervorgerufener Trägheitskräfte).

Die Bewegungsgleichungen
Bei Wahl der (im selben Sinne positiv gerechneten) Dreh-

Winkel tp, tp' der beiden Schwungmassen als Lagekoordinaten ist
I ¦ I' • «T ar* +-2~*

die kinetische Energie unseres Verbandes. Bei festem tp'

entspricht der Variation 6<p die Arbeit Qlâf; Q, setzt sich offenbar
aus dem äusseren Moment M um die Ruderdrehachse und dem
durch die «Seilfedern» ausgeübten Kräftepaar — 2hc (hep — h'tp1)
zusammen. Einer Variation Sep' entspricht die Arbeit Q2Scp', wo
Q2 ausser dem Seilmoment — 2h'c (7v tp' — htp) das «Einspannmoment»

— k v' umfasst. Die beiden Lagrange'schen Bewegungs-
Gleichungen lauten daher2):

Iy — 2ch*<p + 2chh'ip' + M

J'y' — — (2e7i'2 + 7c) tp' + 2chh' y
Uns interessieren harmonische Schwingungen:

cp Aeimt tp' A'ei01t M M,eUot
Deren komplexe Amplituden A, A', M1 sind mithin durch

folgende Bedingungen verknüpft:

2) Natürlich führt der Drallsatz, auf die beiden Schwungmassen
angewendet, zu den selben Gleichungen.
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!<-/>! Elementare Schwingungsverbände

Pedal
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17 Pedal
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Abb. 3a. Eigenfrequenz m \p

Seirenruder

V A

Pedal

«A

~ï

Abb. 3b. Eigenfrequenz m =| 1' p
v iFm =| t p Abb. 3c. Eigenfrequenz (u0 l/j

Abb. 3d.

Eigenfrequenz oi }p'

(— Ip -J- 2cV) A — 2cA#Y A< =MX\
— 2chh'A + (— I'p a 2c7r2 + k) A< 0 I

p bezeichnet das Frequenzquadrat:

Es folgt:
V

D(p) ¦A M,

(2)

(3)

mit

— I'p + 2c7«v2 -f 7c

Hierin ist D (p) die Determinante des Gleiehungssystems (2):
- Ip + 2ch\ - 2chh'
-2chh' — I'p + 2c7i'2 -f fc I

(_ /-p _|_ 2c7i'2 + 7c) (— Ip + C) (4)

7J(p)

Betrachten wir zunächst statt des unsrigen die vier in
Abb. 3 skizzierten einfacheren Verbände a bis d. Die Frage

nach den bezüglichen Eigenfrequenzen u, ai, <a0 > &>' führt beim
ersten Schwingverband auf die Gleichung

7>, (P) 0

mit
Ip 7- 2ch2, — 2chh'
2chh' — I'p 4- 2c7i'2

7 7'p2 — 2c(I'W + 7 7iv2)p

Für den ersten Verband gilt demnach:

— —, 2c7i2 2c7i

B, (P)

(10)

:2c7i2 1
2c7i'2 P +

(5)- 7' p 4- 2 c h's 4- 7c

Mit Rücksicht auf (4) kann man (3) in folgender Form
schreiben :

— 7pA + CA M, oder I y + C tp M (6)
Es sieht also aus, als ob das Ruder ausser M einer

Rückstellfeder von der Steifigkeit C (Moment/radians) ausgesetzt
wäre. In der Tat pflegt man bei Flatterrechnungen den
wirklichen Schwingverband (Abb. 1) einfach durch ein so gefedertes
Ruder (Abb, 2, unten) zu ersetzen. Dessen Eigenfrequenz ist

u* Mp* p*=Gp (7)
Dreierlei ist zu beachten : Erstens ist C kein Festwert,

sondern die durch (5) gegebene Funktion von p. Zweitens wird G

für einen gewissen p-Bereich negativ. Die einer «Feder» von
negativer Steife ausgesetzte Schwungmasse ist aber offenbar
keiner harmonischen Eigenschwingung fähig; die durch (7)
definierte (imaginäre) «Ruderfrequenz» verliert mit dem
Vorzeichenwechsel ihren physikalischen Sinn. Drittens ist die
Amplitude M1 des äusseren Momentes, immer unter Voraussetzung
einer harmonischen, das Seitensteuer miterfassenden Flatter-
Schwingung, keine Konstante, sondern, wie hier nicht zu begründen,

proportional zu A :

M1=f(p, V)A
Bei gegebener Flughöhe hängt der komplexe Proportionalitäts-
Faktor/, wie angedeutet, ausser von p, von der Fluggeschwindigkeit

V ab. Nach (6) folgt somit aus A zjz 0 die komplexe
Bestimmungsgleiehung

— 7p 4- C(p) =f(p, V)
für das Wertepaar p, V.

Die
Eigenschwingungen des
Schwingverbandes

Bei Eigenschwingungen,
die sich spontan,

für Ml 0 einstellen,
muss die Determinante
D (p) des Gleichungssystems

(2) verschwinden:

D(p) =0 (9)

7 ' V

Für den zweiten Verband gilt:

(î>, 0)

p cy-

Für den dritten offenbar:

Pa <V

Für den vierten :

p< oA

Offenbar ist
Dtp) =7)1(p) + 7c(-

7c

I7

2ch"-
I

2c7i2

(11)

(12)

(13)

(14)

7p -f 2c7i2)

77'[p2 — (P + P)V + V0Vl U5)
Die beiden Lösungen von (9) sind somit:

¥+ p
2*1,2 ±i (p 4-p)2 —4p0p (16)

(8)

Das Ersatzruder
Man pflegt, wie gesagt, bei Flatterrechnungen das Seitenruder

nach Abb. 2 als eine durch eine elastische Feder der
Steifigkeit C (Moment/radians) zurückgehaltene Schwungmasse zu
schematisieren. Das schadet solange nicht, als man die «Eigen-
Frequenz» co* des Idealruders nicht mit den tatsächlichen Eigen-
Frequenzen ux ]/p1, «2 j/p2 verwechselt. Diese sind zwei
durch die mechanischen Parameter gemäss (16) gegebene
Festwerte ; jene hängt gemäss (7) und (4) oder (5) vom Frequenz-

Seilenruder

Abb. 2. Ersatz-
Seitensteuer
Ruderfrequenz

tu* Ap*

"Vo
\\\V

Ap'-p
***»

PA
p<Ip>

\
V

1 2

Po'P'

J 'P/p

\\
\\
l\
\\
9

\\

p-o

1

1

1

il

PU
; i

V

V

AaP*-P

y^.^

zk%
p/p\

\
\\

: ; Ï
P>/P'

Po'P'

3 P/p

\l P'°,SP'

I

PI

/P*-P

Ap-
i 2

Po'P'

3 p/p

D =°o

iSBZl

Abb. 4e Abb. 4 c.Abb. 4b.
Zusammenhang zwischen Flatter- und Ruderfrequenz bei verschiedenen Einspannungsgraden des Pedals.
Gestrichelte Kurven : Verlauf nach der genaueren Theorie
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Pedal

Quadrat p «2 des (beim
Grenzübergang zur Eigenschwingung
verschwindenden) äusseren Momentes
ab :

C
P* -r-
P

Abb. 5. Elementarer
Schwingverband,

Eigenfrequenz VP + P
~\Z

+
D{p)

7(

ra |

1

1

I'p +2 c7i'2 + k)

p*
— P + •*

i
+ P 1

Po

i a p - - P

(17)

P'

Diskussion
Bei der Untersuchung eines bestimmten Flatterfalles, an

dem ausser dem Seitensteuer sich etwa noch der Flugzeugrumpf
mit einer Biege- oder Drehschwingung beteiligt, ist neben der

kritischen Geschwindigkeit V, die diese gemeinsame Flatter-
Schwingung ermöglicht, deren Frequenzquadrat p die zweite
Unbekannte; p ist auch das Frequenzquadrat des oben
eingeführten äusseren Momentes 2kT. Eine komplexe (zwei reellen

äquivalente) Bestimmungsgleichung wie (8) für V und die

Flatterfrequenz a ]/p~ ergibt sich aus der Berechnung sämtlicher
mitwirkender aerodynamischen, elastischen und Trägheitskräfte ;

in dieser Berechnung bildet der hier erörterte Zusammenhang

zwischen m und der sogenannten Ruderfrequenz co* ]/p* ein

wesentliches Glied. Diesen durch (17) gelieferten Zusammenhang

veranschaulicht Abb. 4a für p 0 (freies Pedal), Abb. 4b

für p 0,5p', Abb. 4c für p co (festes Pedal).

Vergleichen wir, um diese Hyperbeln besser zu verstehen,
die komplexen Schwingungsamplituden 7iA und h'A1 der Enden

eines Seils! Nach (2), (12) und (14) ist

hA f + P A 1+vh'A' p' ' P'

Demnach sind drei p-Bereiche zu unterscheiden: Es ist
hA

(18)

0<

h'A'
hA

IAA <¦ 1

i<±As h'A'
Im Bereich

für p 4- P' < p

V V

für p < p <[ p 4- p'

V

für 0 < p < p

P + P'<P (a)

schwingen Ruder und Pedal in entgegengesetzter, im Bereich

0<P<P + P' (b)

in gleicher Phase. Im Bereich (a), wie auch im Teilbereich

0<P<P (b,)
des Bereiches (b) trifft die Schematisierung der Abb. 2 zu: Die

Seile wirken hemmend, dem Ruderausschlag entgegen, auf das
Ruder. Anders für

P < P < P + P' (b2)

In diesem zweiten Teilbereich von (b) versagt die durch Abb. 2

angedeutete Vorstellung : Die Seile wirken antreibend, im Sinne
seines Ausschlags, auf das Ruder; C und damit p* ist negativ.

Bei fest eingespanntem Pedal ist, unabhängig von der
Flatterfrequenz, p* p0. Auch bei federnder, ja bei fehlender
Einspannung kommt p* diesem Grenzwert beliebig nahe, sofern die
Flatterfrequenz nur hoch genug ist : Ein genügend hoch
fréquentes Seilmoment vermag an dem Pedal nicht mehr merklich
zu rütteln. In der Tat ist nach (18)

h'A'
Aa7 0lim

p —>- CO

Denkt man sich die Flatterschwingung dagegen immer mehr
verlangsamt, so zügelt das in entgegengesetzter Phase schwingende

Pedal mittels der Seile das Ruder immer stärker, bis zum
Stillstand bei Annäherung von |/p an die Resonanzfrequenz

i/;
\ P A P' des *n Abb. 5 skizzierten Schwingverbandes:

hAhm ___ 0

p^p7p' *'A>

Es ist, als ob die Ersatzfeder der Abb. 2 sich grenzenlos ver-
V

steife. In p p + P' schlägt ihre «Steifigkeit» C ins negativ
Unendliche um, steigt alsdann, bei weiter abnehmendem p,

erneut an, von p

p dem Grenzwert p0 / /l 4

p an wiederum positiv, bei verschwindendem
V

P

zustrebend.

%"1

>-„ 0

'¦05

Wie aus (4) und (7) hervorgeht, ist p dann und nur dann
eine Wurzel eines Polynoms D (p), wenn p p* : Genau dann,
wenn die Flatter- mit einer Eigenfrequenz des wirklichen
Schwingverbandes (Abb. 1) zusammenfällt, besteht auch Resonanz mit
dem fiktiven Schwinger (Abb. 2). Dieser "Umstand ist in Abb. 4

(unter der Annahme p' p0) zur graphischen Bestimmung der
Eigenfrequenzquadrate Pj und p2 benutzt. Ersichtlich nehmen,
im Einklang mit (16), mit stärkerer Pedal-Einspannung (grös-

serem p) beide Eigenfrequenzen zu: p, wächst von 0 (freies
Pedal) bis p0 (festes Pedal), p2 wächst von p p0 4- p' nach tn ¦

Die Eigenfrequenzen sind experimentell leicht zu ermitteln.
Ignoriert man bei freiem Pedal (Abb. 4a) die Eigenfrequenz
ml 0, bei festem Pedal die Eigenfrequenz #2 00, so wird
man überrascht feststellen, dass «die» Eigenfrequenz bei unendlich

starker Pedaleinspannung kleiner ist als bei fehlender
Einspannung! Es ist eben

(0 Pj frei <) Pj fest < P2 frei < Pa fest (•>')

Zur bequemeren Einsicht in die Abhängigkeit der Ruder-
Frequenz vom «Einspannungsgrad» des Pedals diene Abb. 6, die

p*lp0 für verschiedene Werte von p/p' in Funktion von pjp'
darstellt. Diese Hyperbeln zeigen, dass bei gegebener Flatterfrequenz

die Ruderfrequenz mit stärkerer Einspannung ansteigt.
Allerdings springt, sofern p > p', sofern also die Flatter- die
Eigenfrequenz des Schwingverbandes der Abb. 3 d übertrifft, die

Ruderfrequenz bei Ueberschreiten der Stelle p p — p', also
bei Resonanz zwischen
der Flatterschwingung
und der Eigenschwingung
des Verbandes der Abb. 5,

von 4- °° auf — 00 über,

sodass für p y p — p' die
Ruderfrequenz durchweg

kleiner ist als für
V

p < p — p'-

%

p/p'

iL
Abb. 6. Abhängigkeit der Ruderfrequenz vom Einspannungsgrad des Pedals bei verschiedenen Flatterfrequenzen

Anhang: Vergleich mit
einer genaueren Theorie

Die bisherige Auffassung

der Seile als Federn
berücksichtigt einzig ihre
Elastizität. Will man die
Bewegung der Seilenden
genauer bestimmen, so
hat man die harmonische
Längs-Schwingung zu
untersuchen, deren das
Seil als nicht bloss ela-
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stisches, sondern auch massebehaftetes Gebilde fähig ist.
Betrachten wir etwa das obere Seil, Abb. 1. Die Längsverschiebung

w eines im Abstand x vom Pedalende des Seiles gelegenen
Seilpunktes ist bei einer solchen Schwingung eine harmonische
Funktion der Zeit mit einer von * abhängigen (komplexen)
Amplitude :

i ta t
w(x,t)^U(x)e 0 < x < L

Da tu der partiellen Differentialgleichung
E Q*w ö"m>

(j öa;2 " ÔV-

gehorcht (E Elastizitätsmodul,
also der Differentialgleichung

Q

E
ist U ix) gleichfalls harmonisch:

: bj'W

Dichte des Seils), U ix)

V" +

U'x) =Psin fjS-fp) +Qzos(ßA-\ ß VA- L 0> (19

Drücken wir P und Q durch die Schwingungsamplituden der
Winkel tp und tp', Abb. 1, aus! Da

w (0, t) h< tp' h' A'e
ist

7/(0) h'A'
somit

Q h'A' und

und w iL, t) htp

und U iL) =hA
hA

— h'A' cot

l 03 t
hAe, (20)
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Der Drallsatz ergibt:
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also, mit Rücksicht auf (19), (21) und (1) :
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Man kann sich die Steifigkeit c und die Masse qLF eines
Seils getrennt in einer Feder und einem materiellen Punkt
verkörpert denken, die zusammen einen Schwinger von der Eigen-
Frequenz
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ausmachen. Nach (19) und (1) ist
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also umso kleiner, je grösser co, d. h. je steifer und leichter das
Seil ist. Strebt ß nach 0, so gehen die Gl. (22) in die Gl. (2)
über.

Die Determinante des Gleichungssystems (22) ist wegen p
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Für eine Eigenschwingung ist
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d. h., mit Rücksicht auf die Definitionen (11), (13), (14) :
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Jeder dieser Gleichung genügende Wert ß liefert gemäss
(24) eine Eigenfrequenz a

Aus (22) folgt mit der Abkürzung (27):
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oder, wegen (25) :
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Wie oben kann man als «Ruderfrequenz» definieren :
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Die nämliche Ueberlegung gilt offenbar auch für das untere
Seil, wenn man auf ihm die Verschiebung im entgegengesetzten
Sinn positiv rechnet wie auf dem oberen Seil: ihre Amplitudeist gleichfalls von der Form (19), mit den selben, durch (21)
gegebenen Konstanten P und Q. Jeder Punkt des unteren Seils
bewegt sich also entgegengesetzt gleich wie der ihm auf dem
oberen Seil gegenüberliegende Punkt.

Der Ueberschuss K der in einem Seil übertragenen Kraft
über die Vorspannung ist bei geeigneter Vorzeichenkonvention "

K EF^A EFWix)el'°'
(F Seilquerschnitt). Daher sind die von den beiden Seilen auf
das Pedal und auf das Ruder ausgeübten Kräftepaare (im
Uhrzeigersinn positiv gerechnet) beziehentlich
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(30)sin2 ß t
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Die Gleichungen (30) und (24) bestimmen, wie p von p
abhängt. Wiederum sind, wegen (29) und (25), genau jene p-Werte,
für welche

"p p
ist, Eigenfrequenzquadrate.

In der Abb. 4 bezeichnen neben den durchgezogenen Kurven
für p*/p0 die gestrichelten Kurven die genaueren Werte ^Plp0 in
Funktion von p/p', dies bei der Annahme p/p' 30. In dem
betrachteten p/p'-Bereich ist unsere Auffassung der vorgespannten
Steuerseile als elastischer Federn ersichtlich legitim.

MITTEILUNGEN
Topographische Arbeiten im Dienste des europäischen

Wiederaufbaues. Eine der wichtigsten Grundlagen für die Planung des
Wiederaufbaues sind zuverlässige Karten und Pläne ; man braucht
sie in den Masstäben 1: 500 bis 1: 5000 ; Photopläne in solchen
von 1: 2000 bis 1:10 000. Dieses Material muss möglichst bald in
ausreichender Zahl und zu massigen Kosten zur Verfügung
stehen. Die klassischen topographischen Aufnahmeverfahren taugen
hierfür nicht; ausser Zeit und Geldmitteln würde es namentlich
für ihre Anwendung an den nötigen Vermessungsfachleuten fehlen.

Dagegen ist die Stereophotogrammetrie das für diese
Verhältnisse am besten geeignete Verfahren1).

Bei solchen Arbeiten ist vieles vorzusehen, denn es gibt
Zonen, in denen durch die Kriegsereignisse alles zerstört ist:
Katasterarehive, Eigentums- und Steuerregister, Pläne, Karten,
Fixpunkte usw. In andern Zonen werden einzelne Elemente noch
erhalten sein. In beiden Fällen gestattet die Photogrammetrie
eine rasche Kartierung der interessierenden Gebiete. Für Gebiete,
in denen wenig oder gar keine Fixpunkte bestehen, erlaubt die
Lufttriangulation eine schnelle Kartierung. Als Auswertegeräte
dürften u. a. die Autographen «Wild», Modell A 5 und A 6 in
Betracht kommen; A5 ist ein Universalgerät von hoher Präzision,
A 6 eignet sich besonders für die Kartierung in kleineren
Massstäben. Bis 1939 zählte man in Europa ausser 31 staatlichen
Stellen 29 Privatbureaux, die sich mit photogrammetrischen Arbeiten

befassten, und zwar gab es in Frankreich sechs, in Oesterreich
fünf, in Deutschland, Italien und der Schweiz je vier, (in der
Schweiz heute fünf), in Norwegen und Portugal je zwei und in
Polen ein solches Privatbureau.

Die Photogrammetrie ist an vielen Orten noch wenig
bekannt, und es werden sich ihrer Einführung Widerstände
entgegensetzen. Vor allem wi:d man ihr ungenügende Genauigkeit
vorwerfen. Durch Vorzeigen ausgeführter Arbeiten unter Angabe
des Aufwandes an Zeit, Kosten und Arbeitskräften dürfte es nicht
schwer fallen, die Einwendungen zu entkräften. Dabei wird man
auch auf die beachtenswert hohe Leistungsfähigkeit des Wild-
schen Auswertegerätes A 5 hinweisen : Bei 16-stündiger mittlerer

>) Vgl. SBZ Bd. 123, S. und S. 253 (1944).
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