Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 125/126 (1945)

Heft: 9

Artikel: Alessandro Volta: zu seinem 200. Geburtstag

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-83613

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

setzten Bauteilen ganz gut bewährt. — Bei total 1295 m³ umbautem Raum betrugen die Baukosten 99 Fr./m³, was in Anbetracht der unerhört gestiegenen Preise für Konstruktionsholz und des gediegenen Innenausbaues nicht übermässig hoch ist. Zu berücksichtigen ist, dass in Folge der nur 23,6 cm starken Aussenwandkonstruktion die nutzbare Fläche gegenüber einem Massivbau grösser ist, ganz abgesehen von der um ein Vielfaches grösseren Wärmehaltung dieser Bauweise. R.W.

Alessandro Volta

Zu seinem 200. Geburtstag

Der italienische Gelehrte Alessandro Volta wurde nach seinem Tode von der Wissenschaft dadurch geehrt, dass die Einheit der Spannung nach seinem Namen mit «Volt» bezeichnet wird. Diese Bezeichnung wird heute täglich von Unzähligen verwendet, aber die Wenigsten wissen etwas Genaues über das Leben und die Bedeutung Voltas. Die nachstehenden Zeilen, die sich auf eine längere, mit einem ausführlichen Literaturnachweis dokumentierte Würdigung in den «Techn. Mitteilungen der PTT» (Bern) Nr. 1, 1945 stützen, sollen einige wichtige biographische Punkte in Erinnerung rufen, die Bedeutung Voltas für die Förderung unserer

Kenntnisse über die Elektrizität würdigen und auch auf die wohl meist unbekannten Beziehungen Voltas zu den damaligen wissenschaftlichen Kreisen der Schweiz hinweisen.

Alessandro Volta wurde am 18. Februar 1745 in Como als siebentes von neun Kindern geboren. Sein Vater starb zwischen 1749 und 1856 und hinterliess seine Familie in grosser Bedürftigkeit. Volta entwickelte sich geistig langsam, fiel aber früh durch Beobachtungsgabe und unermüdlichen Fleiss auf. Ein Onkel nahm sich der Familie und besonders seines jungen Neffen Alessandro an und ermöglichte ihm den Eintritt ins Kollegium von Como, wo er vorerst Philosophie und Literatur studierte. Volta's Liebe für die Beobachtung der Natur überwog dann aber und aus eigenem Antrieb begann er die damals vorhandenen Werke über Magnetismus und Elektrizität zu studieren.

Eine Schrift des Petrus Peregrinus «Ueber den Magneten» aus dem Jahre 1269 und eine vom Engländer William Gilbert im Jahre 1600 verfasste Abhandlung «De arte magnetica» sind die beiden ältesten bekannten Schriften auf dem Gebiet der Elektrizität. 1663 erfand Otto von Guericke die Elektrisiermaschine. 1730 entdeckte Du Fay, dass es zwei Arten von Elektrizität gebe, und im Jahre 1745, dem Geburtsjahr Volta's, erfand von Kleist die Verstärkungsflasche, die später unter dem Namen Leydener Flasche bekannt wurde, weil ein holländischer Physiker Peter van Muschenbrock zahlreiche Versuche mit dieser Einrichtung anstellte. Die Leydener Flasche ermöglichte erstmals die Speicherung von Elektrizität. 1749 beschrieb Benjamin

Abb. 9. Das Esszimmer, gegen Veranda und Wohnzimmer

Abb. 7. Das Wohnzimmer, gegen den Austritt zum Garten

Franklin den elektrischen Charakter des Gewitters und die bekannten Drachenversuche. Diesen Stand der damaligen Kenntnisse muss man sich stets vor Augen halten, wenn man den Anteil Volta's an der Förderung der elektrotechnischen Wissenschaft, besonders durch die Volta'sche Säule und den Becherapparat, richtig beurteilen will.

Die erste klassisch gewordene Arbeit Volta's, in der das Prinzip des später erfundenen Elektrophors bereits enthalten war, ist 1769 in Form eines Briefes an einen Professor der Universität Turin erschienen. Im Oktober 1774 wurde Volta zum Physiklehrer der königlichen Schule in Como ernannt. Im folgenden Jahre gelang ihm die erste bedeutende Erfindung, das Elektrophor, bestehend aus einem Harzkuchen, auf den eine mit isoliertem Handgriff versehene Metallscheibe passte. Peitschte man nun den Harzkuchen mit einem Fuchsschwanz, so wurde er elektrisch und gab seine Elektrizität an die Metallscheibe ab. Im Jahre 1776 erfolgte die erste Ehrung durch eine wissenschaftliche Gesellschaft, nämlich die Ernennung Volta's zum ausländischen Mitglied durch die Physikalische Gesellschaft in Zürich. Im folgenden Jahr unternahm Volta eine längere Schweizerreise, auf der er in Zürich mit Schulthess, Lavater und Gessner, in Basel mit Bernoulli, in Bern mit Haller und in Genf mit de Saussure, Voltaire und andern Gelehrten zusammentraf. Im gleichen Jahre erfand er im Zusammenhang mit Gasund Luftuntersuchungen eine Vorrichtung zum Bestimmen des Sauerstoffgehaltes der Luft, das Endiometer (Luftgütemesser).

In Anerkennung seiner Verdienste wurde Volta auf Ende 1778 als Professor für Experimentalphysik an die Universität Pavia berufen. Zwei Jahre später erfand Volta den Kondensator. Weitere grössere Auslandreisen führten ihn im Jahre 1781 nach der Schweiz, Frankreich, Belgien, Holland und England, eine spätere Reise nach der Schweiz, Deutschland und Oesterreich und eine Reise im Jahre 1787 wiederum in die Schweiz. Auf diesen Reisen lernte er die meisten damals bedeutenden Gelehrten und Staatsoberhäupter persönlich kennen und hielt in den verschiedenen wissenschaftlichen Kreisen Vorträge über seine Forschungen und Entdeckungen. Im Jahre 1790 war er bereits Mitglied der Académie de France und wissenschaftlicher Gesellschaften folgender Städte: Zürich, Bern, Lausanne, Siena, Mantua, Turin und Harlem.

Der zweite Lebensabschnitt Volta's beginnt im Jahre 1791, als Galvani seine bekannten Froschschenkelversuche erstmals veröffentlicht hatte. Volta erkannte bei den Erklärungsversuchen für die Erscheinungen bei Galvanis Froschschenkelexperimenten bald, dass es keine besondere tierische Elektrizität gebe, wie dies Galvani annahm, sondern dass die Elektrizität durch das Zusammentreffen verschiedener Metalle und durch feuchte Leiter entstehe. In den Jahren 1793/95 stellte Volta die erste Spannungsreihe auf. Im Jahre 1800 veröffentlichte er in einem Schreiben an die Royal Society in London das Ergebnis einer dreijährigen Forschungstätigkeit und gab die Konstruktion der Volta'schen Säule und des Becherapparates bekannt. Mit seinen Erfindungen hatte Volta den ersten Stromerzeuger, nämlich ein galvanisches

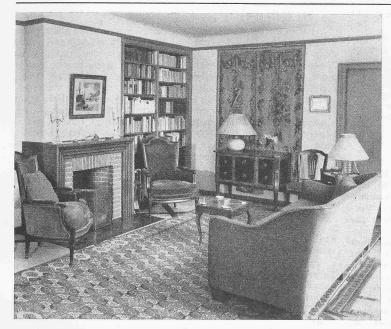


Abb. 8. Kaminwand des Wohnzimmers. Arch. R. WANDER, Zürich

Element aus Kupfer und Zink geschaffen, das freilich für technische Verwendung noch den Nachteil aufwies, dass es nur während wenigen Minuten eine kräftige Wirkung hatte. Volta's Erfindung und das von ihm aufgestellte Gesetz, dass «die Summe aller Elektrizitäten in einem geschlossenen Kreis Null ist», bildeten zusammen einen wichtigen Ausgangspunkt für die weitere Entwicklung der Elektrotechnik.

Volta führte seine Erfindung auf Einladung Napoleons I. 1801 in Paris vor und Napoleon, der damals auch in Oberitalien herrschte, schätzte Volta sehr. In Anerkennung seiner Verdienste ernannte er Volta 1809 zum Senator von Italien und erhob ihn im folgenden Jahre in den Grafenstand. Die schöpferische Tätigkeit Volta's war im Jahre 1801 mit der Veröffentlichung der «Spannungsreihe» abgeschlossen. An der weiteren Entwicklung seiner Lehren und Apparaturen nahm er nur geringen Anteil. Einen ehrenvollen Ruf an eine russische Universität lehnte Volta 1808 mit Rücksicht auf seine Familie, sein Alter und die Bindung an sein Vaterland ab. Bis zum Jahre 1819 blieb er an der Universität Pavia, zuletzt als Direktor der psysikalisch-mathematischen Fakultät, tätig und zog sich dann ins Privatleben in seine Vaterstadt Como zurück, wo er im hohen Alter von 82 Jahren am 5. März 1827 starb.

Volta's wissenschaftliche Schriften bestehen zum grössten Teil aus Briefen an Gelehrte oder an gelehrte Gesellschaften. Sie erschienen 1816 als gesammelte Werke in einer fünfbändigen Ausgabe und wurden in den Jahren 1918 bis 1927 in neuer Bearbeitung herausgegeben.

Gegenläufige Luftschrauben für Flugzeuge

Die rapide Steigerung der auf eine Luftschraube wirkenden Motorleistung im Laufe dieses Krieges hat es mit sich gebracht, dass die Belastungsmöglichkeiten der bisherigen zweiund dreiflügligen Propeller erschöpft wurden und man auf höhere Blattzahlen übergehen musste. In den Leistungsgrenzen 1200 bis 2000 PS werden heute vorwiegend vierflüglige Propeller verwendet; die neueste Bauart des bekannten englischen Jagdflugzeuges «Spitfire» besitzt sogar eine fünfflüglige Luftschraube. Die Erhöhung der Blattzahl brachte eine bemerkenswerte Verbesserung der Wirkungsgrade in einem weiten Bereich der Fluggeschwindigkeit und hervorragend gute Startschubwerte; sie ermöglichte auch die Beibehaltung normaler Fahrwerkabmessungen. Die Nachteile dieser Schrauben mit hoher Kreisflächenbelastung liegen vor allem in der starken Strahldrehung, die von beträchtlichem Einfluss auf die aerodynamische Güte der vom Strahl bestrichenen Teile ist — dies insbesondere bei modernen Laminarprofilen — und in der bei zunehmender Strahlleistung instabilisierenden Wirkung der Schraube. Dieser letztgenannte Einfluss setzt sich aus zwei Komponenten zusammen, einerseits aus der Verstärkung des Abwindes hinter den vom Strahl bestrichenen Teilen des Flügels und anderseits aus der Querkraft des schrägangeblasenen Propellers, die bei vor dem Schwerpunkt angeordneter Schraube ein instabiles Moment ergibt. Ein weiterer schwerwiegender Nachteil der Hochleistungsluftschrauben liegt in dem hohen Reaktionsmoment, das im Flug stark unsymmetrische Belastungen des Flügels mit sich bringt, vor allem aber beim Start eine starke Tendenz zum Ausbrechen ergibt.

Es ist klar, dass die Nabenabmessungen bei vieroder gar fünfflügligen Luftschrauben mit Constant-Speed-Automatik ganz beträchtliche Werte erreichen und demgemäss hohe Gewichte und Massenträgheitsmomente ergeben. Die Beanspruchung der Triebwerkeinbauten durch Massenkräfte und Kreiselmomente hat aus diesem Grunde in den letzten Jahren sehr hohe Werte erreicht. Aus den erwähnten Gründen scheint es nicht wahrscheinlich zu sein, dass Motorleistungen von mehr als 2500 PS in einer Schraube verarbeitet werden können.

Die radikalste Behebung der genannten Schwierigkeiten ist bei Verwendung zweier koaxialer gegenläufiger Luftschrauben mit angenähert gleichen Abmessungen möglich. Solche Kombinationen wurden erstmals mit Erfolg am Weltrekordflugzeug Macchi-Castoldi im Jahre 1934 angewandt, allerdings noch in Form von nicht verstellbaren Zweiblattschrauben. Es hat dann rund zehn Jahre gedauert, bis eine brauchbare Gegenlaufschraube mit verstellbaren Flügeln vorlag. Die englische Propellerfirma Rotol Company hat eine solche mit je drei Blättern entwickelt,

die bereits während mehreren hundert Flugstunden erprobt wurde und in allen Teilen befriedigt haben soll. Diese Luftschraube wurde für die Leistungsklasse 2000 PS ausgelegt; nach englischen Angaben soll beim Uebergang auf 2×4 beziehungsweise 2×5 Blätter die Bewältigung von Leistungen bis zu 6000 PS in einer Gegenlaufkombination möglich sein. Dabei hofft man, mit erträglichen Gewichten auszukommen. Die vorliegende «Double-Three»-Kombination soll nach Anbringung einiger konstruktiver Verbesserungen an der Blattwurzel nur $15\,\%$ mehr wiegen als die entsprechende fünfflüglige Einfach-Luftschraube*).

Zusammenfassend können als Vorteile der Gegenlaufpropeller genannt werden: 1. Erhebliche Verbesserung der Schrauben- und Einbauwirkungsgrade durch den Wegfall der Strahlrotation. 2. Verbesserung der Stabilitätseigenschaften des Flugzeugs durch Wegfall der Rotation des Nachstroms, insbesondere bei mehrmotorigen Flugzeugen. 3. Wegfall des Reaktionsmomentes und damit der Ausbrechtendenz beim Start. 4. Wegfall der Kreiselmomente. 5. Relative Verkleinerung des Schraubendurchmessers und damit der Fahrwerkbauhöhe.

Der Nachteil liegt vor allem in der Notwendigkeit, ein komplizierteres Getriebe am Motor vorsehen zu müssen. Bei Flugmotoren mit mehreren Kurbelwellen wird allerdings der Anbau

*) Fairhurst: «Contra-Rotating Airscrews», Flight 19. Okt. 1944.



Abb. 10. Ofenecke des Esszimmers. — Photos Wolgensinger, Zürich