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1. Januar 1944 SCHWEIZERISCHE BAUZEITUNG

INHALT: 200 Jahre Euler'sehe Knickformel. — Untersuchung einer
nach Euler'schenVorschlägen (1754) gebauten Wasserturbine. — Die
Schulhausanlage Kornhausbrücke in Zürich. — Tendenzen der Automobilkon-
struktion und Entwicklung des Strassenverkehrs. — Ein Vorschlag zur
Verbesserung der Wasserverhältnisse in den Seen. — 50 Jahre Akademischer

Maschinen-Ingenieur-Verein (AMIV) an der E. T. H. Zürich. —
Mitteilungen : Kurortklimaforschung. Neue Flachserntemaschine. Normali¬

sierung von Aluminiumleitern für Hochspannungsapparate und -Installationen.

Massenfertigung durch Einzweckmaschinen. Schulhausanlage
Kornhausbrücke Zürich. — Nekrologe : Maurice Imer. — Wettbewerbe :

Ausbau des Kantonspitals Winterthur. Schulhaus für Schwachbegabte
und Kindergarten in Thun. Plastischer Schmuck am Fries des Pavillon
Eynard, Genf. — Literatur. — Mitteilungen der Vereine. — Vortrags-
Kalender.

Band 123 Der S. I. A. Isf für den Inhalf des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich
Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Nr. 1

m

m
sm

200 JAHRE EULER'SCHE KNICKFORMEL
Von Prof. Dr. F. STÜSSI, E.T.H., Zürich.

1. In einem Anhang «Ueber
die elastischen Kurven» zu
seinem grundlegenden Werk über
Isoperimeterprobleme -) hat
Leonhard Euler vor 200 Jahren
erstmals die seinen Namen
tragende Knickformel
veröffentlicht. Im ungeheuren
Lebenswerk Eulers bedeutet
die Entdeckung der Knickformel

nur eine kleine Episode ;

für die Entwicklung der
Festigkeitslehre und der Baustatik
aber ist sie von so grosser
Bedeutung, dass sich heute ein

kurzer Rückblick auf ihre Entstehung rechtfertigt.
Für Euler ergibt sich die Möglichkeit, die Form der elastischen

Kurven mit seiner Methode der Maxima und Minima zu
bestimmen durch eine Mitteilung von Daniel Bernoulli vom
Jahre 1742, wonach bei der Biegung eines ursprünglich geraden
Stabes von konstantem Querschnitt die «Potentialkraft» (vis
potentialis)

ds
~W

ein Minimum sein müsse.
In einem rechtwinkligen Koordinatensystem x, y ist (mit

unserer heutigen Schreibweise) die Länge des Kurvenelementes ds
ds dx ]/l + y'2

und der Krümmungsradius

E _ d + y'2)8'°

y"
Damit wird die «Potentialkraft», die zu einem Minimum werden soll

/-

r ds
_ r y'i^dx

WH (1)

Nach der im Hauptwerk entwickelten Methodik wird nun
daraus die Differentialgleichung der gesuchten elastischen Kurve
bestimmt, die sich in der Form

(a + ßx -)- yx2) dx
dy B ,,- (2)

]/«¦*_ (k + ßx + yx2)2 |
ergibt.

Um die Uebereinstimmung dieser

Gleichung mit der schon früher

von Jakob Bernoulli gefundenen

Gleichung der elastischen
Kurve nachzuweisen (und auch,
um die Belastung und die Bie-
gungssteifigkeit des Stabes
einzuführen) leitet Euler diese
Differentialgleichung nun auch noch
direkt ab (Abb. 1) : im Punkt
x, y, des gebogenen Stabes muss
Gleichgewicht zwischen der
«Elastizität Ek2 : 22» (vis elastica) und
dem Moment P (e + x) der an einem starren Hebel e wirkenden
lotrechten Kraft P bestehen :

Ek2 Ek2y"

(x,0

T
Abb.1

P(e + x) (3)
R (1 + y'2Vk

Ek2 bedeutet die «absolute Elastizität» (elasticitas absoluta)
oder, wie wir heute sagen, die Steifigkeit EJ des Stabes. Durch
Integration und Auflösung nach dy findet Euler die Gleichung

Pdx^/^x2 + ex + /)
dy

]/S2 fc4 _ P2 (ya X2 _j_ e x _|_ fy
(4)

•) L. Euler: Methodus inveniendi lineas curvas maximi minimive pro-
prietate gaudentes sive solutio problematis isoperimetrici latissimo sensu
accepti. Lausannae & Genevae, MDCCXLIV. Additamentum I : De curvis
elasticis.

Das Eulerbildnis nach dem 'S^ÌJph von Meehel in der «Lobrede auf
Herrn Leonhard Euler» von N. Fuss, Basel 1786.

die in der Form mit Gleichung (2)
übereinstimmt. Aus dem Vergleich
der Gleichungen (2) und (4) ergibt
sich nun die Grösse der angreifenden

Last P zu
2Ek2yP _L (5)

während sich für den Hebelarm e und
die Integrationskonstante / die Werte

e JL und / SS
2y 2y

ergeben.
Für e H 0 (Last im Koordinatenursprung)

und y l und mit der
Abkürzung c2 a2 — a
findet Euler für die Kurve der Abb. 2 die vereinfachte Gleichung

(a2 — c2 -4- x2) dx

c-x

2«

yi. Abb. 2

d y n< x2) (2 a2 — c2 + x2)
(6)

Nach der Diskussion der sich aus Gleichung (6) ergebenden
Eigenschaften der elastischen Kurven geht Euler dazu über, die
verschiedenen möglichen Kurvenformen aufzuzählen. Als erste
dieser Formen ergibt sich für a oo oder P 0 die vom
Koordinatenursprung (oder Wendepunkt) A aus sich nach beiden
Seiten in Richtung der ?/-Axe ins Unendliche erstreckende Gerade,
für die a?max e 0 ist; diese Gerade stellt den natürlichen
Zustand des elastischen Stabes dar.

Zu dieser ersten Art von elastischen Kurven sollen nun aber
auch jene Fälle gerechnet werden, bei denen die grösste
Ausbiegung c xmax und damit auch x gegen a vernachlässigbar
klein angenommen werden kann ; für diesenFall geht Gleichung (6)
über in

adx ,_.dy= —, 1 (7)
1/2 (c2 - x2)

und ihre Lösung lautet

y n arc sin (8)

Dies ist die Gleichung für die (beidseitig ins Unendliche
verlängerte) Trochoide, die wir heute Sinuskurve nennen. Für

%

~2~

2/y~2~

x x/ wird — 1 und arc sin —
c c

woraus

f oder a
2 1/2 n

Setzen wir diesen Wert in Gleichung (5) (mit y
erhalten wir

2Ek2 %2Ek2
-Pkr.

1) ein, so

4/2
(9)

d. h. diejenige Kraft, die erforderlich ist, um einen ursprünglich
geraden (und beidseitig gelenkig gelagerten) Stab unendlich
wenig auszubiegen; sie ist von endlicher Grösse.

Damit ist die Eulersehe Knicklast gefunden. Euler selbst
weist darauf hin, dass seine Formel dazu dienen könne, die Tragkraft

von Säulen zu bestimmen. Er gibt anschliessend auch die
^Meitung, die Steifigkeit Ek2 E J durch pjKhbiegungsmes-
sungen zu ermitteln.

Wohl hatte der Holländer Musschenbroek schon 15 Jahre
vorher auf Grund von Versuchen festgestellt, dass bei sonst

gleichen Grössen die Tragfähigkeit gedrückter Stäbe umgekehrt
proportional zum Quadrat ihrer Länge sei, aber diese Angabe
allein löst das Problem nicht. Erst Euler hat uns den vollständigen

Zusammenhang zwischen kritischer Belastung P,
Stablänge 2 / und Steifigkeit EJ Ek2 gegeben.

2. An dieser ersten theoretischen Untersuchung eines
Stabilitätsproblems ist für uns besonders bemerkenswert, dass sie

auf dem Satz vom Minimum der Formänderungsarbeit aufge-
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baut ist. Für Stäbe veränderlichen Querschnitts erweitert Euler
den Ausdruck der «Potentialkraft» zu

Ek2ds/- R2
Ek2

R ist, so wirdBeachten wir, dass nach Gleichung (3) M-.

ÇEk2ds ÇM2ds
J R2 - J -^W }

Die «vis potentialis» ist tatsächlich (bis auf den Zahlenfaktor y2)
identisch mit der Formänderungsarbeit. Dass diese
Formänderungsarbeit zu einem Minimum werden müsse, hat Daniel
Bernoulli festgestellt und die Anwendung dieses Satzes in der
Biegungslehre hat Leonhard Euler gezeigt; es scheint damit
gerechtfertigt, in Zukunft den Satz vom Minimum der
Formänderungsarbeit als Bernoulli-Eulerschen Satz zu bezeichnen.

3. Dass Euler die Bedeutung seiner Knickformel

klar erkannt hat, geht daraus hervor,
dass er selbst in späteren Arbeœsn noch mehrmals

auf dieses Stabilitätsproblem zurückgekommen
ist. Von diesen späteren Arbeiten halte ich

besonders die Abhandlung «Sur la Force des
Colonnes»2) für bedeutungsvoll und es soll
nachstehend noch die dort gegebene einfachere und
direkte Ableitung der Knickformel nachskizziert
werden (Abb. 3). Für die Steifigkeit Ek2, die in
der früheren Abhandlung noch als «absolute
Elastizität» (elasticitas absoluta) bezeichnet
wurde, finden wir hier die uns zutreffender
scheinenden Bezeichnungen «moment du ressort»
oder auch «moment de roideur».

Euler wählt hier die ursprüngliche Stabaxe als *-Axe und
beschränkt sich von vornherein auf kleine Ausbiegungen, für
die der Krümmungsradius R sich auf den Werti dx2

R

-tt2

Abb.3

d2 y
vereinfacht. Aus der Gleichgewichtsbedingung

Ek2 i_ Ek2d2y
¦y R dx2

folgt die Differentialgleichung
Ek2

d2y + ydx2 0 (11)

Durch zweimalige Integration ergibt sich mit 5* y'^ die Lösung

sin x I /M
-9* \ Ek2 j |/ Ek2

Für x a muss y 0 sein ; damit wird
Ü

(12)

oder
•fEk2

Pkr.
jcsE~k2

a2
(9 a)

Anschliessend untersucht Euler auch Stäbe mit veränderlicher

Steifigkeit und den Einfluss des Eigengewichtes und
diskutiert Modellregeln für die Bemessung von Säulen.

4. Den paradox erscheinenden Unterschied zwischen der
Wirkung einer horizontalen und einer vertikalen Last (Abb. 4),
d. h. den Unterschied zwischen den gewöhnlichen Biegungsproblemen

erster Ordnung und den Stabilitätsproblemen hat schon
Euler grundsätzlich erkannt : während die Ausbiegung y bei der
gewöhnlichen Biegung proportional zur Belastung anwächst,
erleidet der axial belastete Stab für P <[ Ptr. überhaupt keine
Ausbiegung; bei P Ptr. biegt er aber plötzlich aus und es ist

3) L. Euler: Sur la Force des Colonnes. Mémoires de l'Académie Royale
des Sciences de Berlin. Tom. XIII, 1757.

I
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hier anscheinend das Kontinuitätsprinzip

verletzt. Euler hat dieses
Phänomen dadurch zu erklären und
mit dem Kontinuitätsprinzip in
Einklang zu bringen versucht, dass er
für P < Pkr. die Ausbiegungen als
imaginär ansieht ; für P Pkr. werden

sie null und für P y Pkr. reell
und wachsen mit wachsender Last.

Wir können heute einfacher zeigen, dass das Knickproblem
das Kontinuitätsprinzip nicht verletzt, etwa dadurch, dass wir
durch Einführung einer schrägen Belastung einen stetigen Uebergang

zwischen den beiden Belastungsfällen der Abb. 4 herstellen,
eine Aufgabe, die zuerst Navier gelöst hat, oder auch dadurch,
dass wir die Eigenschwingungen eines gedrückten Stabes
betrachten. Euler hat in seiner Abhandlung über die elastischen
Kurven auch Schwingungsprobleme untersucht. Der innere und
damit auch der formale Zusammenhang zwischen den beiden
Problemgruppen ist dadurch gegeben, dass bei beiden •

Gleichgewichtsaufgaben zu lösen sind ; bei den Schwingungsproblemen
müssen die innern elastischen Kräfte mit den Trägheitskräften,
bei den Stabilitätsproblemen mit den durch die Ausbiegung
verursachten Ablenkungskräften im Gleichgewicht sein. Schreiben wir
die Grundschwingungszahl v eines elastischen Stabes nach Abb. 3

mit der auf die Längeneinheit bezogenen konstanten Masse qjg an :

n -\rETg~-\m Pa2 l/I P~
v 2W |m l/1 - lëïïj r° \1 - -i^r

so stellen wir fest, dass die Frequenzen mit wachsender Last P
immer kleiner werden und der Knickvorgang auch als
Eigenschwingung von unendlich kleiner Frequenz gedeutet werden
kann, bei der der Stab ausschwingt, aber nicht mehr in seine
Ruhelage zurückkehrt.

5. Wir wissen heute, wie lange es nach Euler noch gedauert
hat, bis sich eine genügend umfassende Erkenntnis des immer
wieder reizvollen Problems der elastischen Stabilität allgemein
durchgesetzt hat. Sehen wir von den damals wenig beachteten
und nachher wieder vergessenen, fast visionär anmutenden
Erkenntnissen Naviers ab, so dauerte es rund 150 Jahre, bis L. v.
Tetmajer auf experimentell-statistischem Wege und Engesser
und Kârmân theoretisch die Eulersche Knickformel auf den
unelastischen Bereich erweiterten.

Euler war nicht Ingenieur, sondern Mathematiker und
Geometer. Probleme der Mechanik beschäftigten ihn in erster Linie
als mathematische Aufgaben. Wir erkennen beispielsweise die
Grenzen seines Interesses bei einem technischen Problem daran,
wie er sich mit dem Begriff der Steifigkeit auseinandersetzt.
Es genügt ihm durchaus, den Begriff E k2 zu definieren und
anzugeben, wie er durch Versuche bestimmt werden könne. Er
erklärt auch solche Versuche für wünschenswert, sie aber selbst
durchzuführen, kam ihm offenbar nicht in den Sinn ; es war ihm
gar nicht wichtig zu wissen, wie gross der numerische Wert der
Steifigkeit für eine bestimmte Stütze ist.

Gerade mit Rücksicht auf die Schwierigkeiten aber, die auf
der damaligen Unkenntnis von uns heute geläufigen Begriffen
der Biegungslehre beruhen, muss die Leistung Eulers bei der
Entdeckung der Knickformel umso höher bewertet werden. Seine
Methodik, die bei der Ueberwindung mathematischer Schwierigkeiten

auf die Erfassung des Wesentlichen ausgeht, ist'für uns
auch heute noch wertvoll, aufschlussreich und von vorbildlicher
Klarheit und Eleganz der Darstellung. Die Herausgabe der
gesammelten Werke dieses wohl umfassendsten Geistes, den unser
Land je hervorgebracht hat, ist nicht nur eine Dankesschuld,
sondern sie bedeutet noch mehr eine Bereicherung unseres Wissens

im Gebiet von Mathematik und Mechanik und damit auch
der Technik.

Untersuchung einer nach den Euler'schen Vorschlä
Von Prof. Dr. J. ACKERET, E. T. H. Zürich

Leonhard Euler hat bekanntlich ausser seinen grandiosen
Arbeiten zur reinen Mathematik auch auf dem Geäffte der
angewandten Mathematik und Mechanik grundlegend wichtige
Beiträge geliefert. Wo immer er eine Möglichkeit einer rationellen
Behandlung sah, griff er zu, und dadurch, dass er sich nicht
durch den primitiven Zustand der damaligen Technologie
entmutigen liess, fand er ganz neue Zusammenhänge und
Beziehungen und kam zu Vorschlägen, die zu seiner Zeit wohl
unausführbar waren, im Laufe der nächsten zwei Jahrhunderte aber
schliesslich zum Allgemeingut der Technik wurden. Unter den
zahlreichen neuen Ideen, die bisher in wenig zugänglichen
Akademieberichten vergraben lagen (nunmehr aber dank einer gross-

gen (1754) gebauten Wasserturbine

zügigen Spende von Industrie, Handel und öffentlichen Werken
der Schweiz gesammelt herausgegeben werden können), ragt
eine durch ihre besondere Fruchtbarkeit hervor: die Erfindung
des Leitapparates für Turbinen1). Sie ist das Ergebnis einer
genauen Analyse der Verluste im sog. Segner'schen Wasserrad.
Andreas Segner, Professor in Göttingen, gab 1750 in Anlehnung
an frühere Vorschläge von Daniel Bernoulli (1738) die
Konstruktion eines reinen Reaktionsrades an, das seinerzeit mehrfach

ausgeführt wurde und später immer wSler auftauchte

i) Théorie plus complète des machines qui sont mises en mouvement
par la réaction de l'eau. Mém. de l'acad. d. se. de Berlin 1754 (gelesen
13. Sept. 1753).
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