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INHALT: Anwendung von Differenzengleichungen zur Berechnung

Wissenschaft. Kurs liber Arbeitsanalyse. Statistische Ergebnisse aus

von Eisenbeton-Wehrpfeilern. — Die Berechnung der Betonauskleidung dem Heizbetrieb. Institut fiir angewandte Psychologie. Eidgen. Techn.
von Druckstollen. — Wettbewerb fiir ein Primarschulhaus auf dem Fels- Hochschule. Volksschule des Kantons Ziirich. — Nekrologe: Arnold Frey.
berg in Luzern. — Ein neuer Geist. — Nepolin-Kondensatoren zur Ver- Hans Accola. — Wettbewerbe: Ortsgestaltungsplan Frauenfeld. — Vor-
besserung des Leistungsfaktors. — Mitteilungen: Ehrenpromotion und tragskalender.
Der S.1. A. ist fiir den Inhalt des redaktionellen Teils seiner Verelnsorgane nicht verantwortlich
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Abb. 1. Pfeilerform Rupperswil u. «Ersatzscheibe»

Abb. 2. Belastungsfall 1.

Abb. 3. Belastungsfall 2

Randbedingungen der Spannungsfunktion &

Anwendung von Differenzengleichungen zur Berechnung von Eisenbeton-Wehrpfeilern
Von Ing. Dr. sc. techn. C. F. KOLLBRUNNER, Direktor der A.-G. Conrad Zschokke, Stahlbau, Déttingen und Dipl. Ing. CH. DUBAS, Dottingen

Um die Armierung der Eisenbeton-Wehrpfeiler fiir die neuen
Sektor-Hakenschiitzen') (Abb.1) zu berechnen, wird der ganze
Pfeiler als Scheibe betrachtet. Fiir einseitige Schiitzenreaktion
wird die daraus entstehende Exzentrizitdt beriicksichtigt.

Die Betrachtung eines unendlich kleinen, rechteckigen diin-
nen Elementes liefert bekanntlich fiir die drei Unbekannten ¢,
oy Und 7,y = T,., falls keine Massenkréfte vorhanden sind, die
zwei Gleichgewichtsbedingungen

Bl Whx o, &\ W, .0 @D
dz Jy
Doy 0Ts

L e
dy o 0x !

Unter Beriicksichtigung der Forménderungen erhélt man
als Elastizitdtsgleichung
9 & 0 3
(W*W) (0 = )l —0 N . Weips)
Durch Einfiihrung der Airy’schen Spannungsfunktion @, die
durch folgende Beziehungen definiert ist:

P
R O
g2 &
(,,.2(07.........(5)
2P
= —— 6
i dxdy e

geht die Elastizitdtsgleichung (3) tiiber in die Differentialglei-
chung vierter Ordnung 2)
0'e

0+ ot
e T

da? O y* dy*

Die Gleichgewichtsbedingungen (Gleichungen (1) und (2))
werden durch Einfithrung der Werte g, oy und 7., nach den
Gleichungen (4), (5) und (6) ohne weiteres befriedigt.

Durch Feststellung der Randbedingungen wird die Span-
nungsfunktion & fiir jedes beliebige Scheibenproblem eindeutig
bestimmt. Dabei kann die Grundebene beliebig gew#hlt werden.
Diejenige Losung der Differentialgleichung vierter Ordnung
(Gleichung 7), die die Randbedingungen erfiillt, gibt die ge-
suchte Spannungsfunktion &.

Da bei Pfeilern fiir Sektor-Hakenschiitzen nur die Armie-
rungen im oberen Pfeilerteil interessieren — im unteren Teil
sind infolge des grossen Eigengewichtes vorwiegend Druckspan-
nungen vorhanden — wird als Pfeiler der in Abb. 1 angegebene
von gleichbleibender Dicke untersucht. Dieser stimmt im oberen
Teil mit der wirklichen Form (Rupperswil-Auenstein) gut iiber-

—f0F RO ()

1) C. F. Kollbrunner und J. L. Perrenoud: Die Sektor-Hakenschiitzen
des Kraftwerkes Rupperswil-Auenstein. SBZ Band 123, Nr. 23, Seite 275%,
3. Juni 1944.
2) Siene z. B.: S. Timoshenko: Theory of Elasticity. Mc. Graw-Hill Book
Company, New York and London, 1934, S.27. — A. und L. Féoppl: Drang
und Zwang, Bd. I, Oldenbourg, Miinchen und Berlin, 1941.

ein. Weil der untere Scheibenrand von der Konsole, auf die sich
die Sektor-Hakenschiitzen abstiitzen, weit genug entfernt ist,
darf der Spannungsverlauf nach der klassischen Biegungslehre,
d. h. geradlinige Verteilung der Normalspannungen oy und para-
bolischer Verlauf der Schubspannungen, angenommen werden.
Eine, den elastischen Eigenschaften des Bodens angepasste
Spannungsverteilung, hat praktisch keinen Einfluss auf die
Spannungen des Oberteils. Das Gleiche gilt auch fiir die seit-
lich gegen den Caisson wirkenden Erddriicke, die vernachlissigt
werden konnen.

Die Schiitzenreaktion wird in ihre waagrechte und lotrechte
Komponente H und V zerlegt, die Berechnung fiir H — 1 und
V — 1 getrennt ausgefiihrt.

Man weiss, dass die zweite Ableitung des Momentes die
spezifische Belastung ist. Die Werte der Airy’schen Spannungs-
funktion in den Gleichungen (4) und (5) sind somit die Momente
der Schwittspannungen. Da die Randkrifte bekannt und nichts
anderes als die Fortsetzung der inneren Spannungen sind, erhilt
man sofort die Randbedingungen.

Die Momente des mit den Normal-Randkriften belasteten
Randes sind die #-Randwerte, die Querkrifte des mit den Tan-
gential-Randkréften (Randschubspannungen) belasteten Randes
geben die Tangentenneigungen der Airy’schen Spannungsfunktion
senkrecht zum Rande. Da senkrecht zu einem freien Rand keine
Normalspannungen auftreten, ebenso keine Schubspannungen
lings dazu, verlduft die Funktion & geradlinig, die Neigung &
der Tangente senkrecht zum Rand ist konstant, d. h. die Tan-
genten sind parallel. Simtliche Werte der Airy’schen Spannungs-
fldche, sowie ihre Tangenten, befinden sich somit in der gleichen
Ebene (Abb. 2, Abb. 3).
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Abbildung 4

Im Falle einer konzentrischen
Einzelkraft P senkrecht zum Rand
erhilt die Randkurve der Airy’schen
Spannungsfliche einen scharfen
Knick (Abb. 4) und die Tangente
des entstandenen Winkels ist

tgio—P

Am unteren Rand kann man rein
baustatisch die @-Werte (kubische
Parabel) mit Hilfe der Knotenlasten
der Normalspannungen erhalten.
‘ Fiir V = 1 treten an diesem Rand
keine Schubspannungen auf, die Neigungen senkrecht zum Rande
sind somit parallel. Fiir die @’-Werte imFalle H — 1 ist es nicht
notig, die Integration mathematisch oder baustatisch mit Hilfe
der Knotenlasten der Schubspannungen durchzufithren: Man

D
ersieht leicht, dass die Verldngerungen der Randtangenten ?)y

die Verbindungsgerade ¢, — &,, schneiden miissen. Dadurch
ist die Airy’sche Spannungsfliche in beiden Féllen mit ihren
Tangenten vollstdndig bestimmt (Abb. 2, Abb. 3).
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bekanntlich diejenige einer unbelasteten gebogenen Platte, die
die Randbedingungen erfiillt und wo & die Durchbiegung ist?).
Die baupraktische Losung der Differentialgleichung (7) geschieht
mit Hilfe von Differenzengleichungen, genau so wie H. Marcus?t)
die Plattenprobleme gelost hat. An Stelle der Gleichung (7)
erhidlt man in jedem Punkt des gewé&hlten quadratischen Netzes
folgende Differenzengleichung:

20 &,, — 8 { Pn— 4+ Pn—1+ Pt 1+ Pruts

+2{Pu—s5+Pu—354+Puis+ Pusts
+ Pp—6+ Pm—2+ ‘I’,,,,Jrz + D+ 6=0 (8)
Mitteilung {iliber Forschungsarbeiten VDI, Heft 49,

+
b+

3) Wieghardt:
Berlin 1908.

4) H. Marcus: Die Theorie elastischer Gewebe und ihre Anwendung
auf die Berechnung biegsamer Platten. Julius Springer, Berlin 1624.

R. Bortsch: Die Ermittlung der Spannungen in beliebig begrenzten
Scheiben. Sitzungsbericht der Akademie der Wissenschaften in Wien,
Abt. ITa. Bd. 138, Heft 1/2, Wien 1929.

H. Bay: Ueber den Spannungszustand in hohen Trigern und die
Bewehrung von Eisenbetontragwénden. Dissertation. Konrad Wittwer,
Stuttgart 1931.

H. Bay : Ueber einige Fragen der Spannungsver-
teilung in Dreieck- und Rechteckscheiben. Bauing. 1938,
Heft 23/24, S. 349.

+X

8 4 o

0923

6037 _+2202 —|1722 —l939 -|2892

‘e 4322 175 grze |

+l6 +12761 _+lgs70 -|t183  -{3135 |6 o -lros2 -lafes  -|2798 -|

| 1241 +l0091 -igu4y {429 |4 o -|ioes -ja150  -|2724 -jats2 o
*2 »‘0309 -10402_+\0285 +0252 -{2 0 ~[1047 -|2128 -|2692 -|2165 “
4 1920 -l0960 +g960 +|1520 |o o -lto24 -j2112 -|2688 -j2176 o

Abb. 8. Belastungsfall 1 Abb. 9. Eelastungsfall 2
Ordinaten der Airy’schen Spannungsfunktion @

Abb. 10. Belastungsfall 1
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Abb. 7. Belastungsfall 2

Zur Berechnung der Airy’schen Spannungsfunktion &

Um die Randneigungen senkrecht
zum Rande auszudriicken, werden
Punkte ausserhalb der Scheibe ge-
wihlt. Fiir diese Punkte erhilt man

r ¢m+1~(pm—l
aus 9, —= =
nach Marcus:

O (pm»l-l —2 (p,md's

Aus der in Abb.5b angegebenen,
symbolisch dargestellten Gleichung
(8) konnen mit Hilfe der Abb. 6 und
T alle Netzwerte der Spannungsfliache
bestimmt werden. Das Gleichungs-

Abb.
Airy’sche Spannungsfunktion @

Tabelle |: Das Gleichungssystem (Gleichungsform X a, ¢, - N = 0)

abl

Belastungsfall 2

#) Gleichung fiir den Mittelpunkt m der Gleichung 8 im Netzpunkt

GLY)| Dy | Pog | Poy | Por | Pas | Pao | Pao | Pos | Pao | Par | Pus | Pas | Pus | Pus | Pas | P | Poz | Pos | Pos Ny (Bel. fall 1) [ No (Bel. fall 2)
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Abb. 15. Schubspannungen Tay t/m2 Abb. 16. Normalspanngn. g, t/m?
fiir den Belastungsfall 1

fiir den Belastungsfall 2

Abb. 17. Normalspanngn. g, t/m? Abb. 18. Schubspanngn. 7., t/m?
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Abb. 21. Hauptspannungen o t/m?2 Abb. 22. Hauptspanngn. ay t/m?2
fiir den Belastungsfall 2
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Abb. 23. Belastungsfall 1

system wird dabei am besten tabellarisch zusammengefasst
(Tabelle I). Nachher wird dieses Gleichungssystem nach dem

Trajektorien (Hauptsp:

abgekiirzten Eliminationsverfahren von Gauss aufgeldst und so
die gesamte Spannungsfldche ermittelt (Abb. 8, 9, 10, 11).

Abb. 20. Hauptspanngn. o, t/m?

SBZ]

Abb. 24. Belastungsfall 2
annungsrichtungen)

Aus der Airy’schen Spannungsfunktion erhdlt man mit Hilfe
der Gleichungen (4), (5) und (6) die Spannungen, was mit Hilfe
von Differenzen nach Marcus und mit der Bezeichnung der

Abb. 12 folgende Beziehungen fiir die inneren Netzpunkte gibt:

il
Tx =— st (¢nt—3_2¢nl+d)m+3)
il
S Oy zﬁ(d)m—l—z(pm+d)rn+l) (10)

1
Ty — T (P —2 4 q)m.—[—Z_d)m—Al —«4’,,,,}_4) J

Die Endtangenten einer Schnittkurve der Airy’schen Span-
nungsfldche bestimmen die Grosse und die Lage der Schnitt-
resultierenden (Abb. 4). Die Gleichgewichtsbedingungen, durch
die Knotenlasten der schon gewonnenen Normalspannungen im
Innern der Scheibe ausgedriickt, geben dann die noch fehlenden
Normalrandspannungen. Somit sind sdmtliche Spannungen be-
kannt (Abb. 13, 14, 15, 16, 17, 18).

Abb. 25. Belastg. Fall 1 — Normalspannungen — Abb. 26. Belastg. Fall 2
nach Scheibentheorie und nach der klass. Biegungslehre (gestrichelt)
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Die Hauptspannungen

Ox + Oy Ox— 0y \?
B = et il/( Y 4l
sind aus den Abb. 19, 20, 21, 22 ersichtlich. Die Gleichung
21,4

bestimmt die Richtungen der Hauptspannungen (Trajektorien),
die in den Abb. 23 und 24 dargestellt sind.

Die Normalspannungen ¢, sind fiir die beiden Belastungs-
fédlle in den Abb. 25 und 26 den nach der Navier’schen Theorie
berechneten Normalspannungen gegeniibergestellt. Daraus ersieht
man, dass die Navier’sche Annahme bis zu einer relativ kleinen
Entfernung vom Kraftangriffspunkt der konzentrierten Einzel-
last gute Resultate ergibt. Beim Kraftangriffspunkt selbst gibt
die Boussinesq’sche®) Theorie ebenfalls gute Resultate.

Durch eine einfache Kombination erhélt man die Spannungen
0x, 0y und 7, , fiir jede beliebige und beliebig gerichtete Schiitzen-
reaktion aus den beiden Belastungsfillen (wobei wie schon ge-
sagt fiir eine einseitige Schiitzenreaktion die daraus entstehende
Exzentrizitdt zu beriicksichtigen ist), und durch Superposition
mit den Spannungen infolge des Eigengewichtes die totalen
Spannungen ¢, oy und 7,,. Aus diesen Werten konnen, wie
vorher angegeben, die Hauptspannungen einfach berechnet wer-
den, deren Werte die Eisenmenge der Bewehrung, und deren
Richtung die Form dieser Bewehrung bestimmen.

Das hier beschriebene Verfahren ist eine angenéherte Unter-
suchung, wobei gewisse Vereinfachungen absichtlich gemacht
wurden, um die Berechnung nicht iibertrieben umfangreich zu
gestalten. Da hinter der Konsole, d. h. hinter dem Lastangriffs-
punkt noch Beton vorhanden ist, muss beriicksichtigt werden,
dass nicht alle Armierungseisen im Lastangriffspunkt zusam-
menlaufen, sondern ihn teilweise wumschlingen. Eine genaue
Beriicksichtigung dieses Umstandes ist mit einfachen Mitteln
moglich.

Die Berechnung der Betonauskleidung

von Druckstollen
Von Dipl. Ing. OTTO FREY-BAER, Baden

Beton gerissen

Wir nehmen an, dass sich am bisher vorausgesetzten Zu-
stand nur eines gedndert hat: der Beton weise radiale Risse auf
und konne daher keine tangentialen Zugspannungen aufnehmen.
Damit gelten natiirlich die bisherigen Spannungsgleichungen fiir
den Beton nicht mehr und es miissen neue gefunden werden.

Beton :

Die radiale Lédngendnderung der Betonstdrke b — a (Abb. 8)
nennen wir Ju. Sie ist definiert durch den Ausdruck

Adu — (uB)z:b . (uB)x:a
Geméss dem Hooke’schen Gesetz ist
B_ 0F d (dw)

=
v Ep dx
Von der radialen Betonspannung Uf wissen wir, dass sie

umgekehrt proportional dem Radius ist, also
(7 i
r x
Mittels der Randbedingung bestimmen wir K:

(Schluss von S. 179)

Damit kann 4w sehr einfach berechnet werden:

x=a
B af i a((l?) 1 d(dw)
~— EBp Ep ®  dx
x=a
a((IB) dx
ddu)y=—"L1 — 5
(du) By =
x=a b c =
p aloh ‘T o
IESIER R | | Sl _
o = jop (g b 1g a)

a

G(Uf)x:u b
—5 %)

Ep o

du =

Fir den Felsmantel und die Armierung haben sich die Aus-
gangsgleichungen nicht gedndert.

Fels:
o m EBfp Cp — _F
t T (m4 1)x r
(0
e 2R
%
Armierung :
4
4 Qe a”r
ut = 3 e
E, F,
a*g? B, F c
A T . A e e B
wd — _ ; A e B
B, 7, i

Damit kénnen wir zur Aufstellung der Randbedingungen
schreiten:

((rf)r:ﬂ—(;f:—pi DRSS N (1)

WA = F) T e e b e @)
x=15b x =b

(D) =R s s s (3)

Mittels dieser Randbedingungen erhalten wir drei Gleichungen

xX=a
mit den Unbekannten (Ulj) , Cp und ,;;4. Die Aufldsung
ergibt:
B x=a
(o) = —
ap;, mEgEp

- b
amEg By 4 1g (T)mEeEpFe + (m +1) B EpF,

x=a
o — (Ulr; ) + Di
x=a
ab (05 (m + 1)
mEp
Man ist nun in der Lage, fiir jeden beliebigen Punkt des
Querschnittes die Spannungen zu berechnen. Fiir das bisher als
Beispiel verwendete Stollenprofil sind die sich ergebenden Span-
nungswerte bei wechselnder Felselastizitdt und mit verschiedenen
Armierungsquerschnitten als Diagramm in den Abb.9 und 10
aufgetragen. Wie man aus diesen Abbildungen leicht ersehen
kann, ist auch bei gerissenem Beton die Armierung nicht aus-

Cp =

2 —a; F Bl UB)"=“ geniitzt, sofern der Felsmantel einige Giite besitzt. Auch die
S e o B L < iibrigen Spannungen sind klein und konnen dem Material ohne
le Funktion fiir s lautet demnach: weiteres zugemutet werden.
B x=a
a(o,)
(=S — Fla=b/_B|x=a
r
% (o) (6/)
5) M. J. Boussinesq: Applications des 00000, f=ti—f=1-1 20
Potentiels. Gauthier-Villars, Paris, 1885. I ,l I
(Die Linien gleicher Hauptspannungen £ » | | 3
sind Kreise). Al s prT cm Stollenlinge) f 'l | £ (5. arovam Slollninge)
| !
a = 100cm | ' a = 100cm
b= 120cm | b = 120cm
Pi = 10kgfem? ’ Pi = 10kg/cm?
- & = 200000 kgfem £y = 200000 kgfem?
0
50000 50000
/§=ch0’2
70 —
P T
2 4 200 400 600 800 1000 1200
Abb.9 Abb. 10 G, kg/em® 552
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