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INHALT : Anwendung von Differenzengleichungen zur Berechnung
von Eisenbeton-Wehrpfeilern. — Die Berechnung der Betonauskleidung
von Druckstollen. — Wettbewerb für ein PrimaEBJefnulhaus auf dem Felsberg

in Duzern. — Ein neuer Geist. — Nepolin-Kondensatoren zur
Verbesserung des Leistungsfaktors. — Mitteilungen : l^Rnpromotion und

Wissenschaft. Kurs über ArbeitsantBse. Sta-fiiBtische Ergebnisse aus
dem Heizbetrieb. Institut für angewandte Psy^Blogie. Eidgen. Techn.
Hochs^Äe. Volksschule des Kantons Zürich. — Nekrologe : Arnold Frey.
Hans Accola. — Wettbewerbe : Ortsgestaltungsplan Frauenfeld. —
Vortragskalender.
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Abb. 1. Pfeilerform Rupperswil u. «Ersatzscheibe» Abb. 2. Belastungsfall 1.

Abb. 3. Belastungsfall 2

Randbedingungen der Spannungsfunktion 'I>

Anwendung van DBerenzengleichungen zur Berechnung von Eisenbeton-Wehrpfeilern
Von Ing. Dr. sc. techn. C. F. KOLLBRUNNER, Direktor der A.-G. Conrad Zschokke, Stahlbau, Döttingen und Dipl. Ing. CH. DUBAS, Döttingen

Um die Armierung der Eisenbeton-Wehrpfeiler für die neuen
Sektor-Hakenschützen1) (Abb.l) zu berechnen, wird der ganze
Pfeiler als Scheibe betrachtet. Für einseitige Schützenreaktion
wird die daraus entstehende ExzentrB-ät beKjHgjRtigt.

Die Betrachtung eines unendlich kleinen, rechteckigen dünnen

Elementes liefert bekanntlich für die drei Unbekannten ax>
(jy und xxy xyx, falls keine Massenkräfte vorhanden sind, die
zwei Gleichgewichtsbedingungen

dax
dx dy (1)

dy + dx
0 (2)

Unter Berücksichtigung der Formänderungen erhält man
als Elastizitätsgleichung

<92 (92

+ (ff* + Oy) 0 (3)dx* ' dy2,
Durch Einführung der Airy'sehen Spannungsfunktion <P, die

durch folgende Beziehungen definiert ist:
92*$
dy2
d2<P

~d a;2

d2<P

(4)

(5)

(6)xy~ dxdy
geht die Elastizitätsgleichung (3) über in die Differentialglei*
chung vierter Ordnung2)

+ 2 + 0 (7)9a;4 ' dx2 dy2 dy4-

Die Gleichgewichtsbedingungen (Gleichungen (1) und (2))
werden durch Einführung der Werte ax, (Jy un<*- xxy nach den tp
Gleichungen (4), (5) und (6) ohne weiteres befriedigt.

^^ffiçch Feststellung der Randbedingungen wird die Span-
nungsrtTnktion 4> für jedes beliebige Scheibenproblem eindeutig
bestimmt. Dabei kann die Grundebene beliebig gewählt werden.
Diejenige Lösung der Differentialgleichung vierter Ordnung
(Gleichung 7), die die Randbedingungen erfüllt, gibt die
gesuchte Spannungsfunktion •$.

Da bei Pfeilern für Sektor-Hakenschützen nur die Armie-
SÉggen im oberen Pfeilerteil interessieren •— im unteren Teil
sind infolge des grossen Eigengewichtes vorwiegend Druckspannungen

vorhanden — wird als Pfeiler der in Abb. 1 angegebene
von gleichbleibender Dicke untersucht. Dieser stimmt im oberen
Teil mit der wirklichen jSrm (Rupperswil-Auenstein) gut über-

') C. F. Kollbrunner und J. L. Perrenoud: Die Sektor-Hakenschützen
des Kraftwerkes Rupperswil-Auenstein. SBZ Band 123, Nr. 23, ^<äte 275*,
3. Juni 1944.

2) Siene z. B. : S. Timoshenko : Theory of Elasticity. Me. Graw-Hill Book
Company, New York and London, 1934, S. 27. — A. und L. Föppl: Drang
und Zwang, Bd. I, Oldenbourg, München und Berlin, 1941.

ein. Weil der unterê^jeheibenrand von der Konsole, auf die sich
die Sektor-Hakenschützen abstützen, weit genug entfernt ist,
darf der Spannungs^Elauf nach der klassischen Biegungslehre,
d. h. geradlinige Verteilung der Normalspannungen ay und
parabolischer Verlauf der Schubspannungen, angenommen werden.
Eine, den elastischen Eigenschaften des Bodens angepasste
Spannungsverteilung, hat praktisch Beinen Einfluss auf die
Spannungen des Obertei^gfes^ Gleiche gilt auch für die seitlich

gegen den Caisson wirkenden Erddrücke, die vernachlässigt
werden können.

Die Schützenreaktion wird in ihre waagrechte und lotrechte
Komponente H und V zerlegt, die Berechnung für H 1 und
V 1 getrennt ausgeführt.

Man weiss, dass die zweite Ableitung des Momentes die
spezifische Belastung ist. Die Werte der Airy'sehen Spannungsfunktion

in den Gleichungen (4) und (5) sind somit die Momente
der Schnittspannungen. Da die Randkräfte bekannt und nichts
anderes als die Fortsetzung der inneren Spannungen sind, erhält
man sofort die Randbedingungen.

Die Momente des mit den Normal-Randkräften belasteten
Randes sind die «^-Randwerte, die Querkräfte des mit den Tan-
gential-Randkräften (Randschubspannungen) belasteten Randes
geben die Tangentenneigungen der Airy'sehen Spannungsfunktion
senkrecht zum Rande. Da senkrecht zu einem freien Rand keine
Normalspannungen auftreten, ebenso keine Schubspannungen
längs dazu, verläuft die Funktion <P geradlinig, die Neigung 4>'

der Tangente senkrecht zum Rand ist konstant, d. h. die
Tangenten sind parallel. Sämtliche Werte der Airy'sehen Spannungsfläche,

sowie ihre Tangenten, befinden sich somit in der gleichen
Ebene (Abb. 2, Abb. 3).

Im Falle einer konzentrischen
Einzelkraft P senkrecht zum Rand
erhält die Randkurve der Airy'sehen
Spannungsfläche einen scharfen
Knick (Abb. 4) und die Tangente
des entstandenen Winkels ist

tg a P
Am unteren Rand kann man rein

baustatisch die <P-Werte (kubische
Parabel) mit Hilfe der Knotenlasten
der Normalspannungen erhalten.
Für V 1 treten an diesem Rand

keine Schubspannungen auf, die Neigungen senkrecht zum Rande
sind somit parallel. Für die *£'-Werte imFalle H 1 ist es nicht
nötig, die Integration mathematisch oder baustatisjsh mit Hilfe
der Knotenlasten der Schubspannungen durchzuführen: Man

ersieht leicht, dass die Verlängerungen der Randtangenten——

die Verbindungsgerade <P1S ¦— <J>23 schneiden müssen. Dadurch
ist die Airy'sche Spannungsfläche in beiden Fällen mit ihren
Tangenten vollständig bestimmt (Abb. 2, Abb. 3).

m
Belastung

Querkrdft

Abbildung 4
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Abb. 5 a

-a +i

0+7

Abb. 5 b

Die Differentialgleichung vierter Ordnung (Gleichung 7) ist
bekanntlich diejenige einer unbelasteten gebogenen Platte, die
die Randbedingungen erfüllt und wo <P die Durchbiegung isfÉfc
Die baupraktische Lösung der Differentialgleichung (7) geschieht
mit Hilfe von Differenzengleichungen, genau so wie H. Marcus4) Abb. 6. Belastungsfall 1
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Abb. 7. Belastungsfall 2

¦BUBBtäerechnun g der Airy'sehen Spannungsfunktion *die Plattenprobleme gelöst hat. An Stelle der Gleichung (7)
erhält man in jedem Punkt des gewählten quadratischen Netzes
folgende Differenzengleichung :

20#m— 8 {**m_4 + #„_! + **ra+ I + $m + i } +
+ 2|<fm_54.$m_3 + *Jm + 3+$m + 5 ¦+ #m-6+ *m-2+ #m + 2 + #m + 6 0 (8)

3) Wieghardt: Mitteilung über Forschungsarbeiten VDI, Heft 49,
Berlin 1908.

4) H. Marcus: Die Theorie elastischer Gewebe und ihre Anwendung
auf die Berechnung biegsamer Platten. Julius Springer, Berlin 1S24.

R. Bortsch : Die Ermittlung der Spannungen in beliebig begrenzten
Scheiben. Sitzungsbericht der Akademie der Wissenschaften in Wien,
Abt. IIa. Bd. 138, Heft 1/2, Wien 1929.

B. Bay: Ueber den Spannungszustand in hohen Trägern und die 7 alle Netzwerte der Spannungsfläche
Bewehrung von Eisenbetontragwänden. Dissertation. Konrad Wittwer, bestimmt werden Das Gleichunes-
Stuttgart 1931. ' 8

H. Bay : Ueber einige Fragen der Spannungsverteilung
in Dreieck- und Rechteckscheiben. Bauing. 1938,

Heft 23/24, S. 349.

Um die Randneigungen senkrecht
zum Rande auszudrücken, werden
Punkte ausserhalb der Scheibe
gewählt. Für diese Punkte erhält man

aus <Pm- ^jS
nach Marcus:

4>m _ x <Pm + i — 2 <f>'m Js
Aus der in Abb. 5 b angegebenen,

symbolisch dargestellten Gleichung m*2

(8) können mit Hilfe der Abb. 6 und

m~i m

Us

è.—*-

'Is lis

Abbildung 12

1 1-12 t 0

10 6,037 * 2202 - 1,722

H'Jt
~±i m

B 4,322 + 1,173 - 1,779 - 1.821 - »

6 2,761 *¦ 0,570 - 1,183 - 3J35 - 6

4 1,241 1- 0,091 - 0444 - 1,429 - 4

2 0,309 - 0,402 t 0265 * 0,252 -

0 920 - %960 i- 0,360 t 1920 0

Oß -Iß W^&ß -3,2

0 0,923 - i$39 - 2,892

iV=1t
J-J2 0

0 [024 - 1126 - 2ß01 - 2,607 0

0 1,062 - 2,165 - 2,798 - 2j05 0

0 1063 - 2,150 - 2,724 - 2,192 0

0 1,047 - 2}28 - 2.632 - 2165 0

0 - ,02% - Z112 - 2,688 - 2J76 0

Abb. 8. Belastungsfall 1 Abb. 9. Belastungsfall 2

Ordinaten der Airy'sehen Spannungsfunktion 0
Abb. 10. Belastungsfall 1 Abb. 11. Belastungsfall 2

Airy'sche Spannungsfunktion 0

Tabelle I: Das Gleichungssystem (Gleichungsform 2 an <P„ -j- N o)

Gl.*) 4>*19 *20 *2. *28 *29 *30 *35 *"36 *37 ^*38 *43 *« *45 *40 | *52 *53 ^54

19

20

21

+ 22

— 8

+ 1

— 8

+21
— 8

+ 1

— 8

+21

— 8

+ 2
+ 2

— 8

4- 2
+ 2

— 8 + 2

+ 1

+ 1

+ 1
— — — — — — — «jjgp —

27
28
29

30

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

+ 2

+21
—- 8

+ 1

— 8

+20
— 8

+ 1

+ 1

— 8

+20
— 8

+ 1

— 8

+21

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

| 2
+ 2

— 8

+ 1

+ 1

+ 1

+ 1

—
— WSlis

—

35
36

37
38

+ 1

+ 1

+ 1

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

+21

- 8

+ 1

— 8

+20
1 8

+ 1

+ 1

— 8

+20
+ 1

— 8

+21

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

+ 2
+ 2

+ 1

+ 1

+ 1

+ 1

43
44
45
46

—
—

—

| 1

+ 1

+ 1

+ 1

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

+ 21

— 8

+ 1

— 8

+20
— 8

1 1

+ 1

- 8

+20
— 8

+ 1

— 8

+21

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

51
52

53
54

— — —
— —

—
—

+ 1

+ 1

+ 1

+ 1

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

+ 2
+ 2

— 8

+22
— 8

+ 1

— 8

+21
— 8

+ 1

+ 1

— 8

+21
— 8

+ 1

— 8

+ 22

li (Bei. lall 1) N2 (Bei. lall 2)

—84 + 4,8
— 8 + 3,2

+42 +35,2
—16 + 0,8

+ 12 — 1,6

-20 — 8,8
—68 +28,8
—16 +1,6
+ 6 0

-- 6 0

+10 +3,2
—9,92 +0,576
+3,04 —2,112
—3,04 —2,688

+9,92 +4,224

+10,272 + 5,568

+ 6,576 + 9,472

— 6,576 +12,928
—10,272 +18,432

*) Gleichung für den Mittelpunkt m der Gleichung 8 im Netzpunkt
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Abb. 13. Normalspanngn. 0x t/m2 Abb. 14. Normalspanngn. 0 t/m2 Abb. 15. Schubspannungen r t/m2 Abb. 16. Normalspanngn. o* t/m2

für den Belastungsfall 1 für den Belastungsfall 1 für den Belastungsfall 2

W'IOOOl moot

Abb. 18. Schubspanngn. T t/m2

für den Belastungsfall 2

Abb. 19. Hauptspanngn. a t/m2 Abb. 20. Hauptspanngn. jj t/m2

für den Belastungsfall 1

a

Pr^tì
Abb. 21. Hauptspannungen S t/m2 Abb. 22. Hauptspanngn. <j2 t/m2 Abb. 23. Belastungsfall 1 Abb. 24. Belastungsfall 2

für den Belastungsfall 2 Trajektorien (Hauptspannungsrichtungen)

system wird dabei am besten tabellarisch zusammengefasst
(Tabelle I). Nachher wird dieses Gleichungssystem nach dem
abgekürzten Eliminationsverfahren von Gauss aufgelöst und so
die gesamte Spannungsfläche ermittelt (Abb. 8, 9, 10, 11).

Aus der Airy'sehen Spannungsfunktion erhält man mit Hilfe
der Gleichungen (4), (5) und (6) die Spannungen, was mit Hilfe
von Differenzen nach Marcus und mit der Bezeichnung der
Abb. 12 folgende Beziehungen für die inneren Netzpunkte gibt:

(#m_3_ 2$m + <Pm + 3)Js2
1

1

4z/s2

(*„ - 2 <Pm + #„ l)

(*m-2 + *m + 2 — *m-4 — *m + 4>

(10)

Die Endtangenten einer Schnittkurve der Airy'sehen
Spannungsfläche bestimmen die Grösse und die Lage der
Schnittresultierenden (Abb. 4). Die Gleichgewichtsbedingungen, durch
die Knotenlasten der schon gewonnenen Normalspannungen im
Innern der Scheibe ausgedrückt, geben dann die noch fehlenden
Normalrandspannungen. Somit sind sämtliche Spannungen
bekannt (Abb. 13, 14, 15, 16, 17, 18).

1

täs

r^*^MÊÊÊ
PPipiUliPii^"

.calili
wr* ^^ppg^

Tffl-ÏTiîi*******.

M

wimSES

fónmnr&U

RHnrmSSBwl

Abb. 25. Belastg. Fall 1 — Normalspannungen — Abb. 26. Belastg. Fall 2

nach Scheibentheorie und nach der klass. Biegungslehre (gestrichelt)



194 SCHWEIZERISCHE BAUZEITUNG Bd. 124 Nr. 15

Die Hauptspannungen

ffiia + jjEm + *¦2 — F \ 2

sind aus den Abb. 19, 20, 21, 22 ersichtlich. Die Gleichung

tg 2oj
2 t,

(Tx — ay
bestimmt die Richtungen der Hauptspannungen (Trajektorisg™
die in den Abb. 23 und 24 dargestellt sind.

Die Normalspannungen ay sind für die beiden Belastungsfälle
in den Abb. 25 und 26 den nach der Navier'schen Theorie

berechneten Normalspannungen gegenübergestellt. Daraus ersieht
man, dass die Navier'sche Annahme bis zu einer relativ kleinen
Entfernung vom Kraftangriffspunkt der konzentrierten Einzellast

gute Resultate ergibt. Beim Kraftangriffspunkt selbst gibt
die Boussinesq'scheB) Theorie ebenfalls gute Resultate.

Durch eine einfache Kombination erhält man die Spannungen
ax, ay und xx y für jede beliebige und beliebig gerichtete Schützenreaktion

aus den beiden Belastungsfällen (wobei wie schon
gesagt für eine einseitige Schützenreaktion die daraus entstehende
Exzentrizität zu berücksichtigen ist) ,S|ind durch Superposition
mit den Spannungen infolge des Eigengewichtes die totalen
Spannungen ax, ay und xxy. Aus diesen Werten können, wie
vorher angegeben, die Hauptspannungen einfach berechnet werden,

deren Werte die Eisenmenge der Bewehrung, und deren
Richtung die Form dieser Bewehrung bestimmen.

Das hier beschriebene Verfahren ist eine angenäherte
Untersuchung, wobei gewisse Vereinfachungen absichtlich gemacht
wurden, um die Berechnung nicht übertrieben umfangreich zu
gestalten. Da hinter der Konsole, d. h. hinter dem LastangrJ^H
punkt noch Beton vorhanden ist, muss berücksichtigt werden,
dass nicht alle Armierungseisen im Lastangriffspunkt
zusammenlaufen, sondern ihn teilweise umschlingen. Eine genaue
Berücksichtigung dieses Umstandes ist mit einfachen Mi-^^H
möglich.

Die Berechnung der BetonauSpeidung
von Druckstollen
Von Dipl. Ing. OTTO FREY-BAER, Baden (Schluss von S. 179)

Beton gerissen
Wir nehmen an, dass sich am bisher vorausgesetzten

Zustand nur eines geändert hat: der Beton weise radiale Bise auf
und könne daher keine tangentialen Zugspannungen aufnehmen.
Damit gelten natürlich die bisherigen Spannungsgleichungen für
den Beton nicht mehr und es müssen neue gefunden werden.

Beton :
Die radiale Längenänderung der Betonstärke b — a (Abb. 8)

nennen wir Ju. Sie ist definiert durch den Ausdruck
Ju -= (uB)x b

— (wB)x a

Gemäss dem Hooke'schen Gesetz ist

Eg

d (z/m)
doe

Von der radialen Betonspannung yf wissen wir, dass sie

umgekehrt proportional dem Radius ist, also
K

a B

x
Mittels der Randbedingung bestimmen wir K:

x a; a?= (of)*~
Die Funktion für aB lautet demnach:

B a(ff.)

Damit kann Au sehr einfach berechnet werden:

Eb
a(fff)

Eb
:(Ju)
dx

d(Ju)

x -=* a b

X a

mm dx
~TSr X~

«(<) fax « (of)à u §§ 1 (lg b — lg a)EB J x eb.

a(<7_)

Tdu
EB

Für den Felsmantel und die Armierung haben sich die
Ausgangsgleichungen nicht geändert.

Fels :

F m Ep Cp F"t (m + \)x* ~ ~ ar

u? ^-
X

Armierung :

u =t; °° mr
u^.-^L; am3L^(BBa + ^Li)EeFe T a2 V « /

Damit können wir zur Aufstellung der Randbedingungen
schreitli||Sä|

n X a a
(a») - al - Vi (D

r, *= b
uA + Ju= (uF) (2)

n?) e*?) (3)

^^^Kels dieser Randbedingungen erhalten wir drei Gleichungen
x — a

mit den Unbekannten (aa) Cp und a* * Die Auflosung
ergibt :

d x — a

(*? -
apimEß Ep

amEBEF + lg (—\mEeEpFe + (m + 1) EeEBFe

A D X a
aAr (fff + pi

ab(aB)X "(m + 1)
Of 1 |mEp

Man ist nun in der Lage, für jeden beliebigen Punkt des
Querschnittes die Spannungen zu berechnen. Für das bisher als
Beispiel verwendete Stollenprofil sind die sich ergebenden
Spannungswerte bei wechselnder Felselastizität und mit verschiedenen
Armierungsquersehnitten als Diagramm in den Abb. 9 und 10
aufgetragen. Wie man aus diesen Abbildungen leicht ersehen
kann, ist auch bei gerissenem Beton die Armierung nicht
ausgenützt, sofern der Felsmantel einige Güte besitzt. Auch die
übrigen Spannungen sind klein und können dem Material ohne
weiteres zugemutet werden.

F\i-bl BÌX'3Mrvi
<*) M. J. Boussinesq : Applications des

Potentiels. Gauthier-Villars, Paris, 1885.

(Die Linien gleicher Hauptspannungen
sind Kreise).

Abb. 8

3.--
b_.

w+de,
'.da

—*r

(fe pro cm SMIenlängs)

d - wo cm
b - no cm

p,* I0kg/cm2

Es 200000 kg/cur

Abb 9 kg/cm2 Abb. 10

(Fe pro cm Shllenlünge)
I

3 - 100 cm
b - 120 cm

pl 1 io kg/cm2

f» ¦ 200000 kg/cm2

eoo, 1.000.wo 500
Be kg/cm
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