Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 123/124 (1944)

Heft: 14

Artikel: Die Berechnung der Betonauskleidung von Druckstollen

Autor: Frey-Baer, Otto

DOI: https://doi.org/10.5169/seals-54026

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Die Berechnung der Betonauskleidung von Druckstollen. Holzerzeugung und Holztransport bei pfleglicher Waldwirtschaft. -Wettbewerb für ein Primarschulhaus auf dem Felsberg in Luzern. Gasforschung und Gasverwertung. — Eine nichtgehaltene G. E. P.-Bankettrede. - Mitteilungen: Akademischer Fortbildungskurs und Jubiläums-Generalversammlung der G.E.P. Generalversammlungen des S.E.V. und V.S.E. Marseille-Rotterdam en chaland ... Rêve, utopie? Eidg. Technische Hochschule. Die wirtschaftlichste Eisenbahntrasse einer Gebirgsüberquerung. Zementrationierung. Schweizerische Vereinigung für Gesundheitstechnik. Bauten aus Eisenbeton-Fertigteilen. Schweiz. Azetylen-Verein. Kunstgewerbemuseum Zürich. — Wettbewerbe: Schlachthof in Olten. Ortsgestaltung von Männedorf. Ortsplanungs-Wettbewerb Frauenfeld. Schulhaus mit Turnhalle «im Gut», Zürich. — Nekrologe: Friedrich Brändle. Albert Kuhn. - Literatur. - Vortragskalender.

Der S.I.A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Band 124

Nr. 14

Die Berechnung der Betonauskleidung von Druckstollen

Von Dipl. Ing. OTTO FREY-BAER, Baden

Das Problem der Dimensionierung von Stollenauskleidungen ist nicht neu. Eingehende Untersuchungen wurden bereits für Druckschächte ausgeführt, deren hoher Innendruck eine Blechpanzerung erforderte. Aber auch bei Druckstollen mit kleinerem Innendruck bis zu 150 m Wassersäule kann aus verschiedenen Gründen eine Betonauskleidung erforderlich sein, wobei jedoch an den Beton einer solchen Auskleidung wesentlich grössere Anforderungen gestellt werden müssen als an den Beton eines gepanzerten Querschnittes, bei dem die Dichtungsaufgabe von der Panzerung übernommen wird. Wie die nachfolgenden Ausführungen zeigen sollen, sind die in einer einfachen Beton-Auskleidung auftretenden Spannungen je nach dem durchfahrenen Gebirge ganz beträchtlich, sodass es grosse Schwierigkeiten verursacht, absolut rissfrei zu konstruieren. Die Rolle, die eine allfällige Rundeisenarmierung im Kräftespiel eines solchen Stollenquerschnittes übernimmt, ist besonderer Beachtung wert.

Wie bei allen unseren Berechnungen sind wir auch beim vorliegenden Problem auf gewisse Annahmen angewiesen, die von den tatsächlichen Verhältnissen mehr oder weniger abweichen. Beispielsweise müssen wir voraussetzen, dass das Gebirge ein homogener, elastischer Körper sei. Wie schon mehrfach in Stollen ausgeführte Elastizitätsmessungen gezeigt haben, ist diese Annahme nicht so roh, wie es auf den ersten Blick scheint, sie hält jedenfalls einem Vergleich mit den im Betonbau üblichen Annahmen durchaus stand. Hier wie dort sind in unseren Resultaten die Stellen nach dem Komma weniger wichtig; wir müssen vielmehr bestrebt sein, die zu erwartenden ungünstigsten Verhältnisse in richtigem Masse zu berücksichtigen.

1. Theoretische Grundlagen

Das Hooke'sche Gesetz gilt für Beton nur angenähert, für Granit jedoch ist die Abweichung von diesem Gesetz noch beträchtlicher. C. Bach 1) hat für Granit gefunden:

$$\begin{split} & \text{Druck:} = 50.0 < \sigma < 0 \text{ kg/cm}^2 \quad \epsilon = \frac{1}{250 \ 000} \ \sigma^{1,132} \\ & \text{Zug:} \qquad 0 < \sigma < 21 \text{ kg/cm}^2 \quad \epsilon = \frac{1}{235 \ 000} \ \sigma^{1,374} \end{split}$$

Da diese Beziehungen zwischen Spannung und spezifischer Dehnung je nach Felsqualität wiederum gewissen Schwankungen unterworfen sind, muss zur Vereinfachung sowohl für den Beton als auch für den Fels das Hooke'sche Gesetz angewendet werden.

Als Berechnungsgrundlage dient die Theorie für dickwandige Rohre, wie sie z. B. in Föppl, Technische Mechanik, III. Band, Festigkeitslehre, § 58 der 12. Auflage, dargestellt ist.

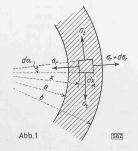
Wir bezeichnen mit:

= elastische Vergrösserung des Radius x:

spez. Dehnung in tangentialer Richtung;

spez. Dehnung in radialer Rich-

Da die Länge eines Kreisumfangs proportional mit dem Radius wächst, ist $\, arepsilon_t = rac{u}{x} . \,$ Die Grösse eines Elementes in radialer Richtung nach erfolgter Formänderung ist $dx + \frac{du}{dx} dx$



und die entsprechende spez. Dehnung beträgt somit $\epsilon_r = \frac{d\,u}{d\,x}$.

Gemäss dem erweiterten Hooke'schen Gesetze ist:
$$\varepsilon_t = \frac{1}{E} \left(\sigma_t - \frac{1}{m} \, \sigma_r \right) \quad \varepsilon_r = \frac{1}{E} \left(\sigma_r - \frac{1}{m} \, \sigma_t \right)$$

$$m = \text{Poisson'sche Zahl}$$

Durch Auflösen dieser beiden Gleichungen und Einsetzen der oben gefundenen Werte für ε_t und ε_r erhalten wir:

1) C. Bach: «Elastizität und Festigkeit»; 8. Auflage, Seite 90.

$$\sigma_t = rac{m\,E}{m^2-1} \left(m\,rac{u}{x} + rac{d\,u}{d\,x}
ight) \ \sigma_r = rac{m\,E}{m^2-1} \left(m\,rac{d\,u}{d\,x} + rac{u}{x}
ight)$$

Werden nun an einem Element mit den Grössen in radialer Richtung von dx und in tangentialer Richtung von $xd\alpha$ und $(x+dx)d\alpha$ die Seitenkräfte angebracht und in radialer Richtung die Gleichgewichtsbedingung angeschrieben, ergibt sich die Gleichung

$$x^{2} \, \frac{d^{2} \, u}{d \, x^{2}} + x \, \frac{d \, u}{d \, x} - u = 0$$

Die Lösung dieser Differentialgleichung lautet:

$$u = Bx + \frac{C}{x}$$

Die beiden Integrationskonstanten B und C müssen jeweils mittels der Randbedingungen berechnet werden.

2. Berechnung des Elastizitätsmoduls des Gebirges

Der E-Modul des Gebirges ist in der Regel kleiner als derjenige eines Handstückes vom gleichen Material. Um den E-Modul der Stollenwandung in einem bestimmten Querschnitt einwandfrei feststellen zu können, ist es unerlässlich, in diesem Querschnitt Dehnungsmessungen vorzunehmen. Es wird daher vorausgesetzt, dass die Radiusvergrösserung u bei einem erzeugten Innendruck pi bekannt ist. Der Radius des Ausbruch-Profiles sei b, der Aussenradius des «dickwandigen Rohres» unendlich. Die Randbedingungen zur Berechnung der Integrationskonstanten lauten somit:

$$x \equiv b : (\sigma_r)^{x \equiv b} \equiv -p_i \ldots (2)$$

Aus der Bedingung (1) ergibt sich $m\frac{du}{dx}+\frac{u}{x}=0$. Darin bedeuten $u=Bx+\frac{C}{x}$ und $\frac{du}{dx}=B-\frac{C}{x^2}$. Setzt man diese Werte für u und $\frac{du}{dx}$ ein, so erhalten wir

$$mB + B \equiv 0; B \equiv 0$$

Die zweite Bedingung lautet:

$$egin{aligned} -p_i &= rac{m\,E}{m^2-1} \left(-\,m\,rac{C}{b^2} + rac{C}{b^2}
ight) = rac{m\,E}{m^2-1} \,rac{1-m}{b^2}\,C \ &= p_i\,b^2rac{m+1}{m\,E} \ &= rac{C}{b} = rac{p_i\,b\,(m+1)}{m\,E} \ &= rac{p_i\,b\,(m+1)}{u\,m} \end{aligned}$$

Darin bedeuten:

ergeben:

 $p_i =$ Innerer Wasserdruck

= Radius des Stollenprofils

= Längenänderung des Radius (Vergrösserung positiv, Verkleinerung negativ)

 $m = ext{Poisson'sche Konstante} \cong 6$

Eine kürzlich ausgeführte Dehnungsmessung in einem Stollen von 2,40 m \varnothing hat bei einem Innendruck von 10 kg/cm² ein u=0,01875 cm ergeben. Damit konnte der E-Modul des Felsens sehr einfach ermittelt werden:

telt werden:
$$E = \frac{10 \cdot 120}{0,01875} \cdot \frac{7}{6} = \frac{75000 \text{ kg/cm}^2}{1000 \text{ kg/cm}^2}$$

3. Spannungen im unverkleideten Felsmantel bei Innendruck Bei der Berechnung des E-Moduls des Felsmantels hat sich

$$B \equiv 0$$
 $C = p_i b^2 \frac{(m+1)}{m E}$

Damit lassen sich die Spannungen leicht berechnen:

$$u = Bx + \frac{C}{x} = p_{i} \frac{b^{2}(m+1)}{mEx}$$

$$\frac{du}{dx} = B - \frac{C}{x^{2}} = -p_{i} \frac{b^{2}(m+1)}{mEx^{2}}$$

$$\underline{\sigma_{t}} = \frac{mE}{m^{2} - 1} \left(m \frac{u}{x} + \frac{du}{dx} \right) = p_{i} \frac{a^{2}}{x^{2}}$$

$$\underline{\sigma_{r}} = \frac{mE}{m^{2} - 1} \left(m \frac{du}{dx} + \frac{u}{x} \right) = -p_{i} \frac{a^{2}}{x^{2}}$$

Somit sind in allen Punkten des Felsmantels die Tangential- und Radialspannungen in ihren absoluten Werten gleich, besitzen aber umgekehrte Vorzeichen. An der Stollenleibung erreichen sie ihr Maximum in der Grösse des Innendruckes. Das heisst aber, dass die uns besonders interessierenden tangentialen Zugbeanspruchungen bei einem Innendruck von 100 m Wassersäule 10 kg/cm² betragen, ein Wert, der jedem gesunden Gebirge ohne weiteres zugemutet werden darf.

4. Unarmierte Betonauskleidung bei Innendruck

Sei es, dass das Gebirge trotz gutem elastischem Verhalten untragbare Wasserverluste zeigt oder dass es wirtschaftlich ist, den Rauhigkeitskoeffizient zu verbessern, wird man sich entschliessen, den Stollen mit einer einfachen Betonauskleidung zu versehen. Solange der Beton keine Risse parallel zur Stollenaxe aufweist, wird er sich an der Aufnahme des Innendruckes im Masse seines elastischen Verformungsvermögens mitbeteiligen. Ist der Beton gerissen, dient er nur zur Uebertragung der radialen Druckspannungen auf den Fels, von dem die Tangentialspannungen allein übernommen werden können.

Wir nehmen nun an, dass der Beton nicht gerissen sei und überall satt am Felsen anliege und berechnen die Spannungen die im Beton und im Felsmantel auftreten.

Beton:

Bezeichnungen:

 $u^B = ext{Radialverschiebung eines Betonelementes}$

x =Radius des betrachteten Elementes

 $E_B \equiv {
m Elastizit ilde{a}tsmodul}$ des Betons

 σ_t^B und $\sigma_r^B =$ Tangential- bzw. Radialspannung im Beton

$$\sigma_{t}^{B} \text{ und } \sigma_{r}^{F} = \text{Tangential- bzw. Radialspannung im Beton}$$

$$B_{B} \text{ und } C_{B} = \text{Integrationskonstanten im Betonbereich}$$

$$u^{B} = B_{B} x + \frac{C_{B}}{x} \qquad \frac{du^{B}}{dx} = B_{B} - \frac{C_{B}}{x^{2}}$$

$$\sigma_{t}^{B} = \frac{mE_{B}}{m^{2} - 1} \left(m \frac{u}{x} + \frac{du}{dx} \right) =$$

$$= \frac{mE_{B}}{m^{2} - 1} \left[B_{B} (m+1) + \frac{C_{B}}{x^{2}} (m-1) \right]$$

$$\sigma_{r}^{B} = \frac{mE_{B}}{m^{2} - 1} \left(m \frac{du}{dx} + \frac{u}{x} \right) =$$

$$= \frac{mE_{B}}{m^{2} - 1} \left[B_{B} (m+1) - \frac{C_{B}}{x^{2}} (m-1) \right]$$

$$Fels:$$

 $u^{r} =$ Radialverschiebung eines Felselementes

x =Radius des betrachteten Felselementes

 $E_F = {
m Elastizit iny Elsens}$

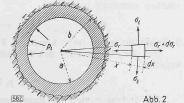
 σ_t^F und σ_r^F = Tangential- bzw. Radialspannung im Felsen B_F und $C_F=$ Integrationskonstanten im Felsbereich

$$\begin{split} B_F \text{ und } C_F &= \text{Integrationskonstanten im Felsbereich} \\ u^F &= B_F x + \frac{C_F}{x} \qquad \frac{d u}{d x} = B_F - \frac{C_F}{x^2} \\ \sigma_t^F &= \frac{m \, E_F}{m^2 - 1} \left(m \, \frac{u}{x} + \frac{d u}{d x} \right) = \\ &= \frac{m \, E_F}{m^2 - 1} \left[B_F \left(m + 1 \right) + \frac{C_F}{x^2} \left(m - 1 \right) \right] \\ \sigma_r^F &= \frac{m \, E_F}{m^2 - 1} \left(m \, \frac{d \, u}{d \, x} + \frac{u}{x} \right) = \\ &= \frac{m \, E_F}{m^2 - 1} \left[B_F \left(m + 1 \right) - \frac{C_F}{x^2} \left(m - 1 \right) \right] \end{split}$$

Mittels der vier Randbedingungen müssen nun vorerst die vier Integrationskonstanten B_B , B_F , C_B und C_F bestimmt werden.

$$(\sigma_r^F)^{x=\infty} = 0 \quad . \quad . \quad (1)$$

$$(\sigma_r^F)^{x=b} = (\sigma_r^B)^{x=b}.$$
 (2)



$$\left(\sigma_{r}^{B}\right)^{x=a}=-p_{i}\ldots\ldots\ldots\ldots$$
 (3)

$$(ab)^{x = b} \qquad F = b$$

$$\frac{m E_F}{m^2-1} \left[B_F \left(m+1 \right) - \frac{C_F}{b^2} \left(m-1 \right) \right] = 0$$

$$= \frac{m E_B}{m^2 - 1} \left[B_B (m+1) - \frac{C_B}{b^2} (m-1) \right] \dots \dots (2$$

Aus diesen letzten vier Gleichungen sind mit Leichtigkeit die vier Unbekannten zu berechnen. Da es sich um eine rein algebraische Operation handelt, können wir uns die Ausführung ersparen und wenden uns, da nun sofort die Spannungen berechnet werden können, einem Beispiel zu.

Es sei:

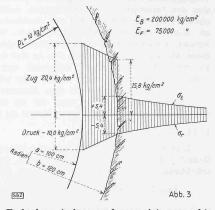
$$a=100~{
m cm}$$
 $b=120~{
m cm}$ $p_i=10~{
m kg/cm^2}$ $m=6$ $E_B=200~000~{
m kg/cm^2}$ $E_F=75~000~{
m kg/cm^2}$

(in Abschnitt 2 berechnet)

$$B_F = 0$$
 $C_F = + 1,199$ $B_B = + 0,00002165$ $C_B = + 0,887$ $(\sigma_t^B)^{x=a} = + 20,4 \text{ kg/cm}^2$ $(\sigma_t^B)^{x=a} = -10,0 \text{ kg/cm}^2$ $(\sigma_t^B)^{x=b} = + 15,8 \text{ kg/cm}^2$ $(\sigma_t^B)^{x=b} = -5,4 \text{ kg/cm}^2$ $(\sigma_t^F)^{x=b} = -5,4 \text{ kg/cm}^2$

Diese Spannungen sind in Abb. 3 graphisch dargestellt.

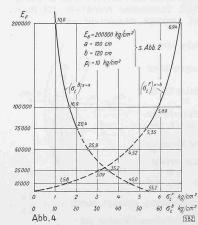
Die tangentiale Betonzugspannung von 20 kg/cm2 infolge Innendruck erreicht den Bereich der Betonzugfestigkeit. Wenn man an die zusätzlichen Temperaturspannungen denkt, kann mit Sicherheit angenommen werden, dass der Beton reisst. Trotzdem dies für den Beton eine charakteristische Eigenschaft ist, gibt



dies im Wasserbau zu Bedenken Anlass und man ist versucht, diese Zugspannungen mittels einer Armierung herabzusetzen. Vorerst soll jedoch noch gezeigt werden, welche Werte die uns am meisten interessierenden tangentialen Zugspannungen

$$(\sigma_t^B)^{x=a}$$
 und $(\sigma_t^F)^{x=b}$

bei verschiedenen Elastizitätsmoduli des Felsmantels annehmen.



Wir benützen dazu wiederum den obigen Stollenguerschnitt und lassen den E-Modul des Felsens von 200 000 kg/cm² bis auf Null sinken.

Es ist aus Abb. 4 ersichtlich, dass bei einer guten Felsqualität mit einem E von 200 000 kg/cm² die Betonzugspannung bei 100 m Wassersäule Innendruck 10 kg/cm² beträgt, welche Spannung einem guten Beton noch zugemutet werden darf. Zudem ist die Durchmesserdehnung sehr klein, sodass Risse, die z.B. in Arbeitsfugen

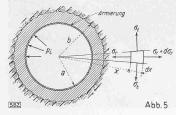
auftreten können, keine schädlichen Wasserverluste zur Folge

5. Armierte Betonauskleidung bei Innendruck

Wie sich bei der Berechnung der unarmierten Betonauskleidung gezeigt hat, erreichen die tangentialen Zugspannungen im Beton Werte, die ein Reissen des Betons vermuten lassen. Es wird nun von besonderem Interesse sein, zu untersuchen, wie stark diese Zugspannungen im Beton mittels einer Armierung reduziert werden können und wie stark dabei die Armierung beansprucht wird. Anschliessend soll dann noch die Spannungsberechnung durchgeführt werden unter der Annahme, dass der Beton eine grosse Anzahl radialer Risse aufweise.

a) Beton nicht gerissen

Wir müssen voraussetzen, dass der Zusammenhang zwischen Beton und Fels einerseits und Beton und Rundeisen anderseits nicht gestört sei. Um die Rechnung nicht unnötig beschwerlich zu gestalten, wird zudem die vereinfachende Annahme getroffen, dass der Radius der Armierung gleich dem Innenradius der Betonauskleidung sei (a in Abb. 5).



An der Uebernahme des Innendruckes beteiligen sich nun kraft ihres elastischen

Verformungsvermögens nebst dem Beton und dem Felsmantel auch die Rundeisen, die wir uns über die Stollenlänge gleichmässig verteilt denken. Diesem Zusammenwirken müssen wir

beim Ansatz der Randbedingungen Rechnung tragen. Für den Verlauf der Spannungen im Beton und im Felsen können jedoch wieder die allgemeinen Ausgangsgleichungen wie bisher benützt werden:

Beton:

$$\sigma_{t}^{B} = rac{m \, E_{B}}{m^{2} - 1} \left[B_{B} \, \left(m + 1
ight) + rac{C_{B}}{x^{2}} \, \left(m - 1
ight)
ight] \ \sigma_{r}^{B} = rac{m \, E_{B}}{m^{2} - 1} \left[B_{B} \, \left(m + 1
ight) - rac{C_{B}}{x^{2}} \, \left(m - 1
ight)
ight] \ u^{B} = B_{B} \, x + rac{C_{B}}{x}$$

Fels:

Durch die Bedingung, dass $(\sigma_r^F)^{x=\infty}=0$ sein muss, wird die Integrationskonstante $B_F=0$. Die Grundgleichungen lauten daher in der vereinfachten Form

$$\sigma_t^F = rac{m E_F}{(m+1) x^2} C_F = -\sigma_r^F$$
 $u^F = rac{C_F}{x}$

Armierung:

 $u^A = \text{Radialverschiebung der Armierung}$

 $\sigma_e = \text{Eisenspannung (tangential)}$

 $\sigma^A = \text{radiale Eisenspannung}$

 $E_e = {
m Elast. ext{-}Modul}$ des Eisens

 $F_e =$ Querschnitt des Eisens pro Einheit der Stollenlänge

Randbedingungen:

$$(\sigma_r^F)^{x=b} = (\sigma_r^B)^{x=b} \quad . \quad . \quad . \quad . \quad (1)$$

$$(\sigma_{r}^{B})^{x=a} - \sigma_{r}^{A} = -p_{i} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2)$$

$$(u^B)^{x=b} = (u^F)^{x=b} \dots \dots (3)$$

Vorerst bedarf die Gleichung (2) noch einiger Erläuterungen, da der Wert der Spannung σ_r^A noch unbekannt ist. Wir wissen nur, dass sie durch die Anspannung der Eisen nach innen auf den Beton und daher der Betondruckspannung entgegenwirkt. Nun ist aber

$$(u^B)^{x=a}=u^A$$

und $(u^B)^{x=a}=B_B\,a+rac{C_B}{a}$
 $u^A=rac{a\,\sigma_e}{E_e}$

Daraus ergibt sich

$$\sigma_e = rac{E_e}{a} \left(B_B \ a + rac{C_B}{a}
ight)$$

Nach der Kesselformel ist $\sigma_e = rac{a \, \sigma_r^A}{F_e}$

Wenn wir diese Ausdrücke für σ_e einander gleichsetzen, und nach σ_r^A auflösen, erhalten wir

$$\sigma_{r}^{A}=rac{E_{e}\,F_{e}}{a^{2}}\left(B_{B}\,a+rac{C_{B}}{a}
ight)$$

Damit können wir zur Bestimmung der Integrationskonstanten übergehen:

$$C_F = rac{E_B}{E_F} \; C_B - rac{b^2 \, E_B \; (m+1)}{E_F \; (m-1)} \, B_B \;\;\;\; . \;\;\; . \;\;\; (1)$$

$$B_B\left(rac{m\,E_B}{m-1}-rac{E_e\,F_e}{a}
ight)-C_B\left[rac{m\,E_B}{(m+1)\,a^2}+rac{E_e\,F_e}{a^3}
ight]=-P_i$$
 (2)

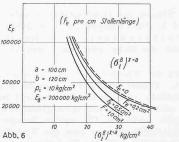
$$C_F - B_B h^2 + CB \qquad (3)$$

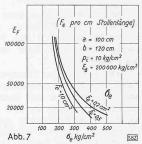
Auch hier dürfen wir uns die algebraische Darstellung der Unbekannten B_B , C_B und C_F ersparen, umsomehr als im gegebenen Falle durch Einsetzen der bekannten Zahlenwerte die Arbeit stark erleichtert wird. Als Beispiel diene wiederum der in den vorhergehenden Kapiteln untersuchte Stollenquerschnitt,

$$a=100 \; {
m cm} \qquad b=120 \; {
m cm} \qquad p_i=10 \; {
m kg/cm^2} \qquad m=6 \ E_e=2100\,000 \; {
m kg/cm^2} \qquad E_B=200\,000 \; {
m kg/cm^2}$$

 E_F und F_e seien variabel, wobei jedoch zu beachten ist, dass der Eisenquerschnitt pro cm Stollenlänge eingeführt wird.

Durch Berechnung der Unbekannten B_B , C_B und C_F für verschiedene Werte von E_F und F_e und nachheriges Einsetzen in die Spannungsgleichungen wurde der Verlauf der Tangentialspannung im Beton an der Innenleibung und der Verlauf der Eisenspannung erhalten, wie er in den Abbildungen 6 und 7 dargestellt ist.





Es gehen aus den Diagrammen folgende zwei Tatsachen mit aller wünschbaren Deutlichkeit hervor: Die Armierung kann bei weitem nicht ausgenützt werden. Als zweites muss festgestellt werden, dass die tangentiale Zugspannung im Beton durch die Armierung ganz unwesentlich vermindert wird, sodass trotz der Bewehrung mit dem Reissen des Betons gerechnet werden muss.

(Schluss folgt)

Holzerzeugung und Holztransport bei pfleglicher Waldwirtschaft

Von Prof. Dr. H. KNUCHEL, Abteilung für Forstwirtschaft a. d. E. T. H. (Schluss von Seite 176)

3. Holzrüstung, Holztransport und Transporteinrichtungen

Eine verfeinerte Waldwirtschaft kann nur bei sehr guter Aufschliessung der Wälder durch Strassen, Schlittwege und andere Transporteinrichtungen getrieben werden, die gestatten, jederzeit und überall Bäume der verschiedensten Grösseklassen zu fällen und abzutransportieren. Die Aufschliessung unserer Wälder ist in den letzten Jahrzehnten ungemein gefördert worden, zum Teil mit Unterstützung des Bundes. Alle Projekte werden sorgfältig geprüft, und es werden Beiträge nur für gut angelegte Transporteinrichtungen gewährt. Im Laufe der Zeit wurden Erfahrungen gesammelt, die beim Bau neuer Transporteinrichtungen zu berücksichtigen sind. Es seien hier nur einige forstliche Gesichtspunkte berührt.

Aus den Schlägen wird das Holz zunächst an die Wege oder auf Sammelplätze geschleift. Man nennt das Rücken. An den Wegen werden aus gleichartigen Stücken Lose gebildet, was man Sortieren nennt. Es folgt die Schlagaufnahme, durch die das Holz von der Verwaltung übernommen wird; sie ist verbunden mit der Kontrolle der Rüstung und der Maße, sowie mit der Schätzung des Wertes jeder Verkaufsnummer. Dann werden die Maßlisten erstellt und das Holz zum Verkauf ausgeschrieben. Mit Ausnahme des Papierholzes und gelegentlich auch anderer Sortimente wird das Holz in den Wäldern des Mittellandes und des Jura ab Wald verkauft, d. h. die Preise verstehen sich für im Schlag liegendes oder an die Wege und auf Lagerplätze gerücktes Holz. Im Gebirge werden die Rüstung und Beifuhr meist an Akkordanten vergeben, und die Preise verstehen sich dann ab Lagerplatz der Talstation.