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Knickstabilität
Von Ing. Dr. J. BRUNNER, EMPA, Zürich

[Die vorliegende Abhandlung ist gedacht als einleitendes
Kapitel einer grösseren Schrift: «Die Knickstabilität der
technisch wichtigsten Baustoffe» die von der Eidg. Materialprüfungsund

Versuchsanstalt herausgegeben werden wird.]
Die mangelnde Knicksicherheit von auf Druck beanspruchten

Konstruktionsgliedern hat sich im Ingenieurbauwesen oft
verhängnisvoll ausgewirktaBpreiviertel aller Einstürze im Eisen-
Brückenbau, im Holz- und Eisenhochbau sind auf ungenügende
Knicksicherheit zurückzuführen. Der Knickgefahr ausgesetzten
Baugliedern ist daher die grösste Sorgfalt bei der Berechnung
und konstruktiven Durchbildung zuzuwenden. Insbesondere muss
dem die Knicksicherheit vermindernden Einfluss des exzentrischen

Kraftangriffes die gebührende Beachtung zuteil werden.
Die Frage der KnickstabilitOTpatte die Eidg. MaterialprUfungs-

und Versuchsanstalt (Zürich) schon unter ihrem ersten
Direktor, Prof. L. von Tetmajer ganz besonderes Mteresse
gewidmet, wie die Veröffentlichungen aus den||§àhren 1889/1901
beweisen. Auf Grund der gross angelegten VeEHche wurden die
bekannten Knickformeln aufgestellt, die in ihrem emjSischen
Bereich heute noch volle Anerkennung gemessen.

Die Versuche über Knickfestigkeit wurden in den Jahren
1925/1940 wieder aufgenommen und dabei vor allem der Frage
des exzentrischen Knickens Aufmerksamkeit geschenkt, wie denn
überhaupt in diesen Jahren an den Internat. Brückenbau-Kongressen

diese Fragen mehrfach behandelt wurden. Es ergab sich
die Möglichkeit, die Knickfestigkeit wie beim zentrischen
Lastangriff auch bei exzentrischem Lastangriff aus dem Spannungs-
Dehnungs-Diagramm abzuleiten, was z. B. für Baustoff mit neuen
Eigenschaften (hochwertiger Baustahl, Si-Stahl, Gusstahl,
Leichtmetalle, Holz verschiedener QuaMEt, Beton verschiedener Qualität

usw.) von Wichtigkeit ist. Es können die Knickspannungs-
Linien theoretisch abgeleitet werden. Die Versuchsreihen dienen
dann zur praktischen Ueberprüfung der Theorien. Die physikalisch

richtige Erfassung des Knickproblems gestattet auch
statisch verwickeitere Verhältnisse zu behandeln. So wurden
untersucht: Knicken bei nach beiden Hauptaxen exzent-Srchem
Lastangriff, Knicken bei exzentrischem Lastangriff in einer Hauptaxe
und Knickrichtung nach der andern Hauptaxe, Knicken bei
gleichzeitig wirkender Seitenlast ; Einfluss der Querschnittform.
Auch an die Frage der gegliederten Stäbe und der Rahmenstäbe
wurde herangetreten und die Theorie durch Versuche überprüft1).

Das Wesen des Knickens
In den Knickerscheinungen erkennen wir ein Stabilitäts-

Problem, das sich nicht auf das Erreichen einer durch das Material

gegebenen, bestimmten Spannung zurückführen lässt; nicht
das Auftreten einer gewissen RandfaserSpannung, etwa der
Proportionalitätsgrenze, der Fliessgrenze oder der Bruchgrenze führt
den Knickzustand herbei, sondern das Eintreten der instabilen
Gleichgewichtslage des Stabes für die äussern belastenden Kräfte
und die innern elastischen Reaktionskräfte (bei einer virtuellen
Ausbiegung). Ein sehr schlanker Stab knickt schon weit vor
dem Erreichen der Proportionalitätsgrenze aus, ein sehr
gedrängter Stab überwindet die Fliessgrenze. Die zulässige
Belastung liei Knickerscheinungen ist also herzuleiten aus der
kritischen Belastung, die die Instabilität erzeugt. Erst aus der Knicklast

kann sekundär, unter Einsetzen eines Sicherheitsfaktors
eine zulässige Beanspruchung rechnerisch hergeleitet werden.

Wir bemerken hier, dass der Baustatik eben zwei Kriterien
dienen: Einerseits muss das von äussern und innern Kräften
gebildete Gleichgewicht stabil sein, anderseits dürfen die zu
definierenden Spannungen gewisse vom Baustoff abhängige
Grenzen nicht überschreiten. Entsprechend gliedert sich die ganze
Festigkeitslehre in eine «Stabilitätstheorie» und eine «Spannungstheorie»

(Handbuch Schleicher). Für sehr gedrungene Stäbe geht,
wie wir unten bemerken, das Stabilitätsproblem in ein Spannungs-

¦) Vergi. : M. Ros und J. Branner. Die Knicksicherheit von an beiden
Enden gelenkig gelagerten Stäben aus Konstruktionsstahl.

M. Ros. Abhandlung im Bericht der Internat. Tagung für Brücken-
und Hochbau, Wien 1928. — Abhandlung Im Kongressbericht der Internat.
Tagung für Brücken- und Hochbau, Paris 1932.

(Druckfestigkeits)-Problem über. Das Stabilitätsproblem bietet
aber das umfassende Kriterium, in dem erweiterten Sinne, dass
auch das Zerreissen oder Zerdrücken einer Faser Unstabilität
hervorrufen kann.

Zur Orientierung wollen wir an dieser Stelle den allgemeineren

Begr» der Stabilität, wie ihn die allgemeine Physik lehrt,
in Betracht ziehen. Den einfachsten Fall der drei Gleichgewichtslagen

zeigJBin körperliches Pendel, je nachdem es oberhalb oder
unterhalb des Schwerpunktes oder in diesem selbst aufgehängt
ist. Analoge Beispiele ergeben Körperketten, die Schiffstabilität,
die Standfestigkeit von Stützmauern usw.

Die Statik kennt zur Charakterisierung der Stabilität das
energetische Mass (positive und negative Arbeit, die bei einer
virtuellen Bewegung in Erscheinung tritt), das dynamische Mass
(die <|ttsse einer bestimmten Kraft oder Belastung, die Bewegung

erzeugt). Auf einen festen, unelastischen Körper, z. B. eine
Stützmauer angewendet, zeigen sich folgende Verhältnisse
(Abbildung 1): Das energetische Mass der Standfestigkeit ist hier
Mkrft B Q- (r — h). Im vorliegenden Fall ist für eine Bewegung
positive Arbeit zu leisten. Der Standsicherheitsgrad beträgt:
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Abb.l. Energetisches G (r-h) und % dynamisches P
Mass der Standfestigkeit

-Pkrit verursacht eine Bewegung. Der Standsicherheitsgrad
beträgt : PkritHfl ~o

**¦ vorh
Der Fall der elastischen Stabilität (es hat sich hier das

Wort «Stabilität» statt «Standfestigkeit» in die Literatur
eingebürgert) tritt in Erscheinung beim Knicken eines Stabes. Ein
gelenkig gelagerter, mit P belasteter Stab ist, sofern er eine
gewisse Länge nicht überschreitet, im stabilen Gleichgewicht
und wird nicht ausknicken. (Wir variieren hier gedanklich die

P
Lange des Stabes und behalten P bei, um die Spannung a -^=-r
konstant zu halten und zu zeigen, dass nicht die Spannung für
die Stabilität massgebend ist). Ueberschreitet der Stab aber
diese Länge l^ bei der Last P, so knickt er aus. Das energetische

Mass der Stabilität erweist, dass von dieser Länge Zj*. ab
die elastische Energie, die einer Ausbiegung des Stabes
entspricht, kleiner ist als die potentiale Energie, herrührend von
der mit der Ausbiegung verbundenen Senkung des belastenden
Gewichtes. In der Folge benutzen wir aber in dem vorliegenden
Bericht nur das «dynamische Mass» der Stabilität durch
Bestimmung der Kraft P, bei der eine Bewegung, ein Ausweichen
des Stabes (von konstanter Länge) eintreten, d. h. die stabile
Lage in eine instabile übergehen würde. Es wird also die Knickkraft

Pjc bestimmt. Wir legen hier die grundsätzlichen Verhältnisse

etwas schematisiert dar, um erst später auf die Verfeinerungen

einzugehen.
Stellen wir uns einen vorerst sehr schlanken Stab vor, und

geben ihm eine virtuelle Ausbiegung, z. B. durch eine störende
Seitenkraft, so erfolgt nach deren Wegnahme wieder eine
Rückkehr in die gerade Lage, solange die belastende Kraft P
kleiner bleibt als die kritische Last Pj. und wenn in keinem Stab-
Element die Proportionalitätsgrenze überschritten wurde; eine
wenigstens teilweise Rückkehr, wenn eine Ueberschreitung
vorkam. Das dem Ausbiegen entgegenwirkende innere Reaktions-
Moment aus den Elastizitätskräften — dessen quantitative
Bestimmung wir später geben werden — wächst stärker an ala
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das äussere belastende Moment Pf, wobei / der
Ausbiegungs-Pfeil ist. Ueberschreitet P den
Wert Pk, so wächst bei einer virtuellen
Ausbiegung das äussere Moment P / stärker an als
das innere. Der Stab kommt in labile
Gleichgewichtslage; bei gleich starkem Anwachsen
hätten wir indifferente Gleichgewichtslage. Labil
und indifferent fassen wir zusammen unter der
Bezeichnung instabil. Die bekannte Euler'sche
Formel : jt2 EJ

Pk mm
gibt uns diese kritische Last, vorerst für
Knicklängen, bei denen unter der kritischen Last die
Proportionalitätsgrenze des Materials nicht
überschritten wird.

Wir haben bei unsern Ueberlegungen je nach
Erfordernis für einen als gegeben angenommenen
Stabquerschnitt entweder die Stabkraft P oder
die Stablänge l variiert, um den kritischen Wert
dieser beiden Grössen zu erhalten. Einem
bestimmten P entspricht eine kritische Länge Z^ und
einem bestimmten Z entspricht eine kritische
Last Pk. Um uns nun von der Grösse des
Stabquerschnittes frei zu machen, führen wir statt

P
~F~

und statt der Stablänge l den Schlankheitsgrad
l

des Stabes, also — ein. Die Eulerformel ergibt
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Abb. 2.

Die Schlankheitsbereiche, in denen unter der
kritischen Last die Proportionalitätsgrenze nicht
überschritten wird, entsprechen ungefähr folgenden

Schlankheitsgraden bei gelenkiger Lagerung
der Stabenden:

Baustahl Iji > 105 bis 110

Bauholz Iji > 85 bis 100

Eisenbeton Iji > 160 bis 190

Unterschreitet dagegen der Schlankheitsgrad
eine gewisse Grenze, so wird für die Tragkraft
nicht mehr die Knickstabilität, sondern die
«Druckfestigkeit» des Materials massgebend, analog
der frühern Bemerkung über die Stabilität einer
Stützmauer, sodass z. B. das Abdrücken einer
Kante ausschlaggebend werden kann, wobei also nicht ein Sta-
bilitäts-, sondern ein Spannungs-Problem vorläge.

Eine Knickgefahr tritt bei unsern gebräuchlichsten
Baustoffen beim Unterschreiten etwa folgender Schlankheitsgrade
nicht mehr auf:

Baustahl Iji < 10 bis 15

Bauholz Z/i < 20 bis 25

Eisenbeton Z/i < 35 bis 50

In den dazwischen liegenden Schlankheitsgraden, bei Ueber-
schreitung der Proportionalitätsgrenze, muss an Stelle des

Elastizitätsmoduls E ein entsprechender Modul Tu treten, den wir
weiter unten ermitteln.

Die Eulerformel mit dem Elastizitätsmodul E und die
erweiterte Eulerformel mit dem Kniekmodul T^ geben für den
zentrisch belasteten, geraden Stab und für die im Bauwesen
gewöhnlich vorkommenden Schlankheitsgrade die praktisch
zutreffenden Lasten. Für extrem schlanke Stäbe, wie sie in der
Baupraxis aber selten vorkommen (lange Stangen, dünne Bretter
usw.) wird bemerkbar, dass die Knicklast nicht ganz vom
Ausbiegungspfeil / unabhängig ist : der sogenannte «.Grashof-Effekt»
tritt in Erscheinung. Die Eulerformel wurde unter gewissen
vereinfachenden Annahmen abgeleitet. Die vollständigere «Grashof-
Formel» hat gegenüber der einfacheren «Eulerformel» weniger
¦praktische Folgerungen zum Zwecke, als eine begriffliche
Abklärung.

Der Grashof'sche Ausdruck, wie er durch genaue Integration
der Differentialgleichung für das Gleichgewicht eines virtuell
ausgebogenen Stabes gefunden wird, lautet:

7t2EJ r jï2 //\2 "1

p* -zK1 + -it(t) mm
Das erste Glied der Reihe ist der Euler'sche Ausdruck.

Wir sehen, dass die Tragkraft etwas abhängig ist vom
Ausbiegungs-Pfeil und dass unser Instabilwerden eigentlich ein

— ï ^Moment
\ M;

Linie

LastP

Pfeilf-

Exzentrizitätp

deräussern Momente
WSm

(entspr. Hochstiast)

Kurve der Innern
Momente Mi

'entspr. Euler'sclren Knicktest)

Moment Mi

Linie der, äussern Momente
Ma-P-F
(entspr. Hochstlaet)

Kurve den Innern
Momente Ml

Exzentrizität -
Ausbiegung P

Prinzipielle Verhältnisse der Knickstabilität

(entspr.
Grenze.)

Ausbiegung

Abb. 3

«Verzweigungspunkt» der Gleichgewichtslage ist. Die gerade
Form des Stabes wird eine labile Form und es stellt sich
ein kleiner Ausbiegungspfeil ein. (Rein theoretisch, bei idealer
Homogenität und Geradheit des Stabes, könnte diese labile
Lage auch für höhere Lasten bestehen bleiben; zu vergleichen
etwa mit der labilen Lage eines auf die Spitze gestellten
Bleistiftes.) Nun aber haben alle unsere Baustoffe eine
Proportionalitätsgrenze, d. h. das Hooke'sche Gesetz der Proportional?^^
zwischen Spannung und Dehnung gilt nicht unbeschränkt, nach
Ueberschreiten derselben strebt die Tragfähigkeit rasch einem
Maximum zu und fällt dann ab (Abb. 2).

Für Schlankheitsgrade der Baupraxis kommt die Erhöhung
der Tragkraft durch den «Grashof-Effekt» gar nicht in Frage.
Es kann sich bis zum Erreichen der Höchstlast kein in Rechnung

fallender Ausbiegungspfeil entwickeln und die Euler'sche
Knickkraft ist die praktische Tragkraft. UmSen zahlenmäs-
sigen Begriff zu erhalten, sei folgendes angeführt: Für einen
Eisenstab vom Schlankheitsgrade Iji 500 beträgt b;eï einer
Ausbiegung bis zum Erreichen der Proportionalitätsgrenze die

.Erhöhung der Tragkraft 0,8 %0 (Versuche mit Flacheisenstäben
an der EMPA).

Wenden wir uns dem exzentrischen Knicken zu (Abb. 3).
Ein exzentrisch gedrückter Stab biegt sich mit steigender Last
gleich von Anfang an aus. Er besitzt einzig die gebogene Form
als Gleichgewichtslage. Für ein Material, das unbeschränkt dem
Hooke'schen Gesetze gehorchen würde, könnte man die Last
.steigern, bis in einer Randfaser die Bruchspannung erreicht
wäre. Erst die Abweichung von der Hooke'schen Gesetzmässigkeit,

die Unproportionalität zwischen Spannung und Dehnung,
bietet die Voraussetzung für die Existenz eines Stabilitätsproblems

beim exzentrischen Knicken.
Das Kriterium für das Eintreten der UnstaHpiät ist die

Erscheinung, dass bei einer Pfeilvergrösserung der gebogenen
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Axe das äussere Moment stärker wächst als das innere, das
äussere Moment also dem innern überlegen wird. Wir werden
uns diese Stabfliitätsverhältnisse in der Folge am besten
graphisch vor Augen führen, wo es sichz. B. zeigt, dass die
Tangente (den Verlauf der äussern Momente darstellend) gelegt an
die Kurve der innern Momente, die kritische Exzentrizität
ausscheidet (Abb. 3). Wird die Exzentrizität gleich Null, so
haben wir zentrisches Knicken. Das zentrische Knicken ist- ein
Spezialfall des exzentrischen Knickens.

Anhand der graphischen Darstellung (Abb. 2 und 3)
überblicken wir die Stabilitätsverhältnisse in qualitativer Beziehung,
während die sahlenmässigen Beziehungen später gegeben werden.
Für die zwei skizzierten Stäbe sind unten und oben je zwei
Koordinatensysteme gezeichnet. Beide haben als Abszissenaxe
die Pfeilausbiegungen in Stabmitte. Die obern Systeme zeigen
als Ordinaten die Traglasten, die untern die dabei auftretenden
äussern und innern Momente. Alles ist in stark verzerrtem Massstabe

gezeichnet.
Für zentrische Belastung : Die erste Figur zeigt, dass der

Stab keine Ausbiegung aufweist bis zum Erreichen der Euler-
schen Knicklast. Für eine weitere Steigerung der Last wird die

gerade Stabform unstabil, der Stab weicht aus bis zu einem
Pfeil, der durch die Grashof'sche Gleichung gegeben ist. Wäre
das Stabmaterial unbegrenzt proportional-elastisch, so würden
Last und Pfeil nach der punktierten Kurve im Zusammenhang
stehen. Wird nun die Proportionalitätsgrenze überschritten, so
wächst die Tragkraft in schwächerem Masse, erreicht einen
Höchstwert und fällt für weitere Ausbiegungen ab.

Im unteren Koordinatensystem zeigt die Kurve das einem
bestimmten Pfeil entsprechende innere Moment. Die Neigung
der Tangente an diese Kurve im Nullpunkt gibt uns das Mass
der Euler'schen Knickkraft. Für diese Kraft wachsen bei einer
unendlich kleinen Ausbiegung des Stabes inneres und äusseres
Moment in gleichem Masse : der Stab ist für eine unendlich
kleine Ausbiegung im indifferenten Gleichgewicht. Für eine
erhöhte Last, P' ;> P, dreht sich die Ma-Linie gemäss Ma P'f
in unserer graphischen Darstellung etwas auf; das äussere
Moment wächst zunächst stärker an als das innere; erst beim
Schnittpunkt der Geraden mit der MrKurve stabilisiert sich der
Stab wieder. Wird die Proportionalitätsgrenze überschritten, so
steigt von hier an die ÌW--Kurve in schwächerem Masse an; die
neue Tangente an die Kurve, zeigt die steilst mögliche Lage der
afa-Linie, bei der noch Gleichgewicht vorhanden sein kann. Für
eine steilere Lage der JM„-Linie (entsprechend einer noch
grösseren Last) findet sich kein entsprechendes inneres Moment
mehr: der Stab knickt aus.

Für exzentrische Belastung : Schon mit Beginn der
Belastung muss sich der Stab ausbiegen, damit ein Mi Ma
erhalten wird: Schnittpunkt der Geraden mit der Kurve. Der
Schnittpunkt gibt ein stabiles Gleichgewicht für eine Pfeilver-
grösserung. Eine Lastvergrösserung bedingt ein Aufdrehen der
Ma-Uiw*:- die Tangente gibt die labile Gleichgewichtslage. In
unserer Abb. 3 drückt sich in der Doppelkrümmung der
Momenten-Kurve (gegen die Abszissenaxe zuerst konvex) in; stark
verzerrtem Masstab der Grashof-Effekt aus. Für unsere praktisch

vorkommenden Schlankheitsgrade ist diese Doppelkrümmung
durchaus durch eine gegen die Abszissenaxe konkave

Linie ersetzbar.

Kurzer Abriss der geschichtlichen Entwicklung
Die mathemat. Erfassung des zentr. Knickproblems gelang

zuerst Euler (1744) 2), indem er das erste, wichtigste Glied der
genaueren GleiSing von Grashof (1866) aufstellte. Die Formel
blieb jedoch so lange ohne durchschlagende Eregfeutung für die
Praxis, als sie nur den Bereich der proportionalen Formänderungen

erfasste. Der Ingenieur, gewohnt, nur mit der Hookeschen

und Navier'schen Hypothese zu rechnen, vermochte lange
Zeit die Formel im plastischen Bereiche, der JBr das Knicken
der wichtigste ist, nicht anzuwendehKbis Engesser (1889) die
Einführung eines vom Druck-Stauchungs-Diagramm abhängigen
Knickmoduls T anregte. Jasinski (1895) präzisierte diesen
Vorschlag, indem ep auf das quasi-elastische Verhalten auf der Ent-
lastungsseitapiinwies, doch erst durch die Arbeiten von v. Karman,
(1910) wurde die Forschungskette, die sich auf die Frage des
zentrischen Knickens bezieht (das exzentrische Knicken
behandelte Karman nur nebenbei) zu einem gewissen Abschluss
gebracht.

Inzwischen aber hatte die Praxis ein immer dringender
werdendes Bedürfnis nach sicheren Berechnuhgsgrundlagen gezeigt.

2) Vgl. F. Stüssi: 200 Jahre Euler'sche Knickformel, S. 1* lfd. Bd. Red.

Die Gruppe der Navier-Schwarz-(185lt)-Rankine'schen Knick-
Formeln von der Form

k
1 + S)'

erwies sich sowohl praktisch als theoretisch als unzulänglich.
Unter ähnlichen Mängeln litt auch die Gruppe der Knickformeln
nach Johnson-Ostenfeld (1890), die im Nicht-Euler'schen Bereich

eine Parabel von der Form P fc 1 — c I —) einschaltete.

Unter diesen Verhältnissen musste zu gross angelegten Versuchen
geschritten werden. An erster Stelle müssen hier erwähnt werden

die Versuche, die Prof. von Tetmajer an der Eidg.
Materialprüfungsanstalt in den achtziger- und neunziger Jahren durchführte

und die dann zu der heute noch wohlbekannten, für die
Praxis recht brauchbaren «Tetmajer'schen Geraden» führten.
Weitere ausländische Versuche sind ihm gefolgt und auch Zürich
hat die Tetmajer'schen Arbeiten und die Tetmajer'sche Tradition
wieder aufgenommen und dabei vor allem der Frage des
exzentrischen Knickens, das ja in der Praxis fast immer vorhanden
ist, Beachtung geschenkt. Das Problem des exzentrischen Knik-
kens wurde ebenfalls schon von Tetmajer Ende der achtziger
Jahre behandelt. Er gelangte dabei zu empirischen Formeln, die
sich auch den heutigen Versuchsergebnissen gut anschmiegen.

Köchlin stellte dann 1899 seine Exzentrizitätskurven auf,
teilweise theoretisch entwickelt, teilweise auf Grundlage der
Tetmajer'schen Versuche, und später (1910) behandelte auch
von Karman die Frage des exzentrischen Knickens, gab aber,
wie erwähnt, nur Knicklastwerte für sehr kleine Exzentrizitäten.

Anmerkung Grashof gibt die erwähnte schärfere Ableitung in
seiner «Festigkeitslehre», 1866. Bei derEuler'schen Ableitung wudre

dy* 1
— — alsdie Form der Biegungslinie aus der Beziehung

genauere AusdruckSinuslinie gefunden. Der
mungsradius aber lautet:

d*x
für den Krüm-

dx J

fm _Vy_
dx2

Ferner wurde für die Sehne die konstante Bogenlänge eingesetzt,

in der Differentialgleichung also ds dx, genau aber ist
ds= ]/dx2 _|_ dj/2 (Abb. 4)

Unter Berücksichtigung dieser beiden Verschärfungen

ergibt sich die Knicklast zu:
7t2 EJ

Z2 HSÜ
p41+1,23(t)'+--]

Pe Eulersche Knicklast

Abb. 4

Die getrennte Betrachtung der beiden Einflüsse
ergibt, dass der Krümmungsradius-Einfluss allein
eine etwas kleinere Knicklast bedingen würde
als die Euler'sche Last, weil die Krümmung in

Stabmitte etwas kleiner ist als nach Euler. Stärker aber ist der
Einfluss der Sehnenverkürzung, der die Knicklast vergrössert.
Eine elementare Ableitung des Einflusses der Sehnenverkürzung
ergibt sich wie folgt:

Zwischen Bogen Z und Sehne d besteht die angenäherte
Beziehung

s WÊm
Die Sehnenlänge in die Euler'sche Formel eingesetzt ergibt:

KSEJ ¦ i&EJ 1
p

p (S16 «
" p

1 _ i6
~~3~' 3

den zweiten Faktor nach dem binomischen Satz entwickelt:

tfEJl
Z2 :[l + ,,s(!)'+...]

Die Werte sind unter Berücksichtigung' des Krümmungs-
Radius :

unter Berücksichtigung der Sehnenverkürzung:

i^^pä- p -p*[1 + 5'3(t)'1

Resultierend also : P - PE 1 _+ 1,3 im 1
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