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(Druckfestigkeits)-Problem iiber. Das Stabilitdtsproblem bietet
Knickstabilitat aber das umfassende Kriterium, in dem erweiterten Sinne, dass

Von Ing. Dr. J. BRUNNER, EMPA, Ziirich

[Die vorliegende Abhandlung ist gedacht als einleitendes
Kapitel einer grosseren Schrift: «Die Knickstabilitdt der tech-
nisch wichtigsten Baustoffe» die von der Eidg. Materialpriifungs-
und Versuchsanstalt herausgegeben werden wird.]

Die mangelnde Knicksicherheit von auf Druck beanspruchten
Konstruktionsgliedern hat sich im Ingenieurbauwesen oft ver-
héngnisvoll ausgewirkt. Dreiviertel aller Einstiirze im Eisen-
Briickenbau, im Holz- und Eisenhochbau sind auf ungeniigende
Knicksicherheit zuriickzufiihren. Der Knickgefahr ausgesetzten
Baugliedern ist daher die grosste Sorgfalt bei der Berechnung
und konstruktiven Durchbildung zuzuwenden. Insbesondere muss
dem die Knicksicherheit vermindernden Einfluss des exzentri-
schen Kraftangriffes die gebiihrende Beachtung zuteil werden.

Die Frage der Knickstabilitit hatte die Eidg. Materialprii-
fungs- und Versuchsanstalt (Ziirich) schon unter ihrem ersten
Direktor, Prof. L. von Tetmajer ganz besonderes Interesse ge-
widmet, wie die Veroffentlichungen aus den Jahren 1889/1901
beweisen. Auf Grund der gross angelegten Versuche wurden die
bekannten Knickformeln aufgestellt, die in ihrem empirischen
Bereich heute noch volle Anerkennung geniessen.

Die Versuche iiber Knickfestigkeit wurden in den Jahren
1925/1940 wieder aufgenommen und dabei vor allem der Frage
des exzentrischen Knickens Aufmerksamkeit geschenkt, wie denn
iiberhaupt in diesen Jahren an den Internat. Briickenbau-Kon-
gressen diese Fragen mehrfach behandelt wurden. Es ergab sich
die Moglichkeit, die Knickfestigkeit wie beim zentrischen Last-
angriff auch bei exzentrischem Lastangriff aus dem Spannungs-
Dehnungs-Diagramm abzuleiten, was z. B. fiir Baustoff mit neuen
Eigenschaften (hochwertiger Baustahl, Si-Stahl, Gusstahl, Leicht-
metalle, Holz verschiedener Qualitit, Beton verschiedener Qua-
litdt usw.) von Wichtigkeit ist. Es konnen die Knickspannungs-
Linien theoretisch abgeleitet werden. Die Versuchsreihen dienen
dann zur praktischen Ueberpriifung der Theorien. Die physika-
lisch richtige Erfassung des Knickproblems gestattet auch sta-
tisch verwickeltere Verhéltnisse zu behandeln. So wurden unter-
sucht: Knicken bei nach beiden Hauptaxen exzentrischem Last-
angriff, Knicken bei exzentrischem Lastangriff in einer Hauptaxe
und Knickrichtung nach der andern Hauptaxe, Knicken bei
gleichzeitig wirkender Seitenlast; Einfluss der Querschnittform.
Auch an die Frage der gegliederten Stdbe und der Rahmenstidbe
wurde herangetreten und die Theorie durch Versuche iiberpriift?).

Das Wesen des Knickens

In den Knickerscheinungen erkennen wir ein Stabilitéts-
Problem, das sich nicht auf das Erreichen einer durch das Mate-
rial gegebenen, bestimmten Spannung zuriickfithren lidsst; nicht
das Auftreten einer gewissen Randfaserspannung, etwa der Pro-
portionalitdtsgrenze, der Fliessgrenze oder der Bruchgrenze fithrt
den Knickzustand herbei, sondern das Eintreten der instabilen
Gleichgewichtslage des Stabes fiir die &ussern belastenden Krifte
und die innern elastischen Reaktionskrifte (bei einer virtuellen
Ausbiegung). Ein sehr schlanker Stab knickt schon weit vor
dem Erreichen der Proportionalititsgrenze aus, ein sehr ge-
dréangter Stab iliberwindet die Fliessgrenze. Die zuldssige Be-
lastung bei Knickerscheinungen ist also herzuleiten aus der Kkri-
tischen Belastung, die die Instabilitit erzeugt. Erst aus der Knick-
last kann sekundir, unter Einsetzen eines Sicherheitsfaktors
¢ine zuldssige Beanspruchung rechnerisch hergeleitet werden.

Wir bemerken hier, dass der Baustatik eben zwei Kriterien
dienen: Einerseits muss das von &ussern und innern Kriften
gebildete Gleichgewicht stabil sein, anderseits diirfen die zu
definierenden Spannungen gewisse vom Baustoff abhingige
Grenzen nicht iiberschreiten. Entsprechend gliedert sich die ganze
Festigkeitslehre in eine «Stabilitdtstheorie» und eine «Spannungs-
theorie» (Handbuch Schleicher). Fiir sehr gedrungene Stébe geht,
wie wir unten bemerken, das Stabilitdtsproblem in ein Spannungs-

1) Vergl.: M. Ros und J. Brunner. Die Knicksicherheit von an beiden
Enden gelenkig gelagerten Stiben aus Konstruktionsstahl.

M. Ros. Abhandlung im Bericht der Internat. Tagung fiir Briicken-
und Hochbau, Wien 1928. — Abhandlung im Kongressbericht der Internat.
Tagung flir Briicken- und Hochbau, Paris 1932.

auch das Zerreissen oder Zerdriicken einer Faser Unstabilitét
hervorrufen kann.

Zur Orientierung wollen wir an dieser Stelle den allgemei-
neren Begriff der Stabilitét, wie ihn die allgemeine Physik lehrt,
in Betracht ziehen. Den einfachsten Fall der drei Gleichgewichts-
lagen zeigt ein korperliches Pendel, je nachdem es oberhalb oder
unterhalb des Schwerpunktes oder in diesem selbst aufgehingt
ist. Analoge Beispiele ergeben Korperketten, die Schiffstabilitét,
die Standfestigkeit von Stiitzmauern usw.

Die Statik kennt zur Charakterisierung der Stabilitdt das
energetische Mass (positive und negative Arbeit, die bei einer
virtuellen Bewegung in Erscheinung tritt), das dynamische Mass
(die Grosse einer bestimmten Kraft oder Belastung, die Bewe-
gung erzeugt). Auf einen festen, unelastischen Korper, z. B. eine
Stiitzmauer angewendet, zeigen sich folgende Verhéltnisse (Ab-
bildung 1): Das energetische Mass der Standfestigkeit ist hier
My, = G (r — h) . Im vorliegenden Fall ist fiir eine Bewegung
positive Arbeit zu leisten. Der Standsicherheitsgrad betrégt:
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Abb. 1. Energetisches G (7-h) und
Mass der Standfestigkeit

‘ dynamisches P

Py.;; verursacht eine Bewegung. Der Standsicherheitsgrad be-

trigt: Prrit

P vorh

Der Fall der elastischen Stabilitdt (es hat sich hier das
Wort «Stabilitaty statt «Standfestigkeity in die Literatur einge-
biirgert) tritt in Erscheinung beim Knicken eines Stabes. Ein
gelenkig gelagerter, mit P belasteter Stab ist, sofern er eine
gewisse L#nge nicht iiberschreitet, im stabilen Gleichgewicht
und wird nicht ausknicken. (Wir variieren hier gedanklich die
Léange des Stabes und behalten P bei, um die Spannung ¢ — —;—
konstant zu halten und zu zeigen, dass nicht die Spannung fiir
die Stabilitdt massgebend ist). Ueberschreitet der Stab aber
diese Linge I; bei der Last P, so knickt er aus. Das energe-
tische Mass der Stabilitdt erweist, dass von dieser Lénge I ab
die elastische Energie, die einer Ausbiegung des Stabes ent-
spricht, kleiner ist als die potentiale Energie, herriihrend von
der mit der Ausbiegung verbundenen Senkung des belastenden
Gewichtes. In der Folge benutzen wir aber in dem vorliegenden
Bericht nur das «dynamische Massy der Stabilitdt durch Be-
stimmung der Kraft P, bei der eine Bewegung, ein Ausweichen
des Stabes (von konstanter Linge) eintreten, d.h. die stabile
Lage in eine instabile iibergehen wiirde. Es wird also die Knick-
kraft Pj bestimmt. Wir legen hier die grundsétzlichen Verhélt-
nisse etwas schematisiert dar, um erst spéiter auf die Verfeine-
rungen einzugehen.

Stellen wir uns einen vorerst sehr schlanken Stab vor, und
geben ihm eine virtuelle Ausbiegung, z. B. durch eine stérende
Seitenkraft, so erfolgt nach deren Wegnahme wieder eine
Riickkehr in die gerade Lage, solange die belastende Kraft P
kleiner bleibt als die kritische Last Pj und wenn in keinem Stab-
Element die Proportionalitédtsgrenze iiberschritten wurde; eine
wenigstens teilweise Riickkehr, wenn eine Ueberschreitung vor-
kam. Das dem Ausbiegen entgegenwirkende innere Reaktions-
Moment aus den Elastizitdtskraften — dessen quantitative Be-
stimmung wir spiter geben werden — wichst stdrker an als
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gibt uns diese kritische Last, vorerst fiir Knick-
lingen, bei denen unter der kritischen Last die
Proportionalitdtsgrenze des Materials nicht iiber-
schritten wird.

Wir haben bei unsern Ueberlegungen je nach
Erfordernis fiir einen als gegeben angenommenen
Stabquerschnitt entweder die Stabkraft P oder
die Stablénge I variiert, um den kritischen Wert
dieser beiden Grossen zu erhalten. Einem be-
stimmten P entspricht eine kritische Linge I, und
einem bestimmten ! entspricht eine kritische
Last P,. Um uns nun von der Grosse des Stab-
querschnittes frei zu machen, fiihren wir statt

Last P

der Kraft P die Querschnittspannung ¢ = _11;—

und statt der Stabléinge ! den Schlankheitsgrad
Die HEulerformel
2 EBi?F

12
w2 H

1\2
()

Die Schlankheitsbereiche, in denen unter der
kritischen Last die Proportionalitétsgrenze nicht
iiberschritten wird, entsprechen ungefédhr folgen-
den Schlankheitsgraden bei gelenkiger Lagerung
der Stabenden:

1
des Stabes, also = ein. ergibt

gan; P—gF =

Baustahl . I/i > 105 bis 110 S
Bauholz 1/i > 85 bis 100 g
HEisenbeton 1/i > 160 bis 190 I

Unterschreitet dagegen der Schlankheitsgrad
eine gewisse Grenze, so wird fiir die Tragkraft
nicht mehr die Knickstabilitét, sondern die «Druck-
festigkeit» des Materials massgebend, analog
der frithern Bemerkung iber die Stabilitdt einer
Stiitzmauer, sodass z. B. das Abdriicken einer
Kante ausschlaggebend werden kann, wobei also nicht ein Sta-
bilitdts-, sondern ein Spannungs-Problem vorlédge.

Eine Knickgefahr tritt bei unsern gebrduchlichsten Bau-
stoffen beim Unterschreiten etwa folgender Schlankheitsgrade
nicht mehr auf:

Abb. 2.

Baustahl . 1/i < 10 bis 15
Bauholz /i < 20 bis 25
Eisenbeton . . . . /i < 35 bis 50

In den dazwischen liegenden Schlankheitsgraden, bei Ueber-
schreitung der Proportionalitéitsgrenze, muss an Stelle des Ela-
stizitdtsmoduls E ein entsprechender Modul T treten, den wir
weiter unten ermitteln.

Die Eulerformel mit dem Elastizitdtsmodul B und die er-
weiterte Hulerformel mit dem Knickmodul T geben fiir den
zentrisch belasteten, geraden Stab und fiir die im Bauwesen ge-
wohnlich vorkommenden Schlankheitsgrade die praktisch zu-
treffenden Lasten. Fiir extrem schlanke Stdbe, wie sie in der
Baupraxis aber selten vorkommen (lange Stangen, diinne Bretter
usw.) wird bemerkbar, dass die Knicklast nicht ganz vom Aus-
biegungspfeil f unabhingig ist: der sogenannte «Grashof-Effekt»
tritt in Erscheinung. Die Eulerformel wurde unter gewissen ver-
einfachenden Annahmen abgeleitet. Die vollstdndigere «Grashof-
Formel» hat gegeniiber der einfacheren «Eulerformel» weniger
praktische Folgerungen zum Zwecke, als eine begriffliche Ab-
kldrung.

Der Grashof’sche Ausdruck, wie er durch genaue Integration
der Differentialgleichung fiir das Gleichgewicht eines virtuell
ausgebogenen Stabes gefunden wird, lautet:

w2 BJ N2
P"“T[1+T(T) + ]
Das erste Glied der Reihe ist der Huler’sche Ausdruck.

Wir sehen, dass die Tragkraft etwas abhingig ist vom Aus-
biegungs-Pfeil und dass unser Instabilwerden eigentlich ein
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Prinzipielle Verhiltnigse der Knickstabilitdat Abb. 3

«Verzweigungspunkty der Gleichgewichtslage ist. Die gerade
Form des Stabes wird eine labile Form und es stellt sich
ein kleiner Ausbiegungspfeil ein. (Rein theoretisch, bei idealer
Homogenitdt und Geradheit des Stabes, konnte diese labile
Lage auch fiiv hdhere Lasten bestehen bleiben; zu vergleichen
etwa mit der labilen Lage eines auf die Spitze gestellten
Bleistiftes.) Nun aber haben alle unsere Baustoffe eine Propor-
tionalitdtsgrenze, d. h. das Hooke’sche Gesetz der Proportionalitadt
zwischen Spannung und Dehnung gilt nicht unbeschrénkt, nach
Ueberschreiten derselben strebt die Tragféhigkeit rasch einem
Maximum zu und fillt dann ab (Abb. 2).

Fiir Schlankheitsgrade der Baupraxis kommt die Erhchung
der Tragkraft durch den «Grashof-Effekt» gar nicht in Frage.
Es kann sich bis zum Erreichen der Hochstlast kein in Rech-
nung fallender Ausbiegungspfeil entwickeln und die Euler’sche
Knickkraft ist die praktische Tragkraft. Um einen zahlenmés-
sigen Begriff zu erhalten, sei folgendes angefiihrt: Fiir einen
Eisenstab vom Schlankheitsgrade /i — 500 betrigt bei einer
Ausbiegung bis zum Erreichen der Proportionalitidtsgrenze die
Erhthung der Tragkraft 0,8 °/,, (Versuche mit Flacheisenstében
an der EMPA).

Wenden wir uns dem eaxzentrischen Emicken zu (Abb. 3).
Ein exzentrisch gedriickter Stab biegt sich mit steigender Last
gleich von Anfang an aus. Er besitzt einzig die gebogene Form
als Gleichgewichtslage. Fiir ein Material, das unbeschrénkt dem
Hooke’schen Gesetze gehorchen wiirde, kénnte man die Last
steigern, bis in einer Randfaser die Bruchspannung erreicht
wére. Erst die Abweichung von der Hooke’schen Gesetzméssig-
keit, die Unproportionalitit zwischen Spannung und Dehnung,
bietet die Voraussetzung fiir die Existenz eines Stabilitdtspro-
blems beim exzentrischen Knicken.

Das Kriterium fiir das Eintreten der Unstabilitdt ist die
Erscheinung, dass bei einer Pfeilvergrésserung der gebogenen
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Axe das #dussere Moment stédrker wéchst als das innere, das
dussere Moment also dem innern iberlegen wird. Wir werden
uns diese Stabilitdtsverhéltnisse in der Folge am besten gra-
phisch vor Augen fiihren, wo es sich z. B. zeigt, dass die Tan-
gente (den Verlauf der dussern Momente darstellend) gelegt an
die Kurve der innern Momente, die kritische Exzentrizitdt
ausscheidet (Abb. 3). Wird die Exzentrizitdt gleich Null, so
haben wir zentrisches Knicken. Das zentrische Knicken ist-ein
Spezialfall des exzentrischen Enickens.

Anhand der graphischen Darstellung (Abb. 2 und 3) uber-
blicken wir die Stabilitdtsverhiltnisse in qualitativer Beziehung,
wihrend die zahlenmdissigen Beziehungen spiter gegeben werden.
Fiir die zwei skizzierten Stibe sind unten und oben je zwei
Koordinatensysteme gezeichnet. Beide haben als Abszissenaxe
die Pfeilausbiegungen in Stabmitte. Die obern Systeme zeigen
als Ordinaten die Traglasten, die untern die dabei auftretenden
dussern und innern Momente. Alles ist in stark verzerriem M ass-
stabe gezeichnet.

Fiir zentrische Belastung : Die erste Figur zeigt, dass der
Stab keine Ausbiegung aufweist bis zum Erreichen der Euler-
schen Knicklast. Fiir eine weitere Steigerung der Last wird die
gerade Stabform unstabil, der Stab weicht aus bis zu einem
Pfeil, der durch die Grashof’sche Gleichung gegeben ist. Wére
das Stabmaterial unbegrenzt proportional-elastisch, so wiirden
Last und Pfeil nach der punktierten Kurve im Zusammenhang
stehen. Wird nun die Proportionalitdtsgrenze iiberschritten, so
wichst die Tragkraft in schwicherem Masse, erreicht einen
Hochstwert und fallt fiir weitere Ausbiegungen ab.

Im unteren Koordinatensystem zeigt die Kurve das einem
bestimmten Pfeil entsprechende innere Moment. Die Neigung
der Tangente an diese Kurve im Nullpunkt gibt uns das Mass
der Buler’schen Knickkraft. Fiir diese Kraft wachsen bei einer
unendlich kleinen Ausbiegung des Stabes inneres und &usseres
Moment in gleichem Masse: der Stab ist fiir eine unendlich
kleine Ausbiegung im indifferenten Gleichgewicht. Fiir eine er-
hohte Last, P’ > P, dreht sich die M,-Linie geméiss M, = P'f
in unserer graphischen Darstellung etwas auf; das &dussere
Moment wichst zundchst stirker an als das innere; erst beim
Schnittpunkt der Geraden mit der M ;-Kurve stabilisiert sich der
Stab wieder. Wird die Proportionalitédtsgrenze iiberschritten, so
steigt von hier an die M;-Kurve in schwécherem Masse an; die
neue Tangente an die Kurve, zeigt die steilst mogliche Lage der
M,-Linie, bei der noch Gleichgewicht vorhanden sein kann. Fiir
eine steilere Lage der M ,-Linie (entsprechend einer noch gros-
seren Last) findet sich kein entsprechendes inneres Moment
mehr; der Stab knickt aus.

Fiir exzentrische Belastung : Schon mit Beginn der Bela-
stung muss sich der Stab ausbiegen, damit ein M; — M, er-
halten wird: Schnittpunkt der Geraden mit der Kurve. Der
Schnittpunkt gibt ein stabiles Gleichgewicht fiir eine Pfeilver-
grosserung. Hine Lastvergrosserung bedingt ein Aufdrehen der
M,-Linie: die Tangente gibt die labile Gleichgewichtslage. In
unserer Abb. 3 driickt sich in der Doppelkriimmung der Mo-
menten-Kurve (gegen die Abszissenaxe zuerst konvex) in stark
verzerrtem Masstab der Grashof-Effekt aus. Fiir unsere prak-
tisch vorkommenden Schlankheitsgrade ist diese Doppelkriim-
mung durchaus durch eine gegen die Abszissenaxe konkave
Linie ersetzbar.

Kurzer Abriss der geschichtlichen Entwicklung

Die mathemat. Erfassung des zentr. Knickproblems gelang
zuerst Euler (1744)2), indem er das erste, wichtigste Glied der
genaueren Gleichung von Grashof (1866) aufstellte. Die Formel
blieb jedoch so lange ohne durchschlagende Bedeutung fiir die
Praxis, als sie nur den Bereich der proportionalen Forménde-
rungen erfasste. Der Ingenieur, gewohnt, nur mit der Hooke-
schen und Navier’schen Hypothese zu rechnen, vermochte lange
Zeit die Formel im plastischen Bereiche, der fiir das Knicken
der wichtigste ist, nicht anzuwenden, bis Engesser (1889) die
Einfithrung eines vom Druck-Stauchungs-Diagramm abhéngigen
Knickmoduls 7' anregte. Jasinski (1895) prézisierte diesen Vor-
schlag, indem er auf das quasi-elastische Verhalten auf der Ent-

lastungsseite hinwies, doch erst durch die Arbeiten von v. Karman,

(1910) wurde die Forschungskette, die sich auf die Frage des
zentrischen Knickens bezieht (das exzentrische Knicken be-
handelte Karman nur nebenbei) zu einem gewissen Abschluss
gebracht. (

Inzwischen aber hatte die Praxis ein immer dringender wer-
dendes Bediirfnis nach sicheren Berechnungsgrundlagen gezeigt.

2) Vgl. F. Stiissi: 200 Jahre Euler’sche Knickformel, S. 1% 1fd. Bd. Red.

Die Gruppe der Nawier-Schwarz-(1854)-Rankine’schen Knick-
Formeln von der Form
k

1\2
14 ¢ (T) ;
erwies sich sowohl praktisch als theoretisch als unzulénglich.

Unter dhnlichen Méngeln litt auch die Gruppe der Knickformeln
nach Johnson-Ostenfeld (1890), die im Nicht-Euler’schen Bereich

2
eine Parabel von der Form P — k [1 £ (C (%\) :I einschaltete.

Unter diesen Verhiltnissen musste zu gross angelegten Versuchen
geschritten werden. An erster Stelle miissen hier erwdhnt wer-
den die Versuche, die Prof. von Tetmajer an der Bidg. Material-
priifungsanstalt in den achtziger- und neunziger Jahren durch-
fiihrte und die dann zu der heute noch wohlbekannten, fiir die
Praxis recht brauchbaren «Tetmajer’schen Geraden» fiihrten.
Weitere auslidndische Versuche sind ihm gefolgt und auch Ziirich
hat die Tetmajer’schen Arbeiten und die Tetmajer’sche Tradition
wieder aufgenommen und dabei vor allem der Frage des exzen-
trischen Knickens, das ja in der Praxis fast immer vorhanden
ist, Beachtung geschenkt. Das Problem des exzentrischen Knik-
kens wurde ebenfalls schon von Tetmajer Ende der achtziger
Jahre behandelt. Er gelangte dabei zu empirischen Formeln, die
sich auch den heutigen Versuchsergebnissen gut anschmiegen.
Kéchlin stellte dann 1899 seine Exzentrizitétskurven auf,
teilweise theoretisch entwickelt, teilweise auf Grundlage der
Tetmajer'schen Versuche, und spiter (1910) behandelte auch
von Karman die Frage des exzentrischen Knickens, gab aber,
wie erwihnt, nur Knicklastwerte fiir sehr kleine Exzentrizitéten.
Anmerkung Grashof gibt die erwéhnte schidrfere Ableitung in
seiner «Festigkeitslehre»,1866. Bei der Euler’schen Ableitung wudre
dy? P
— — als
arx 0
Sinuslinie gefunden. Der genauere Ausdruck fiir den Krium-
mungsradius aber lautet:
: ay \* 1%
Pilea
azy
e
Ferner wurde fiir die Sehne die konstante Bogenlénge einge-
setzt, in der Differentialgleichung also ds — dx, genau aber ist

ds =\aa?  dy? (Abb. 4)

Unter Beriicksichtigung dieser beiden Verschér-
fungen ergibt sich die Knicklast zu:

P:”zf'j [1+ 7;2 (%)2+]

2
= PE[1+1,23(§) s ]
P — Eulersche Knicklast

Die getrennte Betrachtung der beiden Einfliisse
ergibt, dass der Krilmmungsradius-Einfluss allein
eine etwas kleinere Knicklast bedingen wiirde
als die Euler’sche Last, weil die Kriimmung in
Stabmitte etwas kleiner ist als nach Huler. Stdrker aber ist der
Binfluss der Sehnenverkiirzung, der die Knicklast vergrossert.
Eine elementare Ableitung des Einflusses der Sehnenverkiirzung
ergibt sich wie folgt:

Zwischen Bogen ! und Sehne d besteht die angenidherte
Beziehung

die Form der Biegungslinie aus der Beziehung

0=

Abb. 4

2 16 2
a =1 — — f
Die Sehnenlénge in die Euler’sche Formel eingesetzt ergibt:
o 72 BJ 2 BJ il
o = 2 2
2 — 36_ f2 z A= E i
3 3 \1

den zweiten Faktor nach dem binomischen Satz entwickelt:

Pt ”Zlf"JP +53 (li)ng s :l

Die Werte sind unter Beriicksichtigung des Kriimmungs-

Radius:
f 2
P:.,.Pg[l—zi(T)]
unter Beriicksichtigung der Sehnenverkiirzung:

P e i [1 +53 (%)2]

2
Resultierend also : P —= —~ P Ll —+ 1,3 (_];) ]
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