Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 123/124 (1944)

Heft: 13

Artikel: Das Formänderungsproblem des querbelasteten Druckstabes

Autor: Stüssi, F.

DOI: https://doi.org/10.5169/seals-53911

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Das Formänderungsproblem des querbelasteten Druckstabes. — Fortschritte im Bau elektrischer Lokomotiven. — Die Renovation des Freulerpalastes in Näfels (mit Tafeln 5 bis 8). — Zur Planung schweizerischer Binnenwasserstrassen. — Planung des neuen Kantonspitals in Genf. — Mitteilungen: Die Verdunstungsfähigkeit verschiedener Putze mit Rücksicht auf die Mauerfeuchtigkeit. Ein neues mechanisches

Sortierverfahren. Aehnlichkeitstheorie der Wärmeaustauschapparate. Radsatz-Spurkranz-Schweissanlage. Pathologisches Institut und Kapelle des Kantonspitals Lausanne. Die Festigkeit von Eis. — Nekrologe: Eduard Von der Mühll. — Wettbewerbe: Bezirksgebäude in Dielsdorf. — Literatur. Mitteilungen der Vereine.

Vortrags-Kalender.

Band 123

Der S.I.A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich
Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet

Nr. 13

Das Formänderungsproblem des querbelasteten Druckstabes

Von Prof. Dr. F. STÜSSI, E. T. H., Zürich 1. Bei querbelasteten schlanken

1. Bei querbelasteten schlanken Druckstäben, wie sie beispielsweise als Pylonen bei Hängebrücken oder als Stützen bei Hochbaubindern vorkommen, werden die Schnittmomente durch die elastischen Formänderungen vergrössert. Wir haben es hier mit einem Formänderungsproblem oder mit einem Spannungsproblem zweiter Ordnung zu tun. Der Zusammenhang zwischen den äussern Kräften und den Formänderungen wird dabei durch eine Differentialgleichung, meist zweiter Ordnung, beherrscht und in vielen Fällen ergibt sich eine einfache baupraktische Lösung dadurch, dass wir die Differentialgleichung in einen andern numerisch lösbaren Zusammenhang umsetzen. So habe ich beispielsweise gezeigt, dass die lineare inhomogene Differentialgleichung zweiter Ordnung durch eine Analogie mit dem Seilpolygon, das ja den Zusammenhang zwischen einer Funktion y und ihrer zweiten Ableitung y'' (Belastung) darstellt, in ein dreigliedriges Gleichungssystem umgesetzt und damit numerisch gelöst werden kann¹).

Einen ähnlichen Versuch unternimmt nun auch Ernst Amstutz unter dem reichlich vielversprechenden Titel «Graphische Statik der Formänderungsprobleme»2). Man kann sich fragen, ob das vorgeschlagene Verfahren bei der bei solchen Problemen erforderlichen Rechnungsgenauigkeit überhaupt graphisch durchführbar ist. Man kann auch darüber diskutieren, ob es zweckmässig ist, ein neues Verfahren aufzustellen, das nur für Druckstäbe, nicht aber für das Formänderungsproblem des Zugstabes gültig ist, wenn bestehende Verfahren diesen Nachteil nicht besitzen. Man kann schliesslich auch darüber geteilter Meinung sein, ob es vorteilhaft ist, zur Untersuchung der Biegung eines geraden Stabes als Gleichnis den stark gekrümmten Stab beizuziehen; normalerweise wird man umgekehrt vorzugehen suchen und bei der Untersuchung komplizierter Probleme einfachere Systeme zu Gleichnissen benützen. Mit aller Entschiedenheit abzulehnen ist aber die von E. Amstutz in seiner Arbeit vertretene Auffassung, dass der Grad der statischen Unbestimmtheit von der Zahl der gegebenen äussern Lasten abhängig sei. E. Amstutz untersucht als Anwendungsbeispiel eine Hallenstütze mit zwei lotrechten Lasten und ist bei seinem Verfahren gezwungen, dabei zwei überzählige Grössen X_1 und X_2 einzuführen. Hätte die Stütze zehn lotrechte Lasten zu tragen, so wäre sie damit zehnfach statisch unbestimmt geworden.

2. Ich möchte nun im folgenden zeigen, dass wir solche Formänderungsprobleme direkt, nur mit den klassischen Mitteln der Baustatik, lösen können. Bei beliebiger, d. h. komplizierter Längs- und Querbelastung und veränderlicher Steifigkeit, ist dieser Weg einfacher und übersichtlicher als der Umweg über eine Umsetzung der Differentialgleichung. Der Untersuchung soll der beliebig querbelastete Druckstab mit veränderlicher Längskraft zu Grunde gelegt werden; ist der Stab gezogen, so bedeutet dies nur eine Vorzeichenänderung.

In Abb. 1 ist ein unten eingespannter querbelasteter Druckstab skizziert. Wir legen ein Koordinatensystem $x,\ y$ mit Ursprung in der ausgebogenen Stabspitze A; die wirklichen Ausbiegungen ergeben sich damit zu y_B-y . Durch diese Orientierung erreichen wir, dass die aufzustellenden Beziehungen ohne weiteres auch für den Fall der Abb. 2 gültig sind.

Wir greifen nun ein verformtes Stabstück $\Delta x_m = s_m$ zwischen den Knotenpunkten m-1 und m heraus (Abb. 3) und betrachten den Gleichgewichtszustand, wobei die äussern Lasten in die Knotenpunkte reduziert sein sollen. Am Knotenpunkt m-1 greifen das Moment M_m-1 sowie die Querkräfte Q_{xm} und Q_{ym} , die die Resultierenden der äussern Lasten P_x , bezw. P_y von A bis m-1 einschliesslich der Knotenlasten in m-1 bedeuten, an. Ausserdem sollen noch einzelne äussere Momente ΔM_m im Feld Δx_m unmittelbar rechts vom Knotenpunkt m-1 angreifend den Stab belasten. Eine Momentengleichgewichtsbedingung bezüglich m ergibt:

$$M_m = M_{m-1} + \Delta M_m + Q_{ym} \cdot \Delta x_m + Q_{xm} \cdot \Delta y_m \quad . \tag{1}$$

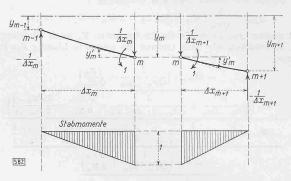


Abb. 4. Formänderungen, virtueller Belastungszustand

Um nun den gesuchten Zusammenhang mit den Ausbiegungen y zu finden, belasten wir (Abb. 4) nach den bekannten und vor allem von H. Müller-Breslau entwickelten klassischen Verfahren der Baustatik den Stab $\varDelta x_m$ in m-1 mit der virtuellen Belastung $-\frac{1}{\varDelta x_m}$ und bestimmen die dabei geleistete virtuelle Arbeit. Der Stabteil $\varDelta x_m$ muss dabei in m durch die Auflagerkraft $\frac{1}{\varDelta x_m}$ und das Moment $\frac{1}{\varDelta x_m} \cdot \varDelta x_m = 1$ im Gleichgewicht gehalten werden; die virtuellen äussern Lasten leisten somit die virtuelle Arbeit

$$-\frac{1}{\Delta x_m} \cdot y_{m-1} + \frac{1}{\Delta x_m} \cdot y_m - 1 \cdot y_m$$

Durch die virtuellen Stabmomente wird aber auch eine innere virtuelle Arbeit geleistet im Betrage von

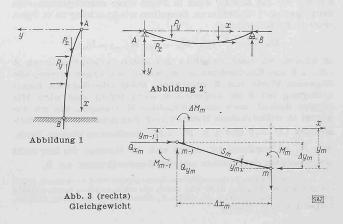
$$\frac{\Delta x_m}{6 B_m} (M_{m-1} + \Delta M_m + 2 M_m) = K_m' \quad . \quad . \quad (2a)$$

wenn wir einfachheitshalber wie üblich linearen Verlauf der Momente M und konstante Steifigkeit B=EJ über das Feld $\varDelta x_m$ annehmen. Es bietet keine grundsätzliche Schwierigkeit, die wirkliche Verteilung von Momenten und Steifigkeit in der «Knotenlast» K_m genauer zu berücksichtigen oder auch noch den Einfluss der Querkraftverformung einzubeziehen. Wir können jedoch hier und meist auch bei praktischen Anwendungen auf diese Verfeinerungen verzichten.

Setzen wir nun, weil ja Gleichgewicht besteht, innere und äussere Formänderungsarbeit einander gleich, so erhalten wir

$$\frac{1}{\Delta x_{m}} \cdot \Delta y_{m} = 1 \cdot y_{m}' = K_{m}' \qquad (3a)$$

Um die Stabneigung $y_m^{'}$ zu eliminieren, führen wir die analoge



F. Stüssi, Baustatische Methoden. SBZ, Bd. 107, S. 277* 1936.
 E. Amstutz, Graphische Statik der Formänderungsprobleme. SBZ, Bd. 122, S. 37*, 24. Juli, 1943.

Betrachtung auch für das Feld Δx_{m+1} durch mit dem Ergebnis

$$\frac{1}{\Delta x_{m+1}} \cdot \Delta y_{m+1} + 1 \cdot y_m' = K_m'' \qquad (3b)$$

wobei

$$K_m'' = \frac{\Delta x_{m+1}}{6 B_{m+1}} (2 M_m + 2 \Delta M_{m+1} + M_{m+1})$$
 . (2b)

Durch Addition der Gleichungen 3a und 3b ergibt sich

$$\frac{1}{\Delta x_m} \cdot \Delta y_m + \frac{1}{\Delta x_{m+1}} \cdot \Delta y_{m+1} = K_m + K_m = K_m \quad . \tag{4}$$

d. h. die normale Seilpolygongleichung.

Setzen wir hierin $\varDelta y_m$ aus Gleichung 1

$$\Delta y_m = \frac{1}{Qx_m} (M_m - M_{m-1} - \Delta M_m - Qy_m \cdot \Delta x_m)$$

alog Δy_{m+1} sowie die Knotenlasten K_m nach Gle

und analog Δy_{m+1} sowie die Knotenlasten K_m nach Gleichung 2 ein, so erhalten wir nach Ordnen die gesuchte Lösung des Problems:

$$-M_{m-1}\left(\frac{1}{Qx_{m}\cdot \Delta x_{m}} + \frac{\Delta x_{m}}{6B_{m}}\right) + M_{m}\left(\frac{1}{Qx_{m}\cdot \Delta x_{m}} + \frac{1}{Qx_{m+1}\cdot \Delta x_{m+1}} - \frac{2\Delta x_{m}}{6B_{m}} - \frac{2\Delta x_{m+1}}{6B_{m+1}}\right) - M_{m+1}\left(\frac{1}{Qx_{m+1}\cdot \Delta x_{m+1}} + \frac{\Delta x_{m+1}}{6B_{m+1}}\right) = \frac{Qy_{m}}{Qx_{m}} - \frac{Qy_{m+1}}{Qx_{m+1}} + \Delta M_{m}\left(\frac{1}{Qx_{m}\cdot \Delta x_{m}} + \frac{\Delta x_{m}}{6B_{m}}\right) - \Delta M_{m+1}\left(\frac{1}{Qx_{m+1}\cdot \Delta x_{m+1}} - \frac{2\Delta x_{m+1}}{6B_{m+1}}\right) .$$
(5)

Die gesuchten Momente M sind also durch Auflösung eines dreigliedrigen Gleichungssystems von der Form

 $-\alpha_m\cdot M_{m-1}+\beta_m\cdot M_m-\gamma_m\cdot M_{m+1}=D_m\ .\ .\ (5a)$ unter Beachtung der Randbedingungen zu finden. Für einen frei drehbaren Stabendpunkt A (Abb. 1) ist $M_A=0$; die Gleichung 5 für diesen Punkt fällt einfach aus. Der Punkt B sei elastisch eingespannt; die Stabneigung beträgt dann

wobei C den elastischen Verdrehungswiderstand des Fundamentes bedeutet. Die Randbedingung für B ist durch Gleichung 3a gegeben; setzen wir Gleichungen 1 $(\varDelta y_m)$, 2a und 6 ein, so erhalten wir für den Punkt B=m:

$$\frac{-M_{m-1}\left(\frac{1}{Qx_{m}\cdot \Delta x_{m}} + \frac{\Delta x_{m}}{6B_{m}}\right) + M_{m}\left(\frac{1}{Qx_{m}\cdot \Delta x_{m}} - \frac{2\Delta x_{m}}{6B_{m}} - \frac{1}{C}\right)}{=\frac{Qy_{m}}{Qx_{m}} + \Delta M_{m}\left(\frac{1}{Qx_{m}\cdot \Delta x_{m}} + \frac{\Delta x_{m}}{6B_{m}}\right) \cdot \dots (5b)}$$

Für starre Einspannung, $C=\infty$, kann Gleichung 5b auch als Symmetriebedingung zu Gleichung 5 gedeutet werden. Greifen zwischen den Stabenden keine Kräfte P_x und keine Momente $\varDelta M$ an und sind ferner B und $\varDelta x=$ Konst., so lässt sich mit $Q_x=$ Konst. =N und mit der Abkürzung

$$U = \frac{6B}{\Delta x^2}$$

die Bestimmungsgleichung 5 vereinfachen zu

$$\frac{-M_{m-1}\left(1+\frac{N}{U}\right)+M_{m}\left(2-\frac{4N}{U}\right)-M_{m+1}\left(1+\frac{N}{U}\right)}{=-\Delta x\left(Qy_{m}-Qy_{m+1}\right)=P_{m}\cdot\Delta x}.$$
 (5c)

in Übereinstimmung mit der früher¹) angegebenen Umsetzung der Differentialgleichung.

Statt der direkten Auflösung des dreigliedrigen Gleichungssystems, etwa mit dem abgekürzten Gauss'schen Algorithmus, können wir die Lösung auch in Form eines «verallgemeinerten Seilpolygonss³) durchführen. Schreiben wir Gleichung 5a in Form

$$M_{m+1} = rac{1}{\gamma_m} \, (eta_m \cdot M_m = lpha_m \cdot M_{m-1} = D_m),$$
 so können wir nach Annahme des ersten Seilstrahles durch A

so können wir nach Annahme des ersten Seilstrahles durch A ($M_A=0$ aus Randbedingung, M_1 willkürlich angenommen) alle folgenden Werte von M berechnen, wobei allerdings die Randbedingung bei B im Allgemeinen nicht erfüllt sein wird. Wir müssen deshalb noch die Schlusslinie M' einlegen, die wir zunächst in willkürlichem Masstab nach Annahme des ersten Seilstrahles ($M_A'=0$ und z. B. $M_1'=1,0$) bestimmen können. Nachdem M_B' so bestimmt ist, ergibt sich der Masstab der hier nicht mehr geraden Schlusslinie aus der Randbedingung bei B.

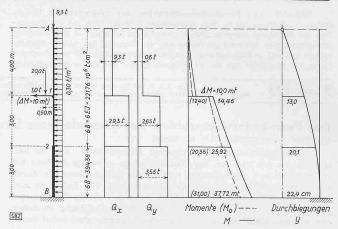


Abb. 5. Berechnungsbeispiel

3. Die Anwendung dieses Verfahrens soll nun noch an dem von E. Amstutz gewählten Beispiel einer Hallenstütze (Abb. 5) gezeigt werden. Die zur Aufstellung der Bestimmungsgleichungen 5 erforderlichen Zahlenwerte sind in der Tabelle berechnet, wobei wir, um den Spannungsnachweis in normaler Form führen zu können, die 1,7-fachen Querkräfte Q_x einführen. Um eine einfachere Zahlenrechnung zu erhalten, werden dabei die 10° -fachen Werte eingesetzt.

TABELLE

	$\frac{10^6}{1.7 \ Q_x \cdot \varDelta x}$	$\frac{10^6 \cdot \varDelta x}{6B}$	$\frac{10^6 \cdot Q_y}{1,7 \ Q_x}$	$10^{6} \cdot D_{m}$
A	cm-1·t-1	cm-1·t-1		- 72 -
	158,126	1,804	37 951	
1	66,921	1,353	53 202	— 79 466
2	66,921	0,761	71 271	+ 50 205
В	n is to a life Lame to			+71271

Somit gelten (mit $M_A = 0$) die Gleichungen

$$\begin{array}{lll} \textit{M}_1 \cdot 218,733 - \textit{M}_2 \cdot 68,274 & = -79\,466 \\ -\textit{M}_1 \cdot 68,274 + \textit{M}_2 \cdot 129,614 - \textit{M}_3 \cdot 67,682 & = +50\,205 \\ -\textit{M}_2 \cdot 67,682 + \textit{M}_3 \cdot 65,399 & = +71\,271 \\ \text{The Autolium and Matter Matt$$

die nach Auflösung die Werte

$$\begin{array}{ll} \textit{M}_A = 0 \\ \textit{M}_1 = 446 \, \mathrm{cmt} \ (\textit{M}_2 = 1000 \, \mathrm{cmt}) \\ \textit{M}_2 = 2592 \, \mathrm{cmt} \\ \textit{M}_3 = 3772 \, \mathrm{cmt} \ \mathrm{ergeben}. \end{array}$$

Die Momentenfläche ist in Abb. 5 den Momenten M_o , die sich ohne Berücksichtigung der Systemverformungen ergeben, gegenübergestellt. Trotz Verwendung der «Trapezformel» in Gleichung 2 und der geringen Zahl von Teilen Δx ist, wie Vergleichsrechnungen zeigen, die Genauigkeit mehr als ausreichend. Bei Unterschieden gegenüber der Rechnung von E. Amstutz beanspruchen wir die grössere Genauigkeit für uns. Aus Gleichung 1 können wir nun auch die Werte Δy bestimmen; die sich daraus durch Summieren ergebenden Durchbiegungswerte y sind in Abb. 5 ebenfalls eingetragen; sie besitzen für den Stützenkopf A den respektabeln Wert von über $22\,\mathrm{cm}$ bei $10\,\mathrm{m}$ Stützenköhe. Auch wenn wir, um die unter Gebrauchslast auftretenden Ausbiegungen zu erhalten, nur mit dem Werte Q_x und nicht mit $1,7\cdot Q_x$ rechnen, ist y_{max} immer noch etwa l:50; die Stütze ist gegenüber den Anforderungen einer gesunden Konstruktionspraxis zu weich. Bei einer genügend steif ausgebildeten Stütze wäre auch der Formänderungseinfluss erheblich kleiner.

Fortschritte im Bau elektrischer Lokomotiven

Mit dem Einsetzen der Konkurrenz des Automobils und des Flugzeuges sind die an die Eisenbahnen gestellten Ansprüche bezüglich Reisegeschwindigkeit, Reisebequemlichkeit und Sicherheit erheblich gestiegen. Dies führte mit der Zeit zu einer starken Erhöhung der Personenwagen- und Lokomotivgewichte und damit der pro Reisenden zu befördernden toten Last. So stieg das pro Sitzplatz zu führende Gewicht bei Berücksichtigung des Triebfahrzeuggewichtes bei gewöhnlichen Schnellzügen auf

³) Ein solches «verallgemeinertes Seilpolygon» wird dargestellt durch ein gespanntes Seil, das nicht nur durch lotrechte, sondern durch beliebig gerichtete Kräfte belastet ist. Siehe F. Stüssi, Statik der Seile, Abhandlungen I. V. B. H., Band 6.